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1. Introduction

Electroencephalogram (EEG) and electromyogram (EMG) combination recordings are often 

used to study sleep and circadian rhythms in both humans and animals. Using such 

EEG/EMG recordings, researchers can determine what sleep/wake state the animal is in at 

each time point during the recording period. This allows researchers to quantify an animal's 

sleep architecture, i.e. the timing and duration of different sleep stages, as well as to study 

the brain's electrophysiological activity during sleep. The recordings obtained this way are 

usually divided into short time segments, called epochs, which are manually scored to label 

what sleep/wake stage the animal is in.

However, sleep scoring is a very time-consuming, subjective, and monotonous process. 

Because of the high labor cost of scoring, sleep researchers have rarely done long-term EEG 

recordings. Circadian biologists, in contrast, commonly record activity continuously for a 

month or longer, and this disparity may be one reason why sleep science and circadian 

biology developed so separately in the past several decades (Dement, 2011). In addition to 

recording length, scoring limitations also restrict sample size. Modern genomics (and other 

“-omics”) studies typically require sample sizes of several hundred (e.g. Winrow et al., 

2009), which quickly become burdensome to score.

Methods to automate sleep-scoring have been proposed to solve this problem. Early 

techniques were mainly based on logic-based threshold rules, with amplitude and frequency-

derived features as inputs (Van Gelder et al., 1991; Itil et al., 1969; Neuhaus and Borbely, 

1978). More recently, machine-learning classification algorithms have been applied to the 

task (Sunagawa et al., 2013 contains a good summary). These classifier algorithms are 

usually supervised learners, meaning that an algorithm is first “trained” on manually-scored 

example epochs, from which parameters for classification are derived; the rest of the 

recording is then scored based on these parameters. The supervised learning process works 

well for sleep scoring because it allows the algorithms enough flexibility to adapt to the 

unique characteristics of each animal. Supervised classifier algorithms such as support 
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vector machine (Crisler et al., 2008), linear discriminant analysis, decision tree (Brankačk et 

al., 2010), neural nets (Robert et al., 1997), and Naive Bayes (Rytkönen et al., 2011) have 

previously been applied to sleep-scoring in rodents. Machine learning classification has also 

been used for other types of EEG analyses, such as for brain-computer interfaces (Müller et 

al., 2008) and epilepsy diagnosis (Subasi, 2007).

A very effective way to improve classification accuracy is to employ a multiple classifier 

system (MCS). Specifically, in the classifier fusion method, a collection of algorithms each 

classify the set of inputs individually, and then the classifications outputted from the 

individual algorithms are combined to form a composite best-guess. An MCS may be 

composed of many repeats of a single type of base algorithm, in which case it is referred as 

an ensemble classifier, or it may be composed of several different types of base algorithms. 

The MCS's success can be intuitively explained by the fact that each classifier algorithm is 

subject to different biases and weaknesses, i.e. they are diverse, and combining diverse 

classifiers prevents a single classifier's misclassifications from strongly affecting the results. 

Multiple classifier systems have been applied with success to EEG classification in a non-

sleep context (Sun et al., 2007), and also to many machine-learning tasks such as 

handwriting recognition (Günter and Bunke, 2005), face recognition (Czyz et al., 2004), and 

medical diagnosis (Sboner et al., 2003).

Here, we demonstrate a multiple classifier algorithm for sleep scoring. We show that using 

the MCS improves accuracy over using a single classifier, and the MCS's accuracy was on 

par with a second human rescoring the same recording. We also show that scoring with a 

modest number of rejections greatly improves accuracy at the cost of only a small amount of 

additional human effort.

2. Methods

2.1 Animals and Recordings

We used EEG/EMG recordings from mice to test the autoscoring method (n=16). The mice 

were a mixture of A/J (n=4), C57BL/6 (n=2), (A/J × C57BL/6) F1 (n=7) and (A/J × 

C57BL/6) F2 (n=3). All recordings were 24 hours long and were recorded under normal, 

baseline conditions on a 12L:12D light-dark cycle.

To collect the recordings, we implanted mice with EEG and EMG electrodes for sleep 

recording while under ketamine and xylazine anesthesia. The EEG electrodes were four 

stainless steel screws inserted through the skull over the cerebral cortex, and the EMG 

electrodes were two iridium/silver alloy wires inserted bilaterally into the nuchal muscles. 

The electrodes were part of a pre-fabricated head mount (Part #8201, Pinnacle Technologies, 

Lawrence, KS), which was fixed in place with glue and dental acrylic. Two channels of EEG 

were collected: one from prefrontal cortex (EEG2) and the other from more posterior cortex 

near the hippocampus (EEG1). We used PAL 8200 Acquisition software (Pinnacle 

Technologies, Lawrence, KS) to obtain recordings, which were then exported to European 

Data Format (EDF) files. Signals were recorded at 1000 Hz, but to speed up computation 

time, only every fifth sample in the signal was used, which effectively reduced sampling rate 

to 200 Hz. Recordings were divided into 10-second epochs for scoring, and each 24 h 
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recording consisted of 8640 epochs. We used Pinnacle PAL 8200 Acquisition and Sleep 

Score software for data collection and manual scoring. Protocols were approved by the 

Northwestern University Animal Care and Use Committee.

2.2 Human Scoring

Each recording was scored by two human experts: the primary scorer was used to train the 

classifiers and compare computer-human agreement, while the secondary scorer was used to 

compare human-human agreement. Using PAL 8200 Sleep Score software (Pinnacle 

Technologies, Lawrence, KS), the scorer viewed each 10-second epoch and labeled it as 

either Wake, rapid eye movement sleep (REM), or non-rapid eye movement sleep (NREM), 

or excluded it from analysis if the signal contained a major artifact. Each recording was 

scored to completion this way. EEG2 was considered primary while EEG1 was considered 

supplementary when making scoring decisions. Generally speaking, Wake epochs have low-

amplitude, high-frequency EEG and high-amplitude EMG; NREM epochs have high-

amplitude, low-frequency EEG and low-amplitude EMG; REM epochs have low-amplitude, 

high-frequency EEG and low-amplitude EMG. In addition, some characteristic EEG 

waveshape differences between the different sleep-wake stages also aid in scoring. Some 

epochs with artifacts were excluded from the analysis. These mostly consisted of “spikes” in 

the EEG signal, which must last 2 s or more for that epoch to be excluded. An average of 38 

epochs were excluded per recording; the most had 499 artifacts, and 7 recordings had no 

artifacts at all. An experienced scorer requires about 4 h of time to score 24 h of recording.

2.3 Computer Scoring

2.3.1 Feature selection—For feature selection, we used a procedure similar to Rytkönen 

et al., 2011. Only EEG2 was used; using both channels of EEG reduced the accuracy of 

classification, perhaps because of a surplus of non-useful features. The EEG power spectral 

density of each epoch was obtained by short-time Fourier transform, using a Hamming 

window of length equal to the length of the epoch; this was done using the “spectrogram” 

function in MATLAB. The power spectral density was binned into 20 logarithmically-

distributed power bands between 0.5 Hz and 100 Hz, such that the lower, more biologically-

relevant frequencies had more fine-grain bins. EMG power between 4 and 40 Hz was also 

used as a feature. The 20 EEG and 1 EMG features formed a feature vector of 21 elements 

in total.

2.3.2 Training epochs—We wanted our training epoch selection process to mimic how 

one would score training epochs in actual use, so training epochs were selected in 

continuous blocks rather than at random. In addition, a challenging aspect of sleep EEG 

classification is that REM comprises only a small minority of epochs, about 3%, so we 

wanted to ensure that enough REM epochs were selected as training. To select our training 

set, a random REM epoch was selected, and the preceding 90 epochs (15 minutes) and 

following 90 epochs were selected as training scores. This process was repeated until a total 

of 720 epochs (2 h) of training were selected. The remaining 7920 epochs (22 h) of the 

recording was designated as the test set. If at least 40 epochs of each category were not 

selected as training, then the whole process was repeated and a new set of training scores 

were selected.
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2.3.3 Single classifiers—Based on the features in the training epochs, each of the six 

single classifier algorithms individually classified the entire recording's epochs. The six 

single classifiers used were naïve Bayes, linear discriminant analysis, support-vector 

machine, k-nearest neighbors, decision tree, and a neural network.

k-nearest neighbors (kNN), with k=1 and simple Euclidian distance, labels an epoch the 

same as the training epoch which is nearest to it in feature space. We used the MATLAB 

function fitcknn.

Linear discriminant analysis (LDA) searches for a linear combination of features which 

statistically best distinguishes objects in different classes from each other. We used the 

MATLAB function fitcdiscr.

Support vector machine (SVM) is a binary classifier. For all epochs in 21-dimensional 

feature space, SVM searches for a 20-dimensional hyperplane that best divides epochs from 

two different classes. SVM is a binary classifier, and thus we broke the problem down into 

three binary comparisons: Wake vs. not-Wake, NREM vs. not-NREM, and REM vs. not-

REM. We used the MATLAB function fitcsvm with a soft boundary.

Naive Bayes (NB) creates a probability distribution of each feature from the training epochs. 

When classifying a new epoch, that epoch's feature values are compared with the probability 

distribution, and the likelihood of its membership in each class can be calculated. The 

algorithm is “naive” in that it assumes independence of features, i.e. that features do not 

covary with each other. We used the MATLAB function fitcnb.

Decision tree (DT) creates a series of binary decisions on the features which best 

distinguishes classes. We used the MATLAB function classification fitctree. Several specific 

decision tree algorithms exist; we believe MATLAB uses CART (Breiman et al., 1984) 

and/or PC (Coppersmith et al., 1999).

A neural network (NN) consists of interconnected “neurons” with weighted connections. 

The value of each neuron is a linear combination of the values of neurons which are 

connected towards it. We used a feedforward pattern-recognition network, in which an input 

feature layer of neurons are connected towards a hidden layer consisting of ten neurons, 

which are then connected towards three classification output neurons. The overall two-hour 

set of training epochs was subdivided into a one-hour NN-training set and one-hour NN-

validation set. The NN is trained on the NN-training set and its accuracy compared to the 

NN-validation set. Connection weights were updated using the scaled conjugate gradient 

method, and the cycle of training, validating and updating was iterated until the validation 

error was minimized. We used the MATLAB function patternnet and the associated 

functions in the Neural Network Toolbox.

2.3.4 Ensemble classifiers—In an ensemble classifier, many instances of a single type 

of algorithm each classify the target epoch based on slightly different criteria, which 

generates diversity; the collection of classifiers then votes on the final classification. We 

used two common ensemble methods for generating diversity: bootstrap aggregating 

(“bagging”) (Breiman, 1996) and random subspace (Ho, 1998). In the bagging method, each 
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of an ensemble of 100 base classifiers is trained on a different subset of training epochs. The 

subset of training epochs are chosen by selecting 720 epochs with replacement from the pool 

of 720 training epochs; selection with replacement causes an average of 1/e = 37% of total 

training epochs to be excluded from each subset. The consensus score for the ensemble is 

determined by majority vote. In the random subspace method, diversity is generated by 

using a random subset of 10 of the 20 EEG features; EMG was always included, for a total 

of 11 features. As with bagging, an ensemble of 100 base classifiers performs a majority 

vote to determine the final score.

Bagging only produced improvements when using DT (Fig. 3A) and random subspace only 

produced improvements with DT and kNN (Fig. 3B). This is not surprising, since DT and 

kNN are the most sensitive to local variations. NB and LDA, on the other hand, rely on 

statistical distributions, and SVM sets the decision boundary based on the positions of all 

known data points, so their decision structures do not change much when given different 

training inputs. For the multiple classifier system, DT was replaced with its ensembles DT-

Bag and DT-RS, and kNN was replaced with its ensemble kNN-RS (Fig.1).

2.3.5. Multiple classifier consensus—A consensus classification for the MCS is 

decided based on results from LDA, SVM, NB, NN, DT-Bag, DT-RS, and kNN-RS. 

(Although ensemble classifiers are a type of multiple classifier system, we will refer to the 

overall consensus algorithm as the MCS). In addition to outputting a classification label for 

each epoch, each classifier also outputs a confidence score for each class ranging from 0 to 1 

(Fig.1). For LDA, SVM, NB, and NN, the confidence scores are posterior probabilities. For 

the ensemble classifiers kNN-RS, DT-RS, and DT-Bag, the confidence score is the 

proportion of component classifiers which labeled the target epoch as a certain class. The 

consensus confidence score of MCS for a particular class was the average of the confidence 

scores for that class from the 7 component classifiers. The class which had the highest 

confidence score was chosen as the label for that epoch.

2.3.6 Scoring with rejections—Autoscoring with rejections is effective at reducing 

classification errors. The epochs which are most difficult to score are left unclassified for a 

human to manually score later. Rejections were based on a cutoff of the MCS confidence 

score for the winning class. For example, if we wished to reject 2% of epochs, then the 2% 

of epochs which had the lowest confidence scores were rejected. (In actual use, one may 

prefer to use a constant cutoff value rather than rejecting a set proportion of epochs.) From 

beginning to end, the algorithm requires roughly four minutes to score a 24 h recording on a 

standard personal computer.

2.4 Transitional epochs

REM epochs are more likely to be misclassified. Since REM typically occurs in very short 

bouts (∼1 min), and the transitions between sleep/wake states are often ambiguous to 

categorize even for a human, we suspected that the higher error rate for REM sleep was 

simply due to there being a greater proportion of transitional REM epochs relative to the 

total number of REM epochs. To examine this, we counted the number of “boundary” 

epochs, which are located at the front or end of bouts, where a bout is a sequence of epochs 
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of the same sleep/wake state. Therefore, each bout of two epochs or longer had two 

boundary epochs, and each bout of one epoch consists of a single boundary epoch. Not all 

boundary epochs are ambiguous, and not all ambiguous epochs are located at boundaries, 

but this metric should be approximately proportional to the number of ambiguous 

transitional epochs.

2.5 Statistics

When evaluating the classifiers, we compared epochs in the 22-hour test set. An autoscored 

epoch is considered to be in error if the algorithm's classification for the epoch disagreed 

with human's classification. Error rate is equal to the number of incorrect epochs divided by 

the total number of epochs. We used paired t-tests on error rate values to compare methods. 

Sensitivity for class A is equal to the number of epochs labeled A by both human and 

computer divided by the number of epochs labeled A by the human. Specificity for class A 

is equal to the number of epochs labeled A by both human and computer divided by the 

number of epochs labeled A by the computer. Sensitivity error is equal to 1 minus 

sensitivity.

3. Results

3.1 No rejections

A second human scorer disagreed with the original scorer at an average error rate of 0.046 

(Fig.2). Among the single classifiers, SVM is the most accurate, with an error rate of 0.054, 

though it was not significantly different from NN and LDA, the next most accurate single 

classifiers (p>0.05). The ensemble classifiers DT-Bag and DT-RS had much fewer errors 

than DT (p<0.001) (Fig.3A), reducing errors by 50% and 58% respectively compared to the 

base classifier. KNN-RS was also more accurate than KNN (p<0.001) (Fig.3B), reducing 

errors by 25%. The multiple classifier system (MCS) had an error rate of 0.049, a reduction 

of 9.4% from SVM (p<0.001) (Fig.4). While SVM had significantly more errors than a 

second human scorer (p=0.007), MCS did not significantly differ from a second human 

scorer (p=0.19). A confusion matrix of MCS is presented in Table 1.

Epochs which both the algorithm and the second human scored incorrectly were called 

double-faults. Epochs which the algorithm scored incorrectly but the human scored correctly 

were called unique errors. Presumably, epochs which two human scorers disagree over are 

inherently more ambiguous, making double-fault errors more “excusable” than unique 

errors. More than half of the errors of MCS were double-faults (Fig.4). Consistently across 

all classifiers, about 0.025 of epochs consisted of double-faults (Fig. 2, 3, 4).

3.2 With rejections

There is a tradeoff between reducing the number of rejected epochs and improving the 

accuracy of accepted epochs, as can be seen by the rejection-error curve (Fig. 5A). To match 

the error rate of a second human scorer, MCS needed a rejection rate of only 0.007 (0.7%), 

while SVM needed to a rejection rate of 0.019 to reach the same accuracy. Fig. 5B takes a 

closer look at MCS and SVM at two rejection rates. At 0.02 rejection rate, the error rate of 

MCS was lower than a second human scorer (p<0.001). The difference between MCS and 
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SVM is magnified after rejections, with MCS having 12% fewer errors than SVM. At a 0.10 

rejection rate, MCS had 22% fewer errors than SVM, and only 31% of MCS's errors were 

unique errors, suggesting that most the epochs which MCS disagreed with were inherently 

more ambiguous. Table 2 presents a confusion matrix of MCS at 0.10 rejection rate.

3.3 Boundary Epochs

Classifying REM has a higher error rate than classifying Wake or NREM. The proportion of 

REM epochs which had a sensitivity error was 0.19, which is higher than that of the other 

classes (Fig. 6A). Of those error epochs, 61% were also boundary epochs. Meanwhile, 79% 

of Wake error epochs and 66% of NREM error epochs were also boundary epochs. Fig. 6B 

shows that 0.34 of REM epochs are boundary epochs, which is a much higher proportion 

than Wake or NREM. This reflects the fact that REM typically occurs in very short bouts. Of 

those boundary REM epochs, 32% are errors. In total, these data suggest that the higher 

misclassification rate for REM is mostly, but not entirely, explained by a higher proportion 

of boundary epochs, which are more likely to be inherently ambiguous.

4. Discussion

Using a multiple classifier system improved the accuracy of automatic sleep scoring. First, 

we compared the performance of six single classifiers to human scorers, and we found that 

SVM was the most accurate. Then we showed that accuracy of DT and kNN can be 

improved by using ensemble methods such as bagging and random subspace. Accuracy can 

be further improved by aggregating the predictions of several single and ensemble classifiers 

into a consensus. Errors can be reduced by rejecting epochs which are difficult to classify 

and leaving them for a human scorer to review. We also investigated the cause of the high 

REM error rate, and determined that it was largely due to the higher proportion of REM 

epochs which are located at the boundaries between different sleep/wake states.

Typically in our laboratory, recordings will be autoscored by this algorithm at a rejection 

threshold such that about 5% of epochs will be rejected. To improve accuracy, a tightened 

rejection stringency for REM is used so that more REM epochs are rejected. Training scores 

take precedence over autoscores when they disagree. We also use criteria to reject potential 

artifacts (e.g. if EEG power greater than 4× mean) and improbable patterns which are often 

due to misclassification (e.g. if Wake is followed by REM, or if REM is followed by 

NREM). Afterwards, a human scorer reviews the autoscored recording and fills in the 

unscored rejected epochs, which can be quickly located using the scoring software's “jump 

to next unscored” function. A second pass is made to review and correct REM epochs; 

because of this, it is preferable to have high REM sensitivity at the cost of low REM 

precision. In total, the process requires about twenty minutes to manually score 2 h of 

training epochs, four minutes for the algorithm to run, and one hour to fill in unscored 

epochs at a 5% rejection rate. This is compared to the approximately 4 h of manual scoring 

required for the same 24 h recording.

Some users may wish to make changes to the algorithm to suit their needs. Potential 

modifications include using alternate features, adding artifact detection criteria, or using 

additional information to fine-tune confidence scores. Some researchers prefer to identify 
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additional sleep stages, such as quiet wake (e.g. Takahashi et al., 2008) or transitional states; 

this algorithm likely could be developed to classify additional sleep-wake stages, either by 

directly introducing a fourth class or by using the confidence scores to mark transitional 

states.

We tried several methods for combining classifiers into a consensus, including using hard 

classifications instead of confidence scores, weighting scores by estimated accuracies, 

weighting by diversity, model selection based on estimated accuracies, behavior-knowledge 

space (Huang and Suen, 1993), an evolutionary feature space-splitting algorithm (Jackowski 

and Wozniak, 2009), stacking (Wolpert, 1992) using a naive Bayes combiner, decision tree, 

or neural net, as well as various other configurations of different classifiers and hyper-

parameters. Surprisingly, none of these classifier fusion methods was better than a simple 

average of confidence scores. Many of these other methods require a set of validation epochs 

in addition to a set of training epochs in order to estimate hyper-parameters of how to 

optimally combine classifiers, so given a large enough validation set, these other methods 

may surpass majority vote in accuracy. However, having a large set of training and validation 

epochs would require lots of pre-scoring by a human, and increasing the amount of human 

scoring decreases the practical usefulness of automatic scoring. For features, we also tried 

using ratios of frequency bins, zero crossings counts, peak-to-peak distances, and the classes 

of the previous and following epochs, but none of these improved accuracy.

Although we use 10 s epoch lengths, the method should work just as well with shorter or 

longer epoch lengths. Naive Bayes has been used with 4-5 s epochs (Rytkönen et al., 2011), 

SVM has been used with 20 s epochs (Crisler et al., 2008), and Brankačk et al. (2010) has 

shown that there is very little difference in accuracy between 4 s and 10 s epoch lengths 

when using LDA and DT. This method should work equally well with rats, since SVM 

(Crisler et al., 2008) and Naive Bayes (Rytkönen et al., 2011) have already been applied in 

rats successfully. Human EEG records are scored into more sleep stages than rodents and 

thus may pose a greater challenge; nevertheless, much research has been done in improving 

human EEG classification as well (Becq et al., 2005; Güneş et al., 2010), though accuracies 

tend to be lower. A much larger body of research dealing with human EEG classification 

exists in the field of brain-machine interfaces (Lebedev and Nicolelis, 2006), where multiple 

classifiers are an active area of research as well (Ahangi et al., 2013; Sun et al., 2007). 

Therefore, improvements to human sleep scoring could likely be made by applying multiple 

classifier systems and other brain-machine interface techniques to the task.

In conclusion, multiple classifier systems are an effective and efficient way to improve 

accuracy of automated sleep scoring, and semi-automated scoring can increase scoring speed 

dramatically while maintaining high accuracy. Development of effective and accurate 

automatic scoring would make it easier to perform long-term recordings on large sample 

sizes, greatly lowering the barrier to investigation of sleep on the scale of genomes, 

transcriptomes, and proteomes.

The MATLAB code for this is available upon request by emailing v-

gao@u.northwestern.edu.
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Highlights

• Six machine-learning classifiers were combined into a multiple classifier 

system.

• Using multiple classifiers improves accuracy of automatic sleep scoring.

• At 1% rejection rate, the algorithm matches the accuracy of a human scorer.
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Figure 1. 
Overall organization of the multiple classifier system. 21 features are extracted from the 

EEG/EMG signal in each epoch, which are fed to the six base classifiers. Three ensemble 

classifiers are created from DT and kNN using the random subspace and bagging methods. 

Each classifier classifies the epoch as either Wake, NREM, or REM, and outputs confidence 

scores for each class indicating how strongly it believes the epoch to be from that class. The 

confidence scores from the classifiers are averaged to form a consensus confidence score. 

The class with the greatest consensus confidence score is chosen as the final classification, 

unless the confidence score is below the rejection threshold, in which case it is left unscored.
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Figure 2. 
Mean error rates of the base classifiers, as well as a second human scorer. The height of the 

entire bar indicates the error rate of the classifier. The portion in grey designates errors 

which the second human also made (“double-fault” errors), and the portion in black 

designates errors which the algorithm made but the second human did not (“unique” errors). 

The lower set of error bars display the SE of unique errors, while the higher set of error bars 

display the SE of all errors.
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Figure 3. 
Ensemble classifiers. A) Base classifier DT compared with ensemble classifiers DT-Bag and 

DT-RS. B) Base classifier kNN compared with ensemble classifier kNN-RS. The portion in 

grey designates errors which the second human also made (“double-fault” errors), and the 

portion in black designates errors which the algorithm made but the second human did not 

(“unique” errors). The lower set of error bars display the SE of unique errors, while the 

higher set of error bars display the SE of all errors.
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Figure 4. 
Error rate of MCS compared with SVM, the most accurate single classifier, and a second 

human scorer. SVM made significantly more errors than the second human scorer (p=0.007), 

but MCS did not. The portion in grey designates errors which the second human also made 

(“double-fault” errors), and the portion in black designates errors which the algorithm made 

but the second human did not (“unique” errors). The lower set of error bars display the SE of 

unique errors, while the higher set of error bars display the SE of all errors.
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Figure 5. 
Rejections. A) Rejection-error curve displaying the trade-off between the proportion of 

epochs rejected and the error rate of the remaining epochs. B) Comparing MCS and SVM at 

two rejection rates, 0.02 and 0.10. The portion in grey designates errors which the second 

human also made (“double-fault” errors), and the portion in black designates errors which 

the algorithm made but the second human did not (“unique” errors). The lower set of error 

bars display the SE of unique errors, while the higher set of error bars display the SE of all 

errors.
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Figure 6. 
Transitional epochs and error rate. (A) The error rate is represented by the entire bar, and the 

fraction of those errors which were transitional epochs is represented by the purple bars. 

Only sensitivity errors are considered. (B) The percentage of epochs which are transitional is 

represented by the entire bar, and the fraction of those epochs which were errors is 

represented by the purple bars. Error bars are 1 SE.
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