Skip to main content
. Author manuscript; available in PMC: 2017 May 1.
Published in final edited form as: Drug Alcohol Depend. 2016 Mar 2;162:241–244. doi: 10.1016/j.drugalcdep.2016.02.033

Table 2. Bayesian conditional autoregressive Poisson model for counts of alcohol-related road crashes within 9214 Statistical Area level 1 units in Melbourne, Australia.

Variable IRR (95% CI)
Land Use
 Bar density a 0.997 (0.923, 1.074)
 Bar density – adjacent a 1.387 (1.098, 1.755)
 Restaurant density a 0.973 (0.917, 1.026)
 Restaurants density – adjacent a 0.866 (0.731, 1.018)
 Off-premise outlet density a 0.843 (0.704, 0.999)
 Off-premise outlet density – adjacent a 0.608 (0.343, 1.071)
 Proportion land area zoned retail b 0.997 (0.941, 1.055)
 Proportion land area zoned retail – adjacent b 1.000 (0.999, 1.000)
Population Demographics
 Population density c 0.992 (0.956, 1.025)
 Population density – adjacent c 1.027 (0.973, 1.084)
 Proportion male b 0.974 (0.894, 1.058)
 Proportion English speakers b 1.004 (0.999, 1.008)
 Age (years) d 1.019 (0.952, 1.088)
 SES index (decile) 0.950 (0.921, 0.981)
Roadway Network
 Total length (kms) 1.011 (0.992, 1.029)
 Proportion highway/freeway b 0.959 (0.910, 1.010)
 Proportion arterials b 0.981 (0.946, 1.017)
 Intersections (count) d 0.938 (0.871, 1.013)
 Proportion “T” intersections b 1.793 (1.123, 2.892)

 CAR random effect
 Proportion of variance explained by CAR 0.054 (0.014, 0.167)
 Global Moran's I 0.894

Bolded parameter estimates do not include values of 1.000, indicating associations are well-supported

a

per 10 outlets/km2 increase

b

per 10% increase

c

per 1,000 people/km2 increase

d

per 10 unit increase