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Abstract

Inflammation drives asthma and atherosclerosis. Clinical studies suggest that asthmatic patients 

have a high risk of atherosclerosis. Yet this hypothesis remains uncertain, given that Th2 

imbalance causes asthma whereas Th1 immunity promotes atherosclerosis. In this study, chronic 

allergic lung inflammation (ALI) was induced in mice by ovalbumin sensitization and challenge. 

Acute ALI was induced in mice by ovalbumin and aluminum sensitization and ovalbumin 

challenge. Atherosclerosis was produced in apolipoprotein E-deficient (Apoe−/−) mice with a 

Western diet. When chronic ALI and atherosclerosis were produced simultaneously, ALI increased 

atherosclerotic lesion size, lesion inflammatory cell content, elastin fragmentation, smooth muscle 

cell (SMC) loss, lesion cell proliferation, and apoptosis. Production of acute ALI before 

atherogenesis did not affect lesion size, but increased atherosclerotic lesion CD4+ T cells, lesion 
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SMC loss, angiogenesis, and apoptosis. Production of acute ALI after atherogenesis also did not 

change atherosclerotic lesion area, but increased lesion elastin fragmentation, cell proliferation, 

and apoptosis. In mice with chronic ALI and diet-induced atherosclerosis, daily inhalation of a 

mast cell inhibitor or corticosteroid significantly reduced atherosclerotic lesion T-cell and mast 

cell contents, SMC loss, angiogenesis, and cell proliferation and apoptosis, although these drugs 

did not affect lesion area, compared with those that received vehicle treatment. In conclusion, both 

chronic and acute ALI promote atherogenesis or aortic lesion pathology, regardless whether ALI 

occurred before, after, or at the same time as atherogenesis. Anti-asthmatic medication can 

efficiently mitigate atherosclerotic lesion pathology.
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INTRODUCTION

Inflammation drives both asthma and atherosclerosis, diseases that share many pathologies. 

This includes the accumulation of inflammatory cells in the allergic lung airway and arterial 

wall, including macrophages, T cells, mast cells, eosinophils, or neutrophils.1–5 These cells 

release various inflammatory cytokines to induce airway narrowing and arterial wall 

thickening, matrix protein catabolism, cell proliferation, or apoptosis.4–7 In humans and 

mice, the development of allergic asthma associates with an increase of peripheral Th2 

cytokines, including IL4, IL5, and IL13.8,9 In contrast, patients with atherosclerosis often 

have reduced plasma IL4, IL5, and IL13, but increased circulating Th1 cytokines, such as 

IFN-γ, IL6, and TNF-α,10,11 although patients with either asthma or atherosclerosis all have 

increased plasma IgE and chemokines, including monocyte chemoattractant protein-1 

(MCP-1) and eotaxin, that mediate blood-borne leukocyte migration and accumulation at the 

site of injury.12–19 These pathological differences and similarities suggest an interaction 

between these two common human inflammatory diseases.

Prior studies in a survey of patients from several U.S. states demonstrated that patients with 

adult-onset asthma had significantly larger carotid artery intima-media thickness (IMT) than 

those of non-asthmatics.20 Patients with allergic disorders, including allergic rhinitis and 

asthma selected from random samples from Bruneck, Italy, had several folds higher risk of 

atherosclerosis (odds ratio [OR]: 3.8; 95% confidential interval [CI]: 1.4–10.2, P=0.007).21 

A small cross-sectional evaluation of 141 men aged 17–18 years in Innsbruck, Austria, 

showed that participants with the same allergic disorders have several folds higher risk of 

developing large IMT (OR: 2.5; 95% CI: 1.1–5.5; P=0.01).21 In a much larger cohort of 

70,047 men and 81,573 women from Northern California, evidence again showed asthma as 

a significant risk factor (OR: 1.22, 95% CI: 1.14–1.31, P<0.001) of coronary heart disease 

before or after adjusting for several common risk factors of atherosclerosis, including 

smoking, alcohol consumption, body mass index, plasma cholesterol levels, white blood cell 

count, hypertension, diabetes, and several others.22 Yet a large biracial cohort of 13,501 

middle-aged adults between 45–64 years old with 14 years of follow up study did not reveal 

an association between asthma and cardiovascular disease incidence.23 It is possible that the 
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varying risk of asthma or atherosclerosis among different races caused this 

insignificance.24,25

A recent study assessed the risk of allergic asthma in atherosclerosis-prone apolipoprotein E-

deficient (Apoe−/−) mice sensitized with ovalbumin (OVA) together with aluminum, 

followed by OVA nebulization three times a week. OVA-induced airway allergic 

inflammation increased atherosclerotic lesion sizes in the aortic root, along with increased 

lesion macrophages, increased splenic Th17 and Th2 cells, and reduced splenic regulatory T 

cells, without affecting splenic Th1 cell population.26 Using OVA to sensitize Apoe−/− mice 

followed by OVA weekly nebulization to develop chronic asthma, the present study tested 

the influence of the concurrent development of allergic lung inflammation (ALI) on 

atherosclerosis. OVA and aluminum hydroxide to sensitize Apoe−/− mice followed by 3-day 

OVA nebulization to develop acute ALI helped assess whether pre-ALI or post-ALI affects 

atherosclerosis. Finally, the use of ketotifen, a mast cell inhibitor, and corticosteroid 

budesonide, two common anti-allergic medications, helped examine whether these anti-

allergic asthma medications affect chronic ALI and atherosclerosis.

MATERIALS AND METHODS

Mouse atherosclerosis and allergic lung inflammation production

Eight to ten-week-old male Apoe−/− mice (C57BL/6) from the Jackson Laboratory (Bar 

Harbor, ME, USA) were used to produce atherosclerosis and acute or chronic ALI 

sequentially or together. To promote atherosclerosis, 8 to 10-week-old male mice from each 

group were fed a high-cholesterol (1.25%) Western diet (Research Diets Inc.) for 3 months. 

To produce acute ALI, mice were immunized intraperitoneally with 50 μg of OVA in 1 mg 

of Al(OH)3 in 200 μl saline on days 0, 7, and 14. On days 21, 22, and 23, mice were 

nebulized with 300 mg of OVA in 5 mL saline for 25 minutes per day.27,28 To produce 

chronic ALI, mice were immunized with 10 μg of OVA in 200 μl saline on days 0, 3, and 6, 

and were nebulized with 100 mg of OVA in 5 ml saline on day 13, and once per week 

thereafter for 3 months.28 At the endpoint of each protocol, mice were sacrificed with 

carbon dioxide narcosis, followed by cardiac puncture blood collection, bronchoalveolar 

lavage fluid (BALF) preparation, and aortic tissue harvest. Each experimental group 

contained 8 to 12 Apoe−/− mice at the same age. Mice were grouped randomly after 

purchase. All animal procedures conformed to the Guideline for the Care and Use of 

Laboratory Animals published by the U.S. National Institutes of Health and were approved 

by the Harvard Medical School Standing Committee on Animals (protocols # 03759 and 

#04923).

The present study included four experiments with different combinations of ALI and 

atherosclerotic mice to test the interactions between ALI and atherosclerosis in Apoe−/− 

mice: (1) to produce chronic ALI and atherosclerosis at the same time; and (2) to produce 

acute ALI first followed by atherosclerosis. These two protocols were used to test whether 

the development of ALI affected atherosclerosis formation and progression; (3) to produce 

atherosclerosis first, and then induce acute ALI. This protocol tested whether consequent 

ALI exacerbated pre-established atherosclerosis and whether pre-existing atherosclerosis 

affected airway allergic response development; and (4) finally, 70 mg of ketitofen or 7 mg of 
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budesonide was added into 5 mL saline for daily nebulization to treat mice with concurrent 

atherosclerosis and chronic ALI.

Mouse aortic arch tissue immunohistochemical analysis and lung tissue histology 
analysis

Serial cryostat cross-sections (6 μm) of mouse aortic arches were used for immunostaining 

to detect macrophages (Mac-3, 1:900, BD Biosciences, San Jose, CA, USA), T cells (CD4, 

1:90, BD Biosciences; and CD8, 1:100, Chemicon International, Inc., Temecula, CA), major 

histocompatibility complex class II (MHC-II, 1:250, BD Biosciences), elastin (Modified 

Verhoeff Van Gieson Elastic Stain Kit, Sigma-Aldrich, St. Louis, MO), collagen (0.1% 

Sirius Red; Polysciences Inc., Warrington, PA), smooth muscle cells (SMC, 1:750, α-actin, 

Sigma-Aldrich), Ki67 (cell proliferation marker, 1:400, Thermo Fisher Scientific Inc., 

Rockford, IL), and CD31 (angiogenesis marker, 1:1500, BD Biosciences). Apoptotic cells in 

lesions were determined with the in situ apoptosis detection kit according to the 

manufacturer’s instructions (EMD Millipore, Billerica, MA). The frozen slides were also 

stained with toluidine blue to quantify mast cells. Collagen content, elastin fragmentation 

and media SMC accumulation were graded according to the grading keys that were 

described previously.29,30 CD31-positive microvessels, Ki67-positive cells, T cells, mast 

cells, and apoptotic cells were counted manually in a blinded fashion and presented as 

numbers per aortic arch section. Images of the relative macrophage and MHC-II contents 

within the aortas were captured by a Microscope VS120 Whole Slide Scanner (Olympus) 

and quantified by measuring the immunostaining signal-positive areas using computer-

assisted image analysis software (Image-Pro Plus; Media Cybernetics, Bethesda, MD). Lung 

fragments were fixed in 10% formalin in saline and embedded in paraffin. Sections (4–5 μm 

thick) were stained with hematoxylin-eosin staining for lung histology analysis. All mouse 

experiments were performed, and data were analyzed in a blinded fashion by at least two 

observers.

Plasma and bronchoalveolar lavage fluid analysis

Plasma and BALF were collected from mice at harvest. BALF cellular typing was 

determined by cytospin preparation and Wright-Giemsa staining, followed by counting 

blindly the numbers of macrophages, lymphocytes, eosinophils, and neutrophils. Plasma and 

BALF IgE (BD Biosciences), MCP-1 (PeproTech, Rocky Hill, NJ), eotaxin (PeproTech), 

IL4 (eBioscience, San Diego, CA), IL5 (eBioscience), IL13 (PeproTech), TGF-β 

(eBioscience), IFN-γ (eBioscience), and TNF-α (PeproTech) were determined using ELISA 

kits according to the manufacturers’ instructions. Plasma total cholesterol, triglyceride, and 

high-density lipoprotein (HDL) levels were determined using reagents from Pointe Scientific 

(Canton, MI) and the level of low-density lipoproteins (LDL) was calculated as following: 

LDL = total cholesterol - HDL -(triglycerides/5). Investigators were blinded to the sources 

of samples during the assay.

Statistical analysis

All data are expressed as means ± SEM. This study used the non-parametric Mann-Whitney 

U test for unpaired data sets to examine statistical significance for all data. P < 0.05 was 

considered to be statistically significant.
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RESULTS

OVA sensitization-induced ALI promotes atherosclerosis and lesion inflammation

The induction of both ALI and atherosclerosis in Apoe−/− mice helped test whether 

asthmatic mice remained prone to atherosclerosis. Initial experiments concurrently produced 

OVA-induced chronic ALI and Western diet-induced atherosclerosis in Apoe−/− mice 

(Figure 1A). Compared with those mock (saline)-sensitized mice (control group), OVA-

sensitized mice showed a significantly enlarged atherosclerotic lesion area in the aortic 

arches (0.42±0.049 mm2 vs. 0.25±0.03 mm2, P=0.014) and increased lesion Mac-2+ 

macrophage-positive area (14.76±5.22 % vs. 8.69±4.62 %, P=0.019) (Figure 1B, 1C). 

Furthermore, aortic arch lesion intima CD4+ T-cell content increased in OVA-induced ALI 

mice (P=0.044), as well as CD8+ T cells (P=0.034), elastin fragmentation (P=0.001), SMC 

loss (P=0.026), lesion cell proliferation (P=0.034), and apoptosis (P=0.030) (Figure 1D–1H).

The collection of BALF and the tallying of total inflammatory cells and individual cell types 

verified the successful production of ALI in these mice. Although the OVA-induced ALI did 

not affect serum and BALF IgE levels (Table 1), likely due to the production of 

atherosclerosis in these mice that also increases plasma IgE levels,12 OVA-sensitized mice 

showed significantly higher BALF IL5 (P=0.001) and MCP-1 (P=0.026) levels than mock-

sensitized mice (Figure 1I, 1J). BALF total leukocytes and individual cell types, including 

macrophages, lymphocytes, and eosinophils all significantly increased in lungs from OVA-

sensitized mice, compared with those from mock-sensitized control mice (Figure 1K, 1L). 

OVA-induced chronic ALI increased plasma LDL, decreased plasma HDL, but did not affect 

plasma triglyceride and total cholesterol levels and inflammatory proteins, including IFN-γ, 

TNF-α, eotaxin, MCP-1, IL4, IL5, IL13, and TGF-β, compared with those from mock-

sensitized mice (Table 1, left).

The production of acute ALI by immunizing mice with OVA together with aluminum 

hydroxide, followed by the production of atherosclerotic mice with a Western diet, tested 

whether pre-established ALI affects the consequent development of atherosclerosis (Figure 

2A). In these mice, pre-established ALI did not significantly enhance aortic arch 

atherosclerotic lesion size, compared with that of mock-sensitized mice (Figure 2B). 

Compared with mock-sensitized mice, however, aortic arch atherosclerotic lesions from 

mice with pre-established ALI contained significantly higher total (P=0.004) and intima 

(P=0.028) CD4+ T cells, media SMC loss (P=0.001), lesion microvessel contents (P=0.026), 

and intima cell apoptosis (P=0.047) (Figure 2C–2F). Although BALF total cell numbers did 

not differ between mice with and without pre-established ALI, BALF macrophage content 

(P=0.033) decreased in OVA-sensitized mice, and OVA-immunized mice revealed 

significantly higher numbers of BALF lymphocytes (P=0.012) and eosinophils (P<0.001) 

than mock-treated control mice (Figure 2H). Further, mice with pre-established ALI 

revealed higher levels of both systolic blood pressure (P=0.016) and plasma levels of HDL 

(P=0.002), triglyceride (P=0.015), and MCP-1 (P=0.01) than those treated with saline alone 

(Table 1, right). Yet most tested cytokines or IgE levels in serum or BALF were not 

significantly different between atherosclerotic mice that developed ALI at the same time and 
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those that were immunized with saline alone, or between atherosclerotic mice with pre-

established ALI and pre-treated with saline (Table 1).

Allergic lung inflammation exacerbates pre-established atherosclerosis

Post-ALI may affect pre-established atherosclerosis. Therefore, Apoe−/− mice were 

maintained on a Western diet for 3 months to develop atherosclerosis, followed by 

production of acute ALI (Figure 3A). Consequent acute ALI did not affect lesion size of pre-

established atherosclerosis (Figure 3B), but significantly increased aortic arch media elastin 

fragmentation (P=0.021), lesion cell proliferation (P=0.018), and media (P=0.042) and 

intima (P=0.028) cell apoptosis (Figure 3C). As expected, acute ALI increased serum IgE 

levels (P=0.006) (Figure 3D), but reduced serum IL5 (P=0.030) and increased serum IL13 

(P=0.04) and eotaxin (P=0.036) levels (Figure 3E). In BALF, acute ALI increased total cell 

contents (P=0.007) as well as macrophages, lymphocytes (P=0.017), and eosinophils 

(P=0.005) (Figure 3F, 3G). BALF levels of cytokines TNF-α (P=0.02), IL4 (P=0.034), IL5 

(P=0.05), and IL13 (P=0.001), and BALF chemokines MCP-1 (P=0.001) and eotaxin 

(P=0.003) all increased in atherosclerotic mice that had consequent acute ALI than those 

challenged with saline (Figure 3H). The development of ALI alone increased aortic arch 

CD4+ T cells (P=0.037) and Ki67+ proliferating cells (P=0.023), but did not affect any other 

atherosclerosis-associated variables in the aortic arch nor serum lipid profile (Table 2, left). 

Of note, sequential development of ALI after atherosclerosis did not affect significantly 

plasma lipid profile (Table 2, right).

Pre-induced atherosclerosis aggravates OVA-sensitized mouse allergic responses

Three independent experiments tested whether airway allergic responses that occurred 

before, at the same time, or after atherosclerosis affected atherosclerotic lesion formation or 

lesion pathology. Apoe−/− mice develop atherosclerosis under a normal chow diet, but an 

atherogenic diet promotes atherogenesis in these mice. The production of ALI in mice with 

pre-established atherosclerosis by feeding mice an atherogenic diet tested whether 

consequent airway allergic responses affected atherosclerosis formation. The same 

experiment also tested whether pre-established atherosclerosis affected ALI. The 

comparison of OVA-sensitized mice with and without pre-established atherosclerosis 

revealed significantly increased plasma levels of IgE (269.45±60.71 ng/ml vs. 1034.64±136 

ng/ml, P<0.001), IFN-γ (P<0.001), and eotaxin (P=0.001), but lower levels of IL4 

(P=0.036), IL13 (P=0.007), and TGF-β (P=0.002) in mice with atherosclerosis. Mice with 

atherosclerosis and consequent ALI also had higher plasma LDL, but lower HDL and 

triglyceride levels than those that only had ALI (Table 3, left).

BALF proteins TNF-α (P=0.028), eotaxin (P=0.006), MCP-1 (P=0.002), IL4 (P=0.016), and 

IL13 (P=0.002) increased in mice with atherosclerosis than in mice without pre-established 

atherosclerosis (Table 3, left). As expected, aortic arches revealed enlarged lesion area 

(P=0.021) and increased lesion macrophage content (P=0.006), mast cell numbers 

(P=0.010), CD8+ T cell content (P=0.029), SMC loss (P<0.001), collagen degradation 

(P=0.004), elastin fragmentation (P<0.001), lesion cell proliferation (P=0.016), lesion 

microvessel contents (P=0.001), and cell apoptosis (P=0.001), compared with those in mice 

with ALI alone (Table 3, left).
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In saline-treated mice without ALI, pre-established atherosclerosis increased serum IgE 

(57.03±13.55 ng/ml vs. 482.16±70.98 ng/ml, P<0.001), IFN-γ (P=0.009), eotaxin (P=0.002), 

and LDL (P<0.001), and decreased HDL (P<0.001) levels, but also decreased serum MCP-1 

(P=0.005) and IL13 (P=0.021) levels. Aortic arches from mice with pre-established 

atherosclerosis had significantly larger aortic lesion areas and lesion contents of 

macrophages (P=0.002), mast cells (P=0.040), CD4+ T cells (P=0.022), lesion SMC loss 

(P<0.001), collagen degradation (P=0.002), elastin fragmentation (P<0.001), microvessel 

proliferation (P=0.047), and apoptotic cells (P<0.001) (Table 3, right). BALF IgE did not 

show a significant difference in this study, but TNF-α (P=0.018), eotaxin (P=0.036), MCP-1 

(P=0.030), and IL13 (P=0.006) levels increased in mice with pre-established atherosclerosis 

(Table 3, right). These observations suggest that atherosclerosis helps promote BALF 

inflammation independent of ALI.

Anti-allergic mast cell inhibitor and glucocorticoid in treatment of atherosclerosis

The treatment of patients with asthma and other allergic reactions often involves the use of 

ketotifen, a mast cell inhibitor, and budesonide, a corticosteroid.31–34 This engendered the 

hypothesis that these anti-allergic asthma drugs may improve both ALI and atherosclerosis 

in mice with concurrent ALI and atherosclerosis (Figure 1 and Table 1, left). Therefore, the 

production of atherosclerosis and chronic ALI preceded the daily nebulization of either 

ketotifen or budesonide (Figure 4A). Although nebulization of these anti-asthmatic drugs did 

not change atherosclerotic arch lesion area or lesion macrophage contents (Figure 4B, 4C), 

ketotifen or budesonide significantly reduced aortic arch lesion CD4+ and CD8+ T cells, 

mast cells, media SMC loss, lesion cell proliferation, angiogenesis, and apoptosis (Figure 

4C–4G, Table 4). As in humans, mice with chronic ALI and atherosclerosis had increased 

plasma total cholesterol, LDL, and triglycerides. Corticosteroid treatment increases plasma 

LDL levels in humans.35,36 The present study also found that daily inhalation of budesonide 

increased plasma LDL and total cholesterol (Table 4). A recent randomized control study 

demonstrated a role of ketotifen in reducing plasma cholesterol and LDL and increased 

plasma HDL.37 Results did not, however, show a significant effect of this mast cell stabilizer 

in plasma lipid profiles in these mice with concurrent ALI and atherosclerosis (Table 4). 

Neither budesonide nor ketotifen affected plasma IgE and most tested cytokine and 

chemokine levels. These anti-asthmatic drugs also did not affect BALF cell content, IgE, or 

most tested BALF cytokines and chemokines, although both drugs increased BALF IL13 

levels (Table 4).

DISCUSSION

The present study revealed a possible interaction between allergic asthma and 

atherosclerosis. Patients with asthma may have a higher risk of developing atherosclerosis 

than those without asthma,20–22 and patients with atherosclerosis may experience a higher 

risk of allergic reactions than those without atherosclerosis. Data showed that mice with 

chronic or acute ALI had larger atherosclerotic lesion size or more lesion pathological 

complications than those of mock-challenged mice, regardless of the production of 

atherosclerosis occurring before, after, or at the same time as atherogenesis (Table 1 and 

Table 2, right). In contrast, in mice with acute ALI, pre-established atherosclerosis increased 
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serum and BALF IgE, BALF inflammatory cell accumulation, and ALI-relevant Th2 

cytokines (Table 3, left). Yet the development of acute ALI, either before or after the 

development of atherosclerosis (Table 1, right, and Table 2, right), did not affect 

atherosclerotic lesion size, although acute ALI did affect atherosclerotic lesion pathologic 

complications.

When mice developed atherosclerosis, they also showed elevation of plasma LDL and 

reduction of plasma HDL (Table 3, right). In contrast, development of ALI alone did not 

affect these plasma lipoproteins (Table 2, left), although patients with asthma often have 

higher plasma LDL and lower plasma HDL than those from control patients.38,39 

Interestingly, data revealed that ALI significantly increased plasma LDL and decreased 

plasma HDL without affecting plasma total cholesterol levels in mice that developed 

concurrently atherosclerosis (Table 1, left). These observations remain consistent to what 

was reported in humans. Asthma did not affect human plasma total cholesterol levels in men 

or women.22 Yet, ALI did not affect plasma LDL levels when ALI was produced before 

(Table 1, right) or after (Table 2, right) the development of atherosclerosis. Further, when 

ALI was produced before atherosclerosis, ALI increased plasma HDL levels (Table 1, right). 

Therefore, the role of ALI in regulating plasma lipid profiles in the setting of atherosclerosis 

may involve more complicated mechanisms, a hypothesis that merits further investigation.

Anti-asthmatic prescriptions commonly include corticosteroids.33,34 Yet evidence suggests 

corticosteroids produce hyperlipidemia, hypertension, and dyslipidemia, which in turn may 

increase adverse cardiovascular events.40,41 Conflicting case-control studies suggest an 

insignificant effect of corticosteroid on plasma lipid profiles.42 Here, the 25-minute daily 

inhalation of 7 mg of budesonide in 5 mL of saline, according to a previously described 

dose,43 significantly improved atherosclerotic lesion pathology, although such a medication 

did not affect lesion size (Figure 4, and Table 4). This dose of budesonide reduced serum 

and BALF IgE and BALF lymphocytes and eosinophils, but none of these changes reached 

statistical significance (Table 4B). Higher doses of budesonide44 or a different drug 

administration route may exert a more robust inhibition of ALI and the reduction of 

atherosclerotic lesion area.

Recent studies from obese and diabetic patients showed that the oral administration of the 

mast cell inhibitor ketotifen (2 mg/day) for 12 weeks reduced plasma LDL and triglyceride 

levels and increased plasma HDL levels.37 In mice with diet-induced atherosclerosis, mast 

cell inhibition with intraperitoneal administration of cromolyn also attenuated 

atherosclerosis.45,46 This study revealed that the inhalation of ketotifen (14 mg/mL), a 

common anti-allergy medication,31,32 reduced aortic arch lesion pathology, but did not 

significantly reduce atherosclerotic lesion size (Table 4 and Figure 4B). Different from 

humans, ketotifen inhalation, instead of oral administration did not affect significantly 

plasma lipid profiles. Different ketotifen formulations showed the efficacy in changing 

serum lipid profile,37,46 and different doses can affect plasma lipid profile differently.37 The 

low dose used in this study, in addition to the drug formulation difference, likely caused 

insignificant differences in reducing atherosclerotic lesion size by ketotifen. Therefore, a 

higher dose or different drug formulations may achieve a better efficacy.
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Prior studies from experimental atherosclerosis and OVA-challenge-induced ALI 

demonstrated that mice with ALI had significantly enlarged atherosclerotic lesions in the 

aortic root than those challenged with saline alone, and these ALI mice had elevated splenic 

Th2 and Th17 cells without affecting Th1 cells.26 Our study showed that OVA-induced ALI 

before, after, or at the same time as atherosclerosis increased serum or BALF levels of Th2 

cytokines IL4, IL5, or IL13 (Table 1 and Table 2, right).47 Yet data did not reveal significant 

differences in serum Th1 cytokines IFN-γ and TNF-α with or without ALI from all three 

combinations of productions of ALI and atherosclerosis (Table 1 and Table 2, right). Of 

note, Th2 imbalance promotes asthma,8,9 whereas Th1 responses dominate atherogenesis. 

The production of asthma and the increase of Th2 responses should reduce atherosclerosis. 

A detailed analysis of both Th1 and Th2 cytokines from prior study26 and this current study 

did not support this hypothesis.

An increase of plasma or BALF IgE levels commonly signifies ALI production in 

mice48 (Table 2, left). The development of diet-induced atherosclerosis also increases serum 

IgE12 (Table 3, right). IgE plays detrimental roles in atherosclerosis.12 Mice that developed 

concurrent ALI and atherosclerosis or mice that developed ALI followed by atherosclerosis 

had comparable plasma IgE levels (Table 1), although serum IgE levels doubled in mice with 

pre-established atherosclerosis followed by ALI production, compared with mice with 

atherosclerosis alone (Table 2, right). In our model of chronic ALI, OVA immunization did 

not include Al(OH)3 (Figure 1A). Omission of Al(OH)3 in such mice is known to reduce 

greatly the IgE production.49 Therefore, the production of atherosclerosis may contribute 

mainly to the serum IgE in these chronic ALI mice (Table 1, left). Insignificant plasma and 

BALF IgE levels, but significantly enlarged atherosclerotic lesion size in mice with 

concurrent production of chronic ALI and atherosclerosis compared with mice with 

atherosclerosis alone, suggest a negligible role of IgE in contributing to atherosclerosis in 

these mice. This study, however, does not exclude the possibility of local IgE or Th1 

cytokine functions at the milieu of atherosclerotic lesions.

This study reported the contribution of ALI to atherosclerosis, but did not explore further the 

cellular and molecular mechanisms behind these observations. ALI is known to induce 

protease expression, including neutrophil elastase, matrix metalloproteinases, mast cell 

proteases, and cysteinyl cathepsins.50,51 Increased lesion inflammation, matrix degradation 

and media SMC loss, cell proliferation, apoptosis, and neovascularization after ALI 

production suggest the participation of these proteases in ALI-induced atherosclerosis. For 

example, ALI induces the expression of tissue elastic cathepsin S (CatS)52–54 and cathepsin 

K (CatK).55 While lysosomal CatS mediates antigen presentation and T-cell activation,56,57 

extracellular CatS mediates extracellular matrix protein degradation, thereby promoting 

neovascularization, arterial wall destruction, and atherosclerosis.58,59 CatK is also a potent 

elastase and collagenase60 that plays essential roles in vascular remodeling, 

neovascularization, and atherosclerosis.61–63 ALI-induced expression and activity of these 

cathepsins are probably only one of the mechanisms by which ALI exacerbates 

atherosclerosis. Pharmacological inactivation of these proteases may mitigate ALI-enhanced 

atherosclerosis.
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ABBREVIATIONS

ALI allergic lung inflammation

Apoe apolipoprotein E

SMC smooth muscle cell

IMT intima-media thickness

OR odds ratio

CI confidential interval

OVA ovalbumin

MHC II major histocompatibility complex class II

BALF bronchoalveolar lavage fluid

MCP-1 monocyte chemoattractant protein-1

LDL low-density lipoproteins

HDL high-density lipoprotein

cathepsin S CatS

cathepsin K CatK
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Figure 1. 
Chronic ALI promotes atherosclerosis in Apoe−/− mice. A. Experimental protocol. Aortic 

arch atherosclerotic lesion area (B), Mac-2-positive macrophage contents (C), intima CD4+ 

T cell and lesion CD8+ T cell numbers (D), media elastin fragmentation grade (E), media 

SMC loss grade (F), Ki67+ proliferating cell numbers (G), and TUNEL-positive apoptotic 

cell numbers (H). BALF levels of IL5 (I), MCP-1 (J), total cell numbers (K), and 

macrophages, lymphocytes, and eosinophils (L). Representative data in panels C, E–H, and 

K are shown to the right. Scale: 200 μm.
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Figure 2. 
Production of acute ALI promotes subsequent atherogenesis in Apoe−/− mice. A. 
Experimental protocol. Aortic arch atherosclerotic lesion area (B), lesion total and intima 

CD4+ T cell numbers (C), media SMC loss grade (D), CD31+ microvessel numbers (E), and 

intimal TUNEL-positive apoptotic cell numbers (F). BALF total cell numbers (G) and 

macrophages, lymphocytes, and eosinophils (H). Representative data in panels D–G are 

shown to the right. Scale: 200 μm.
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Figure 3. 
Production of acute ALI enhances pre-established atherosclerosis in Apoe−/− mice. A. 
Experimental protocol. B. Aortic arch atherosclerotic lesion area. C. Lesion media elastin 

fragmentation grade, Ki67+ proliferating cell numbers, and TUNEL-positive apoptotic cell 

numbers. D. Serum IgE levels. E. Serum IL5, IL13, and eotaxin levels. F. BALF total cell 

numbers. G. BALF macrophages, lymphocytes, and eosinophils. H. BALF TNF-α, IL4, IL5, 

IL13, MCP-1, and eotaxin levels. Representative data in panel F are shown to the right. 

Scale: 200 μm.
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Figure 4. 
Anti-allergic ketotifen and budesonide reduce atherosclerotic lesion pathologies in Apoe−/− 

mice. A. Experimental protocol. Aortic arch atherosclerotic lesion area (B), lesion Mac-2-

positive macrophage numbers, total and adventitia CD4+ T cells, total CD8+ T cells, and 

mast cells (C), media SMC loss grade (D), Ki67+ proliferating cells (E), lesion CD31+ 

microvessel numbers (F), and TUNEL-positive apoptotic cell numbers (G). Representative 

data in panels D and F are shown to the right. Scale: 200 μm.
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