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SUMMARY

Cortistatin A (CA) is a highly selective inhibitor of the Mediator kinases CDK8 and CDK19. 

Using CA, we now report a large-scale identification of Mediator kinase substrates in human cells 

(HCT116). We identified over 16,000 quantified phosphosites including 78 high-confidence 

Mediator kinase targets within 64 proteins, including DNA-binding transcription factors and 

proteins associated with chromatin, DNA repair, and RNA polymerase II. Although RNA-Seq data 

correlated with Mediator kinase targets, the effects of CA on gene expression were limited and 

distinct from CDK8 or CDK19 knockdown. Quantitative proteome analyses, tracking around 

7,000 proteins across six time points (0 – 24h), revealed that CA selectively affected pathways 

implicated in inflammation, growth, and metabolic regulation. Contrary to expectations, increased 

turnover of Mediator kinase targets was not generally observed. Collectively, these data support 

Mediator kinases as regulators of chromatin and RNA polymerase II activity and suggest their 

roles extend beyond transcription to metabolism and DNA repair.

Graphical Abstract

*Corresponding author: Taatjes@colorado.edu. 

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our 
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of 
the resulting proof before it is published in its final citable form. Please note that during the production process errors may be 
discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

AUTHOR CONTRIBUTIONS
CCE, ZCP, and WMO performed MS sample prep and analysis; AO and RDD analyzed RNA-seq data; TL assisted with proteome 
data analysis; AT, HEP, and MDS provided key reagents and advice; ZCP and DJT designed and performed experiments, analyzed 
data, and wrote the manuscript.

ACCESSION NUMBERS
RNA-Seq data were deposited to the Gene Expression Omnibus (GEO) with accession GSE65161 and GSE78506. Proteomics data 
has been deposited in the ProteomeXchange PRIDE database, identifier PXD003698.

SUPPLEMENTAL INFORMATION
Includes Supplemental Note, Experimental Procedures, four figures, and eight tables.

CONFLICT OF INTEREST
The authors declare no conflict of interest.

HHS Public Access
Author manuscript
Cell Rep. Author manuscript; available in PMC 2016 April 15.

Published in final edited form as:
Cell Rep. 2016 April 12; 15(2): 436–450. doi:10.1016/j.celrep.2016.03.030.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Keywords

CDK8-Mediator; Mediator; SILAC; cholesterol; MED13; MED13L; SIRT1

INTRODUCTION

An important first step in understanding the cellular function of kinases is to identify the 

substrates that they modify. This first step has remained a persistent challenge, in part 

because of the difficulties in the development of highly potent and selective kinase 

inhibitors. The human CDK8 kinase exists in a 600 kDa complex known as the CDK8 

module, which consists of four proteins (CDK8, CCNC, MED12, MED13). The CDK8 

module associates with regulatory loci on a genome-wide scale (Kagey et al., 2010; Pelish et 

al., 2015), and global targeting of the CDK8 module appears to reflect its association with 

Mediator (Allen and Taatjes, 2015). CDK19, a paralog of CDK8, emerged in vertebrates and 

has high sequence similarity to CDK8, including nearly identical cyclin binding and kinase 

domains. Comparatively little is known about CDK19; however, it appears to assemble into 

an analogous CDK19 module in human cells (Daniels et al., 2013).

Based upon their association with Mediator—a global regulator of RNA polymerase II (pol 

II) transcription—CDK8 or CDK19 may broadly impact gene expression patterns; however, 

physical knockdown of CDK8 or CDK19 protein levels had relatively modest effects in 

HCT116 cells, with 2-fold or greater changes in expression of several hundred genes 

(Donner et al., 2010; Galbraith et al., 2013). Whereas knockdown studies do not address the 

role of the kinase activity per se, these data suggested limited roles for the Mediator kinases 

in transcriptional regulation. In agreement, gene expression analyses with the CDK8 

ortholog in yeast, Srb10 (Holstege et al., 1998), revealed that about 3% of genes were 

regulated by Srb10 kinase activity. Similarly, limited effects on yeast transcription were 

observed in vitro and in vivo upon selective inhibition of Srb10 (CDK8) kinase activity 
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using an analog-sensitive mutant (Liu et al., 2004). Most genes affected by kinase-inactive 

mutant Srb10 (CDK8) were involved in cellular response to nutrient stress (Holstege et al., 

1998).

The biological roles of human CDK8 and CDK19 remain poorly understood, in part, 

because a more comprehensive identification of their substrates or the genes specifically 

regulated by their activities has been lacking. Our recent studies with the natural product, 

cortistatin A (CA), showed that CA is a potent and highly selective inhibitor of the Mediator 

kinases CDK8 and CDK19 (Pelish et al., 2015). CA binds the CDK8–CCNC dimer with 

sub-nanomolar affinity (Kd = 195 pM) and two distinct kinome profiling assays, which 

collectively probed approximately 400 kinases, ultimately confirmed only CDK8 and 

CDK19 as targets of CA, even with analyses completed at 100-times the measured IC50 for 

CDK8 (Pelish et al., 2015). Given these and other data showing the unusual selectivity of 

CA, we could begin to probe the cellular function and targets of CDK8 and CDK19.

Here, we report the large-scale identification of Mediator kinase (CDK8 and CDK19) 

substrates in human cells, using SILAC-based phosphoproteomics. We couple these results 

with global analysis of gene expression changes (RNA-Seq) that result from targeted 

inhibition of Mediator kinase activity. Furthermore, we assess potential Mediator kinase 

effects on protein turnover using quantitative proteomic analyses across 6 time points 

spanning 24 hours of Mediator kinase inhibition. HCT116 cells were chosen for this study 

for several reasons. First, although CA potently inhibits Mediator kinase activity in HCT116 

cells (Pelish et al., 2015), proliferation is not affected. This eliminated potential confounding 

effects, such as induction of cell cycle arrest or death, which could have complicated our 

analyses. Second, CDK8 is a colon cancer oncogene that was uncovered, in part, by an 

shRNA screen in HCT116 cells (Firestein et al., 2008). Third, published gene expression 

data exist in HCT116 cells with stable CDK8 or CDK19 knockdown (Donner et al., 2010; 

Galbraith et al., 2013), which allowed us to directly compare and de-couple the effects of 

subunit knockdown vs. targeted inhibition of kinase activity.

RESULTS

Quantitative phosphoproteomics in HCT116 cells ± CA

To identify cellular CDK8 and CDK19 substrates, we used stable isotope labeling of amino 

acids in cell culture (SILAC) coupled with a phosphoproteomics workflow. Experiments 

were completed in HCT116 cells supplemented with heavy (Arg10, Lys8) or light (Arg0, 

Lys0) amino acids. Control (DMSO) and CA-treated cells were harvested and mixed 1:1 

based on total protein content (CA structure shown in Fig. 1A). Phosphopeptides were 

isolated using titanium enrichment, followed by offline electrostatic repulsion hydrophilic 

interaction chromatography (ERLIC) with LC-MS/MS for phosphosite identification (Fig. 
1B). We collected 24 fractions during ERLIC fractionation, with an average phosphopeptide 

enrichment of over 50% in biological triplicate experiments (Fig. 1C). In total, over 16,000 

heavy-light (H/L) phosphosite ratios were quantified (Table S1) and over 12,000 were 

present in at least two biological replicates (Fig. 1D).
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The majority of phosphosites were unaffected by CA treatment, clustering around zero in a 

log2 plot of H/L SILAC ratios across replicate experiments (Fig. 1D). This result indicated 

good reproducibility and provided further validation of CA specificity. Many decreased 

phosphosites were highly correlated across replicates (highlighted green in Fig. 1D); in 

addition, we identified a smaller number of phosphosites that increased upon CA treatment 

(highlighted peach in Fig. 1D; Table S2). Representative mass spectra for SILAC pairs 

shown in Figure 1E and 1F are from experiments in which either light (E) or heavy (F) cells 

were treated with CA. For two of three replicates, the heavy population of cells was CA 

treated, whereas in one replicate light cells were CA treated, representing a label swap. For 

data analysis purposes, a reciprocal of the H/L ratio was calculated for the label swap 

experiment, such that decreased H/L ratios could be evaluated across all biological 

replicates.

Mediator kinase substrates are largely transcription-associated proteins

The phosphoproteomics workflow in Fig. 1B identified novel phosphosites whose intensities 

decreased significantly with CA treatment (Fig. 2A). We identified 78 phosphosites, 

represented in 64 proteins, that we designated as high confidence based upon 1) their 

quantification in at least two of three biological replicates, 2) a reproducible mean H/L ratio 

across replicates, and 3) a significant decrease in H/L ratio with CA treatment as determined 

by an empirical Bayes analysis (Margolin et al., 2009; Ritchie et al., 2015). These high-

confidence phosphosites are summarized in Table 1 and Figure 2A, and all quantified 

phosphosites are shown in Table S1. To ensure that a reduced H/L ratio did not result simply 

from a change in protein level, we completed a quantitative proteome analysis in parallel 

with phosphoproteomics. Importantly, very few high confidence phosphosites exhibited any 

change at the protein level with one hour of CA treatment (Table S2). Those that did change 

somewhat were FOXC1, MAML1, KDM3A, and ATF2, although some of these changes 

were not consistent across deep proteome replicates, and most of the phosphosite changes 

remained significant even after accounting for small changes in protein level. Although 

phosphosites not designated as high confidence sites could represent bona-fide Mediator 

kinase substrates (e.g. those that are quantified in only one biological replicate) we will only 

discuss targets designated as high confidence based on the criteria above.

To determine whether a H/L ratio for a phosphosite changed significantly with CA treatment 

across replicates, we employed an empirical Bayes statistical approach using the limma 
software package (Ritchie et al., 2015). An empirical Bayesian framework allowed for the 

calculation of adjusted p-values for each phosphosite (Fig. 2B). This approach can account 

for experiment-specific differences, which is advantageous compared to more arbitrary 

approaches, such as a universal fold-change cutoff (Margolin et al., 2009). We found that 

more phosphosite ratios decreased than increased upon CA treatment, as expected with 

targeted kinase inhibition for a short amount of time. This is shown by a higher number of 

data points on the left side of the volcano plot compared to the right side, using an adjusted 

p-value cutoff of 0.1 (Fig. 2B; see also Supplemental Note).

We used iceLOGO (Colaert et al., 2009) to determine statistically enriched motifs within the 

identified Mediator kinase substrates. We found that the majority of the phosphosites 
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contained an S/T-P motif (Fig. S1A). Additionally, a proline at the −2 and −1 positions 

relative to the phosphorylation site was overrepresented. These data support the notion that 

many CDK8 phosphorylation sites occur within PX(S/T)P motifs as previously suggested 

(Alarcon et al., 2009; Bancerek et al., 2013). Serine was more frequently phosphorylated 

than threonine (Fig. S1A) and we did not see evidence for overrepresentation of basic 

residues at positions C-terminal to the phosphosite, as observed with other CDK motifs 

(Ubersax and Ferrell, 2007).

Because few substrates for human CDK8/19 have been identified, the analysis uncovered 

many phosphosite targets (Table 1). Many targets are DNA-binding transcription factors 

(TFs), chromatin regulators, or other known regulators of pol II activity (Fig. 2A, Fig. S1B), 

consistent with the established role of CDK8 in transcription. Additional substrates, 

including proteins implicated in DNA replication and repair (BRCA1, MDC1) and 

ubiquitination (HUWE1, CUL4B) suggest biological roles for Mediator kinases beyond 

transcription. A known CDK8 substrate, STAT1 S727 (Bancerek et al., 2013), was identified 

as a high confidence target, and other novel phosphosites reside in proteins that interact with 

CDK8-Mediator and/or the CDK8 module, including AFF4, MAML1, and Mediator 

subunits (Fig. 2A, Table 1). AFF4 is a core component of the super-elongation complex 

(SEC; (Luo et al., 2012)), which co-purifies with CDK8-Mediator (Ebmeier and Taatjes, 

2010), and MAML1 is a Notch pathway co-activator that recruits CDK8 to Notch-dependent 

genes where it phosphorylates the Notch ICD (Fryer et al., 2004).

We submitted the 64 CDK8/19 substrate proteins to the STRING protein-protein interaction 

database (Szklarczyk et al., 2015) and found that six Mediator complex subunits, three 

subunits of the TIP60/NuA4 complex (EPC2, DMAP1, MRGBP), and two subunits of the 

NuRD complex (CHD3 and CHD4) were represented (high confidence score, ≥ 0.7; Fig. 
S1C). The TIP60/NuA4 and NuRD complexes are multi-subunit assemblies that possess 

multiple enzymatic activities, including nucleosome remodeling, acetyltransferase, and 

deacetylase activities. Additionally, this analysis identified a network of interacting proteins 

involved in DNA damage repair (Fig. S1C), as well as an interaction between XRN2 and 

SETX. Taken together, these data suggest that Mediator kinases regulate multiple and 

diverse cellular processes, potentially via several distinct multi-subunit assemblies.

Validation of selected Mediator kinase substrates

To further validate the CDK8/19 substrates identified with SILAC-based 

phosphoproteomics, we performedin vitro kinase assays, western blots, and MS 

experiments. We selected proteins representing different classes of substrates (Fig. 2A) for 

further evaluation. The DNA-binding TF STAT1, a previously identified CDK8 kinase 

substrate (Bancerek et al., 2013), was probed by western blot in IFN-γ induced HCT116 

cells (Fig. 3A). This experiment confirmed STAT1 S727 as a Mediator kinase substrate in 

HCT116 cells, and also showed CA-dependent inhibition at low nM concentrations, as 

reported previously (Pelish et al., 2015).

Among the chromatin modification and regulation substrates, we examined SIRT1, in part 

because an antibody against the phosphorylated SIRT1 T530 site was commercially 

available. When HCT116 cells were treated with CA, we noted a decrease in SIRT1 T530 
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phosphorylation (Fig. 3B and 3C). Total SIRT1 levels were unaffected by CA treatment, and 

levels of the CDK8 module subunits CDK8, CCNC, and MED12 were not changed by 

treatment with the compound (Fig. 3B). The approximately 50% reduction in phospho-

SIRT1 did not change with increasing CA concentration, indicative of CA selectivity (Pelish 

et al., 2015). Although other kinases, such as CDK1 and JNK, are known to phosphorylate 

this site (Sasaki et al., 2008), treatment with inhibitors of CDK1 (RO-3306) and JNK family 

kinases (SP600125) did not seem to impact SIRT1 T530 phosphorylation; in fact, we were 

unable to completely reduce SIRT1 phospho-T530 detection, even when treating with all 

three inhibitors (Fig. S2). In vitro kinase assays with purified CDK8 module and SIRT1 

confirmed CDK8-dependent SIRT1 T530 phosphorylation by western blot (Fig. 3D).

We next tested two different substrates, RIF1 and TP53BP1, linked to DNA replication and 

repair. Because these proteins are very large (each over 200 kDa), we expressed GST-tagged 

fragments (ca. 100 residues) surrounding the phosphosite. As shown in Figure 3E, the 

CDK8 module phosphorylated these substrates, whereas point mutations (S to A) at the 

identified phosphorylation site(s) greatly reduced substrate phosphorylation, supporting 

these sites as CDK8 module targets in vitro (Fig. 3E).

We also confirmed phosphorylation sites in MED12 and MED13 using in vitro kinase assays 

using the recombinant CDK8 module (containing CDK8, CCNC MED12, MED13) purified 

from insect cells. Incubation of the CDK8 module with ATP and subsequent TiO2 

enrichment and MS analysis confirmed both S688 on MED12 and S749 on MED13 as 

substrates (Fig. 3F and 3G). We did not identify the CCNC site from these experiments 

because the site identified from CA-treated HCT116 cells is not present in the canonical 

CCNC isoform used for recombinant CDK8 module expression and purification.

The data summarized in Figure 3 verified each of seven high-confidence Mediator kinase 

sites, representing about 10% of all high-confidence sites listed in Table 1. These results, 

combined with previous data demonstrating CA potency and specificity (Pelish et al., 2015), 

support the substrates listed in Table 1 as Mediator kinase targets. Although extensive 

kinome profiling has demonstrated CA specificity, we conducted in vitro kinase assays using 

a shared substrate, the pol II CTD, and found that CDK1, ERK2, and GSK3β activity was 

unaffected by CA treatment, even at concentrations ten-fold above those used for proteomic 

and gene expression analyses (Fig. 3H).

Mediator kinase inhibition has limited and specialized effects on transcription

As Mediator-associated kinases, it was plausible that inhibition of CDK8 and CDK19 

activity could affect expression of large numbers of genes. We analyzed gene expression 

(RNA-Seq) data from CA treated HCT116 cells (Table S3). To minimize secondary or 

indirect effects resulting from long-term Mediator kinase inhibition, we completed RNA-Seq 

after a three-hour CA treatment (100 nM); this also helped match mRNA changes with 

measured phosphorylation changes that were determined after one-hour CA treatment. 

RNA-Seq analysis identified 150 genes whose expression changed significantly with CA 

treatment (Fig. 4A). Among these genes, the magnitude of change in expression was modest 

(largely 1.2 – 2 fold), indicating that CDK8/19 activity per se is not a major driver of their 
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transcription, at least in the context of this analysis (HCT116 cells under normal growth 

conditions). Such modest gene expression changes were also observed in CA-sensitive cell 

lines (e.g. MOLM-14), although the genes affected were distinct (Pelish et al., 2015).

Gene expression changes in CA-treated cells compared to CDK8 or CDK19 knockdown

Because CA inhibits both CDK8 and CDK19 kinases, we used previously published 

HCT116 microarray datasets (normal growth conditions), in which either CDK8 or CDK19 

had been stably knocked down (Donner et al., 2010; Galbraith et al., 2013), as a comparison 

to CA-treated HCT116 cells. Only genes exhibiting 1.5-fold change in expression or greater, 

with p-values <0.05, were used from the microarray data; these genes were compared to our 

RNA-seq analysis in which cells were treated with 100 nM CA for three hours. We observed 

only a modest overlap among genes differentially expressed (Fig. 4B; note that because CA 

inhibits both CDK8 and CDK19, gene sets for CDK8 or CDK19 knockdown were 

combined). Because cellular knockdown experiments take over 24 hours to manifest, the 

modest correlation in gene expression changes could reflect the short time of CA treatment. 

However, RNA-seq analyses after 24 hour CA treatment revealed similarly low numbers of 

shared gene expression changes (Fig. 4C). These results, further summarized in Figure S3, 

suggest that the physical presence of the CDK8 or CDK19 protein has distinct effects on 

transcription compared to targeted kinase inhibition.

Functional links between gene expression changes and Mediator kinase substrates

Because many Mediator kinase substrates are transcription factors (Fig. 2A), we 

hypothesized that some of the observed differences in gene expression due to CDK8/19 

inhibition might be caused by changes in TF function. To begin to address this hypothesis, 

we extracted promoter sequences (± 2kb from TSS) for genes that were differentially 

expressed (increased or decreased expression) 3h CA treatment. F-Match was then used to 

compare promoter sequences to controls to determine if any TF binding sites, reported as 

Transfac matrices, were over-represented. The ratio of this increase (CA-treated cells vs. 

DMSO controls) is displayed for over-represented sites in Figure 4D. We found that many 

of the identified Transfac matrices for genes whose expression increased or decreased with 

CA treatment were mutually exclusive (Fig. 4D). That is, an enriched TF binding site in CA 

increased genes was generally not present in CA decreased genes, and vice versa. A 

hypergeometric test confirmed a significant overlap (p-value = 1.15E−5) between Mediator 

kinase targets identified in Table 1 and Transfac matrices identified in our gene expression 

promoter analysis (Fig. S3F).

Many of the Transfac matrices identified by F-match (Fig. 4D) can be traced back to 

Mediator kinase activity, as summarized in Figure S4. For example, the RREB1 TF was 

identified in both the F-match analysis (RREB1_01) and the SILAC phosphoproteomics 

(Table 1). Enriched TF binding sites were observed for genes with altered expression in CA-

treated HCT116 cells (Fig. 4A), including MYC, a β-catenin target gene, EGR1 (i.e. 

KROX_Q6), and HES1, a Notch pathway target gene. Moreover, the MGA and NAB2 

proteins, each high-confidence Mediator kinase substrates, are known regulators of MYC 

and EGR1 activity, respectively (Hurlin et al., 1999; Svaren et al., 1996). Transfac matrices 

representing the AP2 and ATF family of TFs (e.g. AP2alpha_01, ATF1_Q6) were also 
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uncovered in the F-match analysis. The Mediator kinase target KLF12 is a well-established 

repressor of AP2α activity (gene name: TFAP2A) (Imhof et al., 1999), whereas the ATF2 

and ATF7 proteins were each identified as Mediator kinase targets. Finally, enriched binding 

sites for E2F1 and SREBP, previously identified CDK8 kinase substrates (Morris et al., 

2008; Zhao et al., 2012), were found by the F-match analysis shown in Figure 4D. Although 

these TFs were not identified in our HCT116 phosphoproteomics experiments, several co-

regulators of E2F1 or SREBP activity (e.g. MGA, SIRT1; see Discussion) were among the 

high-confidence substrates listed in Table 1. Thus, there are many functional links between 

CA-dependent changes in gene expression (Fig. 4A) and the Mediator kinase targets shown 

in Table 1.

Cellular proteome changes resulting from Mediator kinase inhibition

The ability of CDK8-dependent phosphorylation to regulate protein turnover has been 

reported in both yeast and human cells (Alarcon et al., 2009; Fryer et al., 2004; Nelson et al., 

2003; Raithatha et al., 2012). We therefore hypothesized that CDK8/19 activity might 

modulate protein abundance for some of the substrates identified here. Rather than focus on 

selected Mediator kinase targets, we performed quantitative proteome analyses in CA-

treated cells vs. DMSO controls at six time points (t = 0h, 1h, 3h, 6h, 18h, and 24h). In this 

way, we were able to interrogate many cellular proteins at once, and correlate changes in 

Mediator kinase activity with increased or decreased protein abundance. To complete these 

analyses, we used SILAC labeled HCT116 cells, consistent with the phosphoproteomics 

experiments.

The analysis consisted of a CA treatment time course from 0 to 24 hours, with six time 

points being used in total to treat heavy (Arg10, Lys8) or light (Arg0, Lys0) HCT116 cell 

populations in biological replicate experiments (Fig. 5A, B). Peptides were harvested in a 

manner similar to that used for phosphoproteomics, and 17 fractions from basic reversed-

phase chromatography were analyzed for changes in H/L ratio at each time point. We found 

a high number of overlapping proteins across replicates, and CA treatment did not affect 

global H/L ratios for proteins across the time course in the replicates (Fig. 5B). Given the 

ability of CDK8 to promote substrate turnover in response to specific biological phenomena 

(e.g. starvation) (Nelson et al., 2003; Raithatha et al., 2012), we were somewhat surprised to 

find that CDK8/19 inhibition did not notably alter the abundance of the target proteins listed 

in Table 1, with the exception of MED13 and MED13L. A list of all quantified proteins in 

CA-treated vs. untreated cells (0 – 24h) is provided in Table S4.

An empirical Bayes analysis of the data suggested that most proteome changes occurred at 

either 18 or 24 hours when compared to control (0 hr, in which both populations were 

DMSO treated), as shown by the volcano plot in Fig. 5C. Approximately 200 proteins 

showed significant changes in abundance and these are listed in Table S5 (adj. pval < 0.1). 

To further examine changes in the proteome with CA treatment, gene set enrichment 

analysis (GSEA) was employed (Subramanian et al., 2005). Using the hallmark gene set 

collection, we identified biological processes that displayed significant enrichment scores 

and false discovery rates (Fig. 5D and Table S6). Of these signatures, several have been 

previously shown to be regulated by CDK8, including Wnt/β-catenin signaling, Notch 
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signaling, hypoxia, interferon gamma response, and KRAS signaling (Bancerek et al., 2013; 

Firestein et al., 2008; Fryer et al., 2004; Galbraith et al., 2013; Morris et al., 2008; Xu et al., 

2015). CDK8-dependent transcriptional changes have been implicated in regulation of these 

pathways and therefore, the proteome data corroborate these findings at the protein level. 

The GSEA results also reveal that proteome changes may selectively affect metabolic 

pathways in CA-treated HCT116 cells, with several (e.g. cholesterol homeostasis, fatty acid 

metabolism) previously linked to CDK8 kinase activity in model organisms (Zhao et al., 

2012).

DISCUSSION

The natural product cortistatin A (CA) is an exceptionally selective inhibitor of the Mediator 

kinases CDK8 and CDK19 (Pelish et al., 2015). As such, it provided a means to rapidly and 

selectively probe CDK8 and CDK19-dependent phosphoproteome changes in human cells. 

Because of their association with Mediator, CDK8 and CDK19 were expected to 

phosphorylate proteins involved in regulating pol II activity and chromatin architecture. In 

accordance with these expectations, our data support a primary role for Mediator kinases in 

pol II transcription and chromatin regulation. Strikingly, however, the direct impact of 

Mediator kinase inhibition on global pol II transcription was modest and affected a limited 

set of genes, at least under the conditions of this study. Limited transcriptional effects were 

also observed in CA-sensitive AML cell lines (Pelish et al., 2015).

At the gene expression level, it appears that Mediator kinases predominantly “regulate the 

regulators” of transcription. Many genes whose expression increased or decreased 1.5-fold 

or greater upon CA treatment are DNA-binding TFs or general transcription or chromatin 

regulators. Similarly, DNA-binding TFs and pol II transcription or chromatin regulators 

represented the majority of high-confidence CDK8/CDK19 kinase targets from the SILAC 

phosphoproteomics experiments. Quantitative proteomic data across a 24-hour time course 

implicated numerous signaling and metabolic pathways that appear to be regulated by 

Mediator kinase activity under normal growth conditions. Whereas these pathways can be 

linked to known transcriptional or phosphorylation targets of CDK8/CDK19 or those now 

identified here, much additional investigation will be required to delineate the molecular 

mechanisms by which Mediator kinases regulate specific signaling pathways or 

transcriptional processes.

CDK8/19 phosphorylate Mediator subunits and post-initiation transcription regulators

CDK8 can reversibly associate with Mediator to form a CDK8-Mediator complex (Taatjes et 

al., 2002), and immunoprecipitation-mass spectrometry experiments in HeLa or HEK293T 

cells suggest CDK19 interacts similarly with Mediator (Daniels et al., 2013; Ebmeier and 

Taatjes, 2010; Sato et al., 2004). We identified eight high-confidence CDK8/19 

phosphorylation sites in six different Mediator subunits: CCNC, MED12, MED13, 

MED13L, MED14, and MED26. CCNC, MED12, MED13, and MED13L each associate 

with CDK8 or CDK19 as part of the kinase module of Mediator. MED13 appears to be 

important for physical interaction between the kinase module and Mediator (Knuesel et al., 

2009), and previous studies have shown that increased MED13 or MED13L abundance can 
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increase the proportion of CDK8-Mediator vs. core Mediator in cells (Davis et al., 2013). 

These previous results were shown in the context of inhibition of the E3 ubiquitin ligase 

FBW7, which ubiquitylates MED13 and MED13L to promote their degradation. Our 

quantitative whole proteome data showed that the abundance of MED13 and MED13L were 

each increased in CA-treated HCT116 cells. FBW7-dependent ubiquitylation of MED13 or 

MED13L required prior modification at residue T326, a phospho-degron site in MED13 and 

MED13L (Davis et al., 2013). The CDK8/19 sites identified in MED13 and MED13L are 

distinct (residue S749 and residue S878, respectively) and do not overlap with known or 

predicted phospho-degron motifs; thus, it remains unclear how Mediator kinase activity may 

affect MED13 or MED13L protein levels.

The MED26 subunit is generally absent from CDK8-Mediator purifications (Ebmeier and 

Taatjes, 2010; Sato et al., 2004; Taatjes et al., 2002) and hence, its phosphorylation by 

CDK8 or CDK19 may promote MED26 dissociation from Mediator. The CDK8/19 

modification site on MED26 (S314), however, does not reside in regions required for 

Mediator association (Takahashi et al., 2011). The MED14 subunit is an important 

architectural factor within Mediator, and structural studies with reconstituted partial 

complexes and crosslinking-mass spectrometry (CXMS) revealed MED14 crosslinks with 

several Mediator subunits, including MED8 and MED7, involving MED14 residues 1256 

and 1295, respectively (Cevher et al., 2014). These reside some distance (in sequence space) 

from the Mediator kinase phosphorylation sites (S1112, S1128, S1136). Furthermore, 

CXMS and cryo-EM data with reconstituted yeast Mediator and yeast pol II revealed 

MED14 interactions with pol II and TFIIF (Plaschka et al., 2015). However, the S. cerevisiae 
Med14 subunit from this study consisted of residues 1-755 (of 1082 residues in yeast 

Med14) and the human MED14 S1112, S1128, and S1136 residues do not appear to be 

conserved.

Knockdown experiments have implicated the CDK8 protein in the regulation of transcription 

elongation and/or pol II pausing or pause release (Donner et al., 2010; Galbraith et al., 

2013). Furthermore, ChIP-Seq data from CA-treated MOLM-14 cells indicated a reduced 

pol II travel ratio (TR; ratio of promoter-bound pol II vs. pol II in gene body) at genes whose 

expression was up-regulated by CA (Pelish et al., 2015), implicating Mediator kinase 

activity in pol II pausing or pause release. The reduced TR in CA-treated cells could also 

reflect inhibition of premature pol II termination. Here, we identified AFF4, NELFA, 

MED26, POLR2M, SETX, and XRN2 as high-confidence Mediator kinase targets, and each 

of these factors has been implicated in regulation of pol II pausing, premature termination, 

or elongation (Brannan et al., 2012; Cheng et al., 2012; Jishage et al., 2012; Kwak and Lis, 

2013; Lin et al., 2010; Takahashi et al., 2011; Wagschal et al., 2012).

Mediator kinases as potential metabolic regulators

CDK8 orthologs in Drosophila and yeast have been linked to lipid and glucose metabolism 

and regulation of cellular responses to nutrient stress (Kuchin et al., 1995; Lindsay et al., 

2014; Mousley et al., 2012; Zhao et al., 2012). Upon Mediator kinase inhibition by CA, we 

observed changes in the abundance of about 200 proteins (Fig. 5), including many involved 

in basic metabolic pathways such as oxidative phosphorylation, fatty acid metabolism, and 
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cholesterol homeostasis. MED13 and CCNC appear to regulate mitochondrial function in 

yeast (Cooper et al., 2014; Khakhina et al., 2014), and over-expression of MED13 in mouse 

cardiac tissue alters fatty acid metabolism, β-oxidation, and mitochondrial content (Baskin et 

al., 2014). We identified MED13 and CCNC as Mediator kinase substrates and observed an 

increase in MED13 protein levels upon CA treatment, which could contribute to altered fatty 

acid metabolism or oxidative phosphorylation observed in CA-treated cells (Fig. 5D).

CDK8 kinase activity has previously been linked to cholesterol metabolism and fatty acid 

synthesis via regulation of SREBP. In particular, CDK8-dependent phosphorylation of 

SREBP residue T402 correlated with SREBP degradation in Drosophila and mouse cells 

(Zhao et al., 2012). GSEA analysis of whole proteome data identified changes in the 

cholesterol homeostasis, adipogenesis, and fatty acid metabolism hallmark signatures in CA-

treated cells (Fig. 5D). Moreover, F-match identified SREBP binding motifs as over-

represented among genes whose expression changed upon CA treatment (Fig. 4D). Whereas 

phosphorylation of SREBP T402 was detected in our phosphoproteomics experiments, its 

level was not altered in CA-treated cells, suggesting alternate means of Mediator kinase-

dependent SREBP regulation in HCT116 cells. Other kinases, including GSK3 (Sundqvist et 

al., 2005), are known to target SREBP T402 and we have confirmed that CA does not inhibit 

GSK3β in cell lysates (Pelish et al., 2015) or in in vitro kinase assays with the purified 

protein (Fig. 3H). Therefore, the SREBP T402 phosphorylation level may remain constant 

in CA-treated cells due to other kinases targeting this site. Alternately, SREBP may not be a 

substrate for CDK8 in HCT116 cells. SIRT1, a validated Mediator kinase target, can 

negatively regulate SREBP activity through deacetylation (Walker et al., 2010). The 

Mediator kinases phosphorylate SIRT1 at residue T530, and phosphorylation at T530 has 

been shown to activate the SIRT1 deacetylase (Sasaki et al., 2008). Thus, via SIRT1 and 

potentially other substrates, Mediator kinases may regulate cholesterol or fatty acid 

metabolism independent of direct SREBP phosphorylation in HCT116 cells.

Human Mediator kinases and TF turnover

Previous studies revealed that phosphorylation of nutrient-responsive TFs Gcn4, Ste12, or 

Phd1 by yeast Cdk8 promoted their degradation (Chi et al., 2001; Nelson et al., 2003; 

Raithatha et al., 2012). Studies in metazoans have shown evidence for CDK8-dependent 

phosphorylation of the TFs SMAD1, SMAD3, Notch ICD, SREBP, E2F1, and STAT1 

(Alarcon et al., 2009; Bancerek et al., 2013; Fryer et al., 2004; Morris et al., 2008; Zhao et 

al., 2012). Among these, increased degradation of the Notch ICD, SMAD1, SMAD3, and 

SREBP correlated with phosphorylation. For these reasons, we anticipated that inhibition of 

CDK8 and CDK19 kinase activity would affect the protein levels of a subset of their targets. 

Whole proteome data revealed no evidence that TF phosphorylation by Mediator kinases 

affected their stability, even with analyses at 1, 3, 6, 18, or 24 hours of CA treatment. In fact, 

we found little evidence for altered stability of any high-confidence Mediator kinase targets, 

with the notable exception of MED13 and MED13L. Despite this result, cell type or context 

may be key factors that dictate the effect of Mediator kinase phosphorylation on protein 

turnover. Here, we evaluated HCT116 cells in normal growth conditions whereas Mediator 

kinases may in fact more generally regulate substrate protein turnover during stress 

responses or at different developmental stages.
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Whereas no changes in TF turnover were evident from the whole proteome data in CA-

treated vs. control cells, we identified many links between the gene expression changes and 

the phosphoproteomics data (Fig. S4). These results are consistent with Mediator kinases 

affecting TF activity in HCT116 cells under normal growth conditions, rather than TF 

turnover.

CDK8 as a colon cancer oncogene: Mediator kinase inhibition vs. subunit knockdown

CDK8 was identified as a colon cancer oncogene in part through an shRNA screen for genes 

required for HCT116 cell proliferation (Firestein et al., 2008). CDK8 was one of 166 

candidates in this screen; CDK8 was also identified in a screen for factors required for 

activation of a β-catenin-driven reporter in a different colon cancer line, DLD-1 (Firestein et 

al., 2008). Our analyses with CA indicate that, in contrast to CDK8 knockdown, Mediator 

kinase inhibition does not affect HCT116 cell growth (Pelish et al., 2015). These findings 

highlight the distinction between physical loss of a protein vs. targeted inhibition of its 

enzymatic activity.

As a TF, β-catenin assembles with the DNA-binding proteins TCF and LEF-1 to activate 

genes that drive cell proliferation. HCT116 cells are heterozygous for a mutant β-catenin 

protein that is resistant to degradation (Morin et al., 1997). Consequently, HCT116 cells 

have increased β-catenin levels and are considered “β-catenin-dependent”. Consistent with 

an oncogenic function for CDK8, CDK8 knockdown prevented activation of β-catenin target 

genes in colon cancer cell lines (Firestein et al., 2008). In addition, the E2F1 TF has been 

shown to be an important negative regulator of β-catenin stability (through unknown 

mechanisms), and elevated levels of the CDK8 protein, as observed in HCT116 cells 

(Firestein et al., 2008), can block E2F1-dependent inhibition of β-catenin target gene 

expression (Morris et al., 2008). Thus, in colon cancer cells, the CDK8 protein appears to 

up-regulate β-catenin target gene expression in two ways: as a β-catenin co-activator and as 

an inhibitor of E2F1 activity.

Whereas E2F1 and β-catenin activity or stability is known to be regulated by 

phosphorylation, we did not observe significant changes in E2F1 or β-catenin protein or 

phosphopeptide levels in CA-treated HCT116 cells. An F-match analysis based upon gene 

expression changes in CA-treated cells, however, identified E2F binding motifs as over-

represented (Fig. 4D), and Ingenuity Pathway Analysis (IPA) of upstream regulators 

identified β-catenin target genes as over-represented among those whose expression 

increased or decreased upon CA treatment (Table S7). GSEA of our proteomics data (CA-

treated vs. untreated, 0 – 24h) revealed up-regulation of both the E2F1 and β-catenin 

pathways (Fig. 5D). Furthermore, numerous high-confidence Mediator kinase substrates are 

known to directly regulate β-catenin or E2F activity, and these are summarized in Table S8.

Although these results implicate Mediator kinase activity in the regulation of E2F1 and β-

catenin transcription networks in HCT116 cells, the effects of Mediator kinase inhibition are 

clearly distinct from CDK8 or CDK19 knockdown (Donner et al., 2010; Firestein et al., 

2008; Galbraith et al., 2013). This was not unexpected, as the physical presence of an 

enzyme typically serves structural roles, such as maintaining the integrity of a multi-protein 

complex. For example, ablation of the CDK7 ortholog in yeast (Kin28) abolishes essentially 
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all pol II transcription (Holstege et al., 1998), in contrast to targeted inhibition of Kin28 

activity (Kanin et al., 2007). Direct comparison of the transcriptional changes resulting from 

physical loss of the CDK8 or CDK19 protein versus targeted inhibition of kinase activity 

(i.e. with protein levels remaining intact) revealed stark differences in both the genes 

affected and in the magnitude of gene expression changes. These differences highlight the 

importance of a structural or “scaffolding” role of the CDK8 or CDK19 proteins. Indeed, 

CDK8 knockdown decreases MED12 levels and increases CDK19 protein levels in HCT116 

cells (Donner et al., 2010; Galbraith et al., 2013), which likely contributes to the distinct 

gene expression and anti-proliferative effects of CDK8 knockdown (Firestein et al., 2008) 

compared with kinase inhibition by CA. Because CA inhibits CDK19 as well as CDK8 

(Pelish et al., 2015), this may also result in compensatory effects that distinguish the CDK8 

knockdown phenotype from CDK8/CDK19 inhibition. Future studies are needed to more 

precisely establish the roles of CDK8 vs. CDK19 in regulating the elaborate E2F1, β-

catenin, and other inter-related signaling networks that contribute to HCT116 survival and 

proliferation.

Concluding remarks

This study provides a large-scale identification of Mediator kinase substrates and the impact 

of Mediator kinase activity on pol II transcription and the cellular proteome. In comparison 

with the ~170 potential CDK9 kinase substrates recently identified in HCT116 cells (Sanso 

et al., 2016), it is notable that the high-confidence substrates for CDK9 are distinct from the 

Mediator kinases. This further suggests that CDK9 (e.g. as part of P-TEFb or the SEC) and 

Mediator kinases play non-redundant roles in transcription regulation.

Our results were enabled by the rigorous biochemical, cellular, and biophysical 

characterization of CA, which demonstrated that it represents an unusual case of an inhibitor 

that is truly selective for Mediator kinases in human cells (Pelish et al., 2015). The data and 

methodologies presented provide a valuable resource for further delineation of the molecular 

mechanisms whereby Mediator kinases, and their substrates, regulate processes that are 

fundamentally important in human development and disease. For example, the 

methodologies described could be applied toward other cell types or contexts to uncover cell 

type- or context-specific roles for Mediator kinases. Alternately, the Mediator kinase targets 

or proteome changes identified here could be further tested for their mechanistic role(s) in 

regulating chromatin structure and function, DNA repair or replication, cell metabolism, or 

pol II transcription.

EXPERIMENTAL PROCEDURES

Cell culture

HCT116 cells were cultured in DMEM supplemented with 10% FBS and penicillin/

streptomycin. Cells were maintained at 37°C and 5% CO2.

SILAC labeling

HCT116 cells were cultured in DMEM lacking arginine and lysine (Pierce-88420) 

supplemented with either Arg10 (33.6 μg/ml) and Lys8 (73 μg/ml) or Arg0 and Lys0 for 
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heavy and light treatment, respectively. After six passages at 1:3 ratio, cells were tested for 

Arg/Lys incorporation and were subsequently supplemented with 200mg/L of proline 

(Sigma-P5607) as a small amount of Arg→Pro conversion was detected. Cells were 

maintained in 10% dialyzed FBS and penicillin/streptomycin.

TiO2 phosphopeptide enrichment, ERLIC chromatography, and LC/MS/MS

Protocols were carried out as described (Stuart et al., 2015). An Orbitrap LTQ (Thermo 

Fisher) was used for phosphoproteomics, and an Orbitrap Velos (Thermo Fisher) was used 

for quantitative proteome analysis.

In vitro kinase assays

Assays were done essentially as described (Bancerek et al., 2013). Additional details 

provided in Supplemental Experimental Procedures.

Gene expression comparison between CA treated HCT116 cells and shRNA CDK8/19

shRNA CDK8 and CDK19 microarray data were obtained from the GEO (accession 

GSE38061) and data under the “normoxia” tab were used for the comparison to CA treated 

cells.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Quantitative phosphoproteomics in HCT116 cells ± CA
(A) Cortistatin A (CA) structure.

(B) Overview of phosphoproteomics workflow used to identify Mediator kinase substrates.

(C) Unique phosphopeptides identified with LC-MS/MS after ERLIC fractionation. Average 

of biological triplicates is represented.

(D) CA treatment with quantitative phosphoproteomics reproducibly identifies Mediator 

kinase substrates. H/L ratios quantified in two of three biological replicates are plotted on 

the x- and y- axes. Plot shows proteins whose H/L ratios decrease (green) and increase 

(peach) upon CA treatment.

(E) and (F) Representative mass spectra. Spectra shown are from replicates in which either 

the light (E) or heavy (F) cells were CA-treated. Differences in SILAC pairs are shown 

based on the labeled amino acid; Arg(10) in (E) and Lys(8) in (F). The charge is +2 for both 

peptides.
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Figure 2. Identification of Mediator kinase (CDK8/19) substrates
(A) Functional categorization of high-confidence Mediator kinase substrates identified.

(B) Volcano plot of statistically significant phosphosite changes with CA treatment using an 

empirical Bayes analysis.
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Figure 3. In vitro validation of select CDK8/19 substrates
(A) Validation of STAT1 S727 as a Mediator kinase target in HCT116 cells.

(B) Western blot validation of SIRT1 T530 as a Mediator kinase target. Levels of total 

SIRT1 and other proteins known to regulate CDK8 activity (MED12 or CCNC), remained 

unchanged. TBP is a loading control.

(C) Quantitation of data in (B). Error bars are SEM; n=2 for technical replicates.

(D) In vitro kinase assay with recombinant CDK8 module and SIRT1. With increasing time, 

SIRT1 pT530 detection increases, indicating CDK8 is phosphorylating this site. Increase is 

not seen in no kinase or no substrate (ns) controls.

(E) In vitro kinase assay with GST-tagged TP53BP1 or RIF1 fragments. Alanine mutations 

at identified phosphorylation sites show reduced phosphorylation by CDK8.

(F) Overview of method for identifying MED12 and MED13 phosphorylation sites using 

recombinant CDK8 modules.

(G) Verification of MED12 S688 and MED13 S749 phosphorylation sites.

(H) In vitro kinase assay using CA and GST-pol II CTD as a substrate. Whereas each kinase 

tested phosphorylates this substrate, CA only inhibits the CDK8 module.
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Figure 4. Mediator kinase inhibition is functionally distinct from CDK8 or CDK19 knockdown
(A) Heat map of differentially expressed genes (RNA-Seq) after 3 hr CA treatment. Green 
font represents transcription or chromatin regulator.

(B and C) Comparison with microarray data (Galbraith et al., 2013) using stable CDK8/19 

knockdown (shRNA) vs. 3h CA treatment (B) or 24h treatment (C) in HCT116 cells under 

normal growth conditions. A 1.5-fold cutoff was used for microarray data and Cufflinks was 

used for CA-treated cells (no specific fold-change cutoff).

(D) TFBS analysis of promoters for genes whose expression changed with 3h CA treatment 

(listed in A). Promoters (±2kb from the TSS of the canonical isoform) were analyzed using 

F-Match, part of the Transfac database. Overrepresented sites with at least 1.5 fold increase 

vs. control promoters are shown for Transfac vertebrate matrices. Matrix name at left.
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Figure 5. Quantitative proteomics reveals pathways and proteins affected by Mediator kinase 
inhibition
(A) Overview of quantitative proteomics method.

(B) Venn diagram of biological replicates showing number of proteins identified in the time 

series. Replicates show a high degree of overlap for protein IDs.

(C) Volcano plot comparing protein abundance at 18 hr and 24 hr time points vs. control (0 

hr). Adjusted p-values are colored according to an empirical Bayes analysis.

(D) Individual analysis of t = 3hr, 6hr, 18hr, and 24hr CA treatment time points using GSEA 

and the hallmark gene sets from the Molecular Signatures Database. Comparison of the t = 

0hr and 1hr time points showed no differences in the hallmark gene sets (not shown). The 

color of the heat map corresponds to the direction and magnitude of the normalized 

enrichment score for that gene set at each time point, compared to t = 0hr controls. ‘NA’ and 

the corresponding color indicate a hallmark gene set not being identified from the proteome 

data at the designated time.

(E) Protein abundance increases for MED13 and MED13L in CA-treated cells.
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Table 1

High confidence Mediator kinase substrates identified using CA and quantitative phosphoproteomics

Protein ID Gene Name Position Loc. Prob. Ratio (H/L) Adj. p-value

Q9UHB7 AFF4 S31 0.79 0.209 ± 0.011 0.025

Q9UHB7 AFF4 S32 0.78 0.248 ± 0.070 0.056

Q9UHB7 AFF4 S1043 1.00 0.325 ± 0.035 0.020

Q9UHB7 AFF4 S814 1.00 0.410 ± 0.012 0.018

P15336 ATF2 S136 1.00 0.366 ± 0.012 0.015

P17544 ATF7 S434 0.88 0.302 ± 0.020 0.015

P17544 ATF7 S111 0.75 0.590 ± 0.062 0.082

P17544 ATF7 T112 0.99 0.593 ± 0.019 0.036

O00512 BCL9 S291 0.95 0.694 ± 0.031 0.092

Q12830 BPTF S1300 1.00 0.691 ± 0.035 0.095

P38398 BRCA1 S1613 0.96 0.447 ± 0.036 0.025

Q9H8M2 BRD9 S588 1.00 0.455 ± 0.009 0.019

H0YBQ5;E5RFK5 CCNC;CCNC S218;S272 1.00 0.642 ± 0.037 0.066

Q12873 CHD3 S1601 1.00 0.595 ± 0.036 0.048

Q14839 CHD4 T1553 0.94 0.096 ± 0.002 0.018

Q9P2D1 CHD7 T2153 0.99 0.572 ± 0.024 0.034

K4DI93 CUL4B S15 0.90 0.394 ± 0.038 0.078

Q9UER7 DAXX S671 1.00 0.651 ± 0.014 0.053

Q5T1V6 DDX59 S64 / S76 0.99 / 0.76 0.535 ± 0.045 0.064

Q9NPF5 DMAP1 T409 1.00 0.134 ± 0.018 0.015

P19419 ELK1 S324 1.00 0.636 ± 0.058 0.092

Q52LR7 EPC2 T353 0.97 0.403 ± 0.019 0.059

Q96E09 FAM122A S267 0.79 0.513 ± 0.082 0.085

Q12948 FOXC1 S241 1.00 0.433 ± 0.063 0.048

Q9NZM4 GLTSCR1 S755 1.00 0.394 ± 0.052 0.032

P15822 HIVEP1 S479 0.99 0.649 ± 0.019 0.055

Q7Z6Z7 HUWE1 S3816 0.98 0.527 ± 0.018 0.025

Q8NFU5 IPMK S7 1.00 0.663 ± 0.050 0.098

Q9Y4C1 KDM3A S445 1.00 0.448 ± 0.034 0.025

Q9Y4X4 KLF12 S202 1.00 0.441 ± 0.071 0.056

Q3ZCW2 LGALSL S25 0.99 0.698 ± 0.029 0.092

Q92585 MAML1 S159 1.00 0.325 ± 0.009 0.015

Q92585 MAML1 S303 0.98 0.356 ± 0.018 0.049

Q14676 MDC1 S1775 1.00 0.453 ± 0.075 0.061

Q93074 MED12 S688 0.99 0.168 ± 0.036 0.020

Q9UHV7 MED13 S749 0.96 0.356 ± 0.041 0.073

Q71F56 MED13L S878 1.00 0.568 ± 0.060 0.065
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Protein ID Gene Name Position Loc. Prob. Ratio (H/L) Adj. p-value

O60244 MED14 S1112 1.00 0.233 ± 0.045 0.025

O60244 MED14 S1128 / S1136 0.99 / 0.99 0.100 ± 0.015 0.025

O95402 MED26 S314 1.00 0.177 ± 0.039 0.025

Q8IWI9 MGA S2924 0.99 0.660 ± 0.032 0.070

O14686 MLL2 S3199 0.98 0.630 ± 0.019 0.047

P55197 MLLT10 S346 1.00 0.470 ± 0.005 0.076

O96007 MOCS2 S20 1.00 0.531 ± 0.035 0.034

Q9NV56 MRGBP S195 1.00 0.611 ± 0.023 0.043

Q6P1R3 MSANTD2 S27 1.00 0.623 ± 0.053 0.085

Q2TAK8 MUM1 S326 1.00 0.582 ± 0.050 0.059

Q15742 NAB2 S162 1.00 0.573 ± 0.014 0.032

Q15788 NCOA1 S698 1.00 0.381 ± 0.042 0.081

Q9H3P2 NELFA S363 0.96 0.403 ± 0.032 0.023

Q9H3P2 NELFA S360 0.50 0.441 ± 0.039 0.092

Q6P4R8 NFRKB S1291 1.00 0.688 ± 0.035 0.092

Q9NZT2 OGFR S349 1.00 0.170 ± 0.015 0.025

Q9NZT2 OGFR S484 0.99 0.348 ± 0.035 0.021

P29590 PML S530 1.00 0.674 ± 0.012 0.059

Q6EEV4 POLR2M S10 0.99 0.416 ± 0.018 0.019

Q5UIP0 RIF1 S1613 0.98 0.357 ± 0.014 0.048

Q5UIP0 RIF1 S1616 1.00 0.418 ± 0.051 0.033

Q92766 RREB1 S1653 1.00 0.237 ± 0.025 0.039

Q6SPF0 SAMD1 S425 0.94 0.418 ± 0.022 0.019

O15047 SETD1A T1088 1.00 0.204 ± 0.010 0.015

Q7Z333 SETX S2612 1.00 0.465 ± 0.018 0.080

Q96EB6 SIRT1 T530 1.00 0.201 ± 0.030 0.043

Q9UQ35 SRRM2 S2449 1.00 0.708 ± 0.004 0.081

P42224 STAT1 S727 0.99 0.367 ± 0.001 0.047

Q12962 TAF10 S44 1.00 0.565 ± 0.020 0.032

Q7Z2Z1 TICRR S1413 0.99 0.472 ± 0.066 0.059

Q12888 TP53BP1 S265 1.00 0.258 ± 0.014 0.015

Q12888 TP53BP1 S525 1.00 0.600 ± 0.014 0.036

P13051 UNG S63 0.84 0.473 ± 0.026 0.025

P13051 UNG T60 / S63 0.99 / 0.62 0.487 ± 0.027 0.025

Q9H0D6 XRN2 S487 1.00 0.566 ± 0.041 0.047

Q9NUA8 ZBTB40 T166 0.99 0.378 ± 0.078 0.058

A6NFI3 ZNF316 S10 1.00 0.598 ± 0.043 0.056

Q6ZN55 ZNF574 S717 1.00 0.406 ± 0.052 0.033

O15014 ZNF609 S804 1.00 0.373 ± 0.001 0.015
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All sites correspond to reviewed accessions and canonical isoforms in Uniprot except for CCNC, whose identified site is not present in the 
canonical isoform. The ‘p-value’ column represents an adjusted p-value from an empirical Bayes analysis (Ritchie et al., 2015). See also 
Supplemental Note.
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