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Abstract

Background—Most cancer simulation models include unobservable parameters that determine 

the disease onset and tumor growth. These parameters play an important role in matching key 

outcomes such as cancer incidence and mortality and their values are typically estimated via 

lengthy calibration procedure, which involves evaluating large number of combinations of 

parameter values via simulation. The objective of this study is to demonstrate how machine 

learning approaches can be used to accelerate the calibration process by reducing the number of 

parameter combinations that are actually evaluated.

Methods—Active learning is a popular machine learning method that enables a learning 

algorithm such as artificial neural networks to interactively choose which parameter combinations 

to evaluate. We develop an active learning algorithm to expedite the calibration process. Our 

algorithm determines the parameter combinations that are more likely to produce desired outputs, 

therefore reduces the number of simulation runs performed during calibration. We demonstrate our 

method using previously developed University of Wisconsin Breast Cancer Simulation Model 

(UWBCS).

Results—In a recent study, calibration of the UWBCS required the evaluation of 378,000 input 

parameter combinations to build a race-specific model and only 69 of these combinations 

produced results that closely matched observed data. By using the active learning algorithm in 

conjunction with standard calibration methods, we identify all 69 parameter combinations by 

evaluating only 5620 of the 378,000 combinations.

Conclusion—Machine learning methods hold potential in guiding model developers in the 

selection of more promising parameter combinations and hence speeding up the calibration 

Address for correspondence and reprint requests: Oguzhan Alagoz, PhD, Department of Industrial and Systems Engineering, 
University of Wisconsin-Madison, 3242 Mechanical Engineering Building, 1513 University Avenue, Madison, WI 53706, Phone: 
608.890.0399, Fax: 608.262.8454 

HHS Public Access
Author manuscript
Med Decis Making. Author manuscript; available in PMC 2017 July 01.

Published in final edited form as:
Med Decis Making. 2016 July ; 36(5): 581–593. doi:10.1177/0272989X15611359.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



process. Applying our machine learning algorithm to one model shows that evaluating only 1.49% 

of all parameter combinations would be sufficient for the calibration.
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INTRODUCTION

Simulation models have been increasingly used in health policy decision making [1, 2, 3]. 

Many of these models include a component that describes the natural history of the disease 

and simulates an individual’s course of health to assess the overall effect of the disease in the 

population [4, 5, 6, 7]. For example, several models for breast, prostate, colon, and lung 

cancer have been used to evaluate various cancer screening policies while representing both 

unobservable and observable portions of the natural history of cancer at an individual level 

[8, 9, 10, 11, 12, 13, 14]. In particular, natural history components of these simulation 

models require the use of unobservable parameters such as disease onset and tumor growth 

rate, which often cannot be estimated from available data sources [13, 15]. One commonly 

used method for determining these unobservable parameters is calibration [1, 2].

Calibration is an important element of model development and widely used in medical 

decision making and disease simulation models. Also referred to as “model fitting”, 

calibration is the process of estimating the values of the unobserved parameters such that 

simulation model’s output matches the empirical observed data, for example, observed 

incidence and mortality over time for cancer simulation models [1, 16]. An exhaustive 

calibration typically involves full exploration of the feasible parameter space of 

unobservable parameters. Even if the model includes a small number of unobservable 

parameters, depending on the range of values each unobservable parameter may take, the 

total number of possible parameter combinations that are evaluated during the calibration 

process may be very large. The difficulty of the calibration is therefore directly related to the 

number of unobservable parameters and the range of these parameter values.

Some simulation models employ a grid search approach for the calibration of the 

unobserved parameters [17, 18]. In this approach, first the maximum and minimum values of 

each unobserved parameter are determined. Then, the range of values for these unobserved 

parameters is divided into a regular grid and the output of the simulation model obtained for 

each grid point is compared to the target outcomes. Another method for searching the 

parameter space is to use a random search algorithm [19]. In this method, the parameter 

space is initially sampled randomly. After the first batch of runs, if a parameter combination 

satisfying the targets is not found, the parameter space is altered by using the information 

gained from the initial runs and the algorithm continues to sample from the resulting 

parameter space.

Both calibration methods attempt to find a set of optimal parameter combinations by doing 

an extensive search in the whole parameter space, which could be a viable option for a 

simulation model with few unobserved parameters but becomes computationally infeasible 

as the number of calibrated parameters increases. Furthermore, many established simulation 
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models such as those used in cancer epidemiology can be very complex and even one 

simulation run may take a long time. Hence, the evaluation of all possible combinations is 

impractical.

The evaluation of a large number of parameter combinations can be avoided by identifying 

smaller subsets of the combinations that are more likely to produce desired outputs. Often 

evaluating only a small subset of input parameter combinations s sufficient for calibration, 

and the determination of such subsets is of key importance for the identification of natural 

history parameters. To this end, statistical models such as linear regression or machine 

learning methods such as artificial neural networks (ANNs) can be used as prediction 

models to determine promising subsets from the parameter space.

The purpose of this study is to show how machine learning methods, especially ANNs, can 

be used to expedite the calibration. We develop an active learning algorithm that guides the 

ANN model to choose which parameter combinations to evaluate during the calibration. We 

use the University of Wisconsin Breast Cancer Simulation Model (UWBCS), a validated 

simulation model of the epidemiology of the breast cancer, as a case study to describe our 

approach and demonstrate its efficacy.

METHODS

Using a Prediction Model for Calibration

We summarize the usage of a prediction model in the calibration process in five steps (see 

Figure 1). We start with identifying the set of parameter combinations from the parameter 

space of unobservable parameters. Then, we randomly select a small subset of these possible 

parameter combinations and evaluate them via simulation to obtain a numerical score, which 

indicates how closely the output of each parameter combination matches target outcomes. 

We note that the choice of scoring approach is problem-specific and a generic prediction 

model performs independently of the scoring scheme. By using this small set of evaluated 

parameter combinations as our training set, we build a machine learning prediction model, 

such as an ANN, that predicts the numerical score associated with a given parameter 

combination. Then, we use this prediction model to find those combinations that have 

acceptable predicted scores. We refer to a score associated with a parameter combination as 

an acceptable score only if it falls into a predetermined range for the scores. Those 

parameter combinations with acceptable predicted scores are more likely to produce desired 

outputs from the simulation. Finally, we evaluate the parameter combinations with 

acceptable predicted scores using the simulation and identify the parameter combinations 

that best correspond to the values of the unobservable parameters.

Scores for Parameter Combinations—Scoring the parameter combinations is an 

important step of the calibration process. The score of a parameter combination is a measure 

of the difference between the simulation result and target outcome. A scoring scheme is 

typically model-specific and is affected by how modelers value different targets. A general 

method to determine the score of a parameter combination is to assign weights to each target 

and multiply those weights by the absolute or mean squared error between the simulation 

result and the target outcome. For the simulation models that aim to capture the trends in the 
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observed outcome (e.g., cancer incidence by calendar year or age), an alternative method is 

to identify acceptance envelopes around these outcomes and determine the scores using 

these envelopes. Whenever the simulation result corresponding to a target year or age falls 

outside of the envelope, it is a violation of the closeness measure and the score of the 

parameter combination is increased by one. Therefore, smaller scores represent the better 

parameter combinations. Note that the acceptance envelopes are usually formed by 

determining error margins around the target outcome and can be modified to better capture 

the trends in a given year or age group.

UWBCS Overview

We use the UWBCS as an example simulation model to assess the efficiency of our 

approach for calibration. UWBCS is a discrete-event, stochastic simulation model of breast 

cancer epidemiology in the U.S. female population and has been used to address a variety of 

breast cancer screening policy questions. The model was designed to match age and stage-

specific breast cancer incidence rates and age-specific mortality rates in the U.S. female 

population between 1975 and 2000. More information about UWBCS can be found 

elsewhere [19].

UWBCS has four core components: breast cancer natural history, breast cancer detection, 

breast cancer treatment and non-breast-cancer mortality among the U.S. women. While most 

of the parameters such as those used in treatment and mortality derived directly from the 

published studies, several parameters such as those used in natural history are unobservable 

and cannot be directly estimated from available data sources. Therefore, the UWBCS 

calibrates these natural history parameters to replicate the observed breast cancer incidence.

There are 10 natural history parameters in UWBCS that govern tumor onset and progression 

through each individual patient’s lifetime. Each of these parameters can take a wide range of 

values. Even if we assume that each of these parameters can take only five possible values, 

there would be approximately 10 million (510) combinations, which is computationally 

infeasible to evaluate using UWBCS. Therefore, the use of accelerated approaches for the 

calibration of unobservable parameters emerges as a necessity.

Recently, Batina et al. [20] modified the UWBCS and created a race-specific UWBCS for 

black and white women to investigate the contributions of variations in natural history to the 

racial disparities in breast cancer outcomes. For this purpose, they first adjusted the model 

parameters except those relevant to the natural history of breast tumors according to the 

racial differences in breast cancer screening and treatment. Then, they calibrated the natural 

history parameters to replicate the observed 1975–2000 race-specific incidence data from 

Surveillance Epidemiology and End Results (SEER). They tested 378,000 parameter 

combinations for each race during the calibration process (see Table 1 for the set of 

calibrated natural history parameters and their corresponding ranges). Considering each 

simulation run takes 8–10 minutes on a stand-alone 30-core computer, this calibration 

procedure took more than 70 days.

In order to assess the closeness of the output incidence generated by a given natural history 

parameter combination to the observed breast cancer incidence in the U.S., Batina et al. [20] 
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generated envelopes around the observed incidence, which provide an acceptable error 

margin (see Figure 2 for these envelopes). Note that the error margins are determined 

according to the expert opinions and they allow focusing on specific calendar years to 

capture the trends better for those years. For instance, the envelopes around in situ incidence 

do not fully cover the Wisconsin Cancer Registry System (WCRS) outcomes, as the 

modelers put more importance on the SEER data and the difference between SEER and 

WCRS may become significant for some calendar years. Batina et al. [20] then counted the 

number of times the output incidence falls outside of these envelopes for each breast cancer 

stage to assign a score representing the goodness of the output incidence. Because there are 

4 incidence values for each cancer stage (in situ, localized, regional, distant) and 26 years 

between 1975–2000, the worst score for an input parameter is 104. As the smaller scores 

indicate a better fit to the observed data, the best score is 0, which is obtained when all 

output incidence values are within the envelopes. Batina et al. [20] assumed that a score less 

than 10 is an an acceptable match. Note that while we use the scoring scheme described by 

Batina et al [20], our methods are applicable to other scoring schemes as well.

Artificial Neural Networks as a Prediction Model

One way to build a prediction model is to use a linear regression model, which has the 

following functional form:

(1)

where X0,X1,…, Xn denote n predictor variables (e.g., calibrated natural history parameters 

of the UWBCS), f(X) denotes the estimated score of a given parameter combination, β0 is a 

constant and β1, β2, …, βn are the regression coefficients of the predictor variables X0,X1,…, 

Xn denote n. While linear regression is an easy-to-use prediction method, it will not be able 

to represent the underlying function accurately if the latter is nonlinear. Therefore, we 

consider artificial neural networks as a more expressive prediction model that is able to 

represent nonlinear relationships between the predictor variables. Note that there are also 

several other nonlinear regression models that consider the interactions between the 

predictor variables and we use the simple linear regression solely as a benchmark for the 

performance of other approaches presented in this study.

Artificial neural networks are information processing structures inspired by the function of 

biological neural networks. They consist of a set of interconnected units where each unit has 

a transfer function that computes and outputs a function of the values provided by the units 

that connect to it [21]. Instead of the linear function used in the linear regression for the 

estimation of scores, ANNs also employ nonlinear functions as transfer functions at some 

units. The most commonly used transfer functions are sigmoid (logistic) functions, which 

can be given as follows:

(2)

Alternatively, hyperbolic tangent functions or Gaussian functions can be used as transfer 

functions. Note that single layer ANNs with a linear transfer function f(X) given in equation 
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(1) are equivalent to linear regression models. A graphical representation of a three layer 

neural network with two inputs and one output is shown in Figure 3.

ANNs vary in the way neurons are connected and inputs are processed. In this study, we use 

a 3-layer feed-forward ANN trained using a backpropagation learning algorithm with a 

learning rate 0.3 and momentum 0.2 [21]. The layers include an input layer representing the 

natural history parameters, a hidden layer with 21 hidden units, and an output layer with a 

single unit generating an estimate for the score. Our ANN model aims to minimize the sum 

of squared errors between predicted scores and actual scores and it uses the sigmoid function 

given in equation (2) as the transfer function in the hidden units and a linear transfer 

function in the output unit. Note that there are no exact rules in determining an ANN 

model’s parameters. For instance, learning rate and momentum parameters controls the 

speed of convergence of the backpropogation algorithm and both parameters can take any 

value between 0 and 1. Choosing higher values for these parameters may lead to divergence 

of the algorithm, whereas smaller values usually cause a slow convergence. We obtain the 

final values for such parameters by experimenting with the most commonly used values in 

the literature.

Ensembles of ANNs

Ensemble methods construct a set of models from the training data where predictions for the 

new instances are made by using a weight function that combines individual predictions. 

Bootstrap aggregating (bagging), boosting and stacking are well known approaches for 

generating ensembles of the prediction models [21]. In addition, some other studies focus on 

optimal aggregation of the prediction models [22, 23]. There are several successful 

applications of ensemble learning in healthcare literature. In particular, super learning, a 

generalization of stacking method where another prediction model is employed to combine 

the individual predictions, has been used for mortality risk prediction in elderly people and 

mortality prediction in intensive care units [24, 25].

We observe that using ensembles of ANNs often improve on the performance of a single 

generic ANN [26]. Our preliminary experiments with frequently-used ensemble methods 

such as bagging, stacking and additive regression indicate that using bagging to obtain an 

ensemble of ANNs leads to a prediction model with high predictive accuracy. Different than 

other ensemble methods, bagging forms several replicates of the training data set by 

sampling with replacement from the original set and a separate learning model is constructed 

for each of the replicate samples. Breiman et al. [27] note that bagging may provide 

substantial gains in accuracy for unstable learning methods such as ANNs where the 

learning method is significantly affected by the changes in the training set. We refer to the 

ensemble of ANN models constructed using bagging as bagANN. Also, in keeping with the 

machine learning terminology, we refer a parameter combination as an instance, and 

individual input parameters as features. We refer to a parameter combination with an 

unknown score as an unscored instance.
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Active Learning for Calibration

Supervised learning methods such as ANNs use randomly selected instances as training sets 

to build a prediction model. However, it is often possible to achieve a higher level of 

predictive accuracy by having the learning method actively sample instances to be included 

in the training set. The process that interactively samples the instances is known as active 

learning [28]. The difficulty of obtaining scores via simulation for every parameter 

combination makes active learning attractive for the calibration problem. Therefore, to 

increase the prediction power of the bagANN model and to decrease the total number of 

simulation runs required, we develop an active learning algorithm that iteratively selects 

promising parameter combinations from the set of all combinations and evaluates only these 

parameter combinations using the simulation model.

Figure 4 summarizes the active learning approach that is used in this study. First, we train 

the bagANN model using a small number of evaluated parameter combinations. Then, we 

use this bagANN model to select a batch of instances with low predicted scores from a large 

pool of unscored instances and evaluate these instances via the simulation model. If the 

stopping criterion is not met, we retrain the bagANN model with the selected instances and 

repeat the process. We use a clustering approach to select the batch of instances with low 

predicted scores to ensure that the putatively low-scoring instances in the batch represent the 

different regions of the parameter space. For clustering the instances, we use hierarchical 

clustering with Euclidean distance and single linkage measures. Moreover, we augment the 

batch that is used to update the bagANN model with a set of randomly selected parameter 

combinations. This step further assures that the parameter space is broadly sampled to train 

the bagANN model. We present a more detailed version of our active learning algorithm in 

the appendix.

An important element of the active learning algorithm is the stopping criterion [29, 30, 31]. 

For our method, we use a stopping criterion that detects when the active learning process is 

providing diminishing returns in identifying acceptable parameter combinations. We first 

determine a warm-up period for the active learning algorithm, which is the minimum 

number of iterations required to stop sampling. Then, we stop the active learning algorithm 

when no acceptable instance is added to the training set in k consecutive iterations, where k 
is a user-defined parameter.

Estimating the Number of Evaluations Required

After training the bagANN model on a randomly selected subset of parameter combinations, 

we can test the accuracy of the bagANN model on an independently selected test set. This 

predictive accuracy information serves as a performance measure for our prediction model. 

In addition, the test set can be used to estimate the total number of simulation runs needed to 

obtain a reasonably high portion of all good parameter combinations. The following simple 

procedure summarizes our approach to estimate the number of runs needed.
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Algorithm 1

Calculate Expected Number of Runs

Input: test instances T, all instances

1 S, threshold score δ

2 T′ ← {i ∈ T: l(i) ≤ δ}

3 Δ ← max i ∈ T′{f(i)}

4 ENRuns ← Σi ∈SI{f(i) ≤ Δ}

In this algorithm, l(i) represents the score of each instance in set T, f(i) represents the 

predicted value for instance i ∈ T, and I is the indicator function. Here, we first form a 

subset of test instances T′ from the instances in the test set T that have scores lower than the 

predetermined threshold score δ (e.g., Batina et al. [20] set the threshold value to 10). Then, 

we find the maximum predicted score Δ for those instances in the set T′. Finally, we count 

the number of instances with a predicted score lower than Δ in the set S, which is the set 

consisting of all instances.

Application of our Method to UWBCS

We test the efficiency of our method using the calibration process of the UWBCS. Batina et 

al. [20] evaluated 378,000 parameter combinations for the black women and another 

378,000 parameter combinations for the white women in the U.S. to determine breast cancer 

natural history parameters for each race. They deemed parameter combinations with scores 

below 10 as acceptable and reported that they found 69 acceptable parameter combinations 

for black women and 47 acceptable parameter combinations for white women. Here, we 

only use the results of the Batina et al. [20]’s experiments with the black female population, 

as the two calibration processes are very similar. We assume that all of the features 

(individual parameters of a parameter combination) have nominal values in our experiments. 

We observe that changing the nominal features to numeric features does not lead to more 

accurate prediction models, which is also observed in several other studies [32].

In our computational experiments, we first demonstrate the performance of the prediction 

models in predicting the scores of parameter combinations and then examine the additional 

benefits of using a prediction model in the active learning setting. Therefore, we first 

compare the bagANN model with simple linear regression model and conventional ANNs. 

For this experiment, we start with evaluating 30,000 parameter combinations using the 

simulation model and use those as our training and test sets according to a 60/40 ratio (i.e. 

60% of 30,000 are used for training and 40% of 30,000 are used for testing). As comparison 

measures, we use mean absolute error and root mean squared error values of the prediction 

models. We also report the predictive accuracy of the trained models on the instances with 

low actual scores by only considering the instances in the test set that have actual scores 

lower than some predetermined value. We use 30 as a threshold score to determine such 

instances and refer to these instances as low-scored instances. Later, we compare different 
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training sets consisting of 10,000 to 50,000 instances to demonstrate the effect of the 

training set size. Again, we use a 60/40 ratio to separate these sets into training and test sets.

In our experiments with the active learning algorithm, we start by evaluating 1000 parameter 

combinations and include these instances in a set L. At each iteration of the algorithm, we 

add 200 new instances to L. Half of those instances are selected based on predicted scores 

and hierarchical clustering, and the rest were randomly selected to minimize bias in the 

prediction model. In order to obtain an estimate of the number of acceptable parameter 

combinations identified after each iteration of the active learning algorithm, we count the 

number of acceptable parameter combinations that are in set L and among the set of 1000 

instances selected from unscored instances based on their predicted scores. As a stopping 

criterion in the active learning experiments, we either use a bound on the number of 

instances in L or use 5 iterations for the warm-up period and k=3 for the number of 

consecutive iterations without new acceptable instances added to the training set.

We carry out our experiments with the prediction models using the WEKA (version 3.6.5) 

JAVA library in our implementations. Experiments are run on Intel Xeon 2.27 GHz 

processor with 12GB RAM running Windows 7.

RESULTS

Table 1 reports the performance of the prediction models in a standard supervised learning 

setting where we use a single training set to train a model, and then make predictions based 

on this model. We also report the estimates on the additional number of evaluations required 

for various prediction models, which are obtained using Algorithm 1. Our results show that 

the ANNs have significantly better predictive accuracy than linear regression (LinR) as 

observed in mean absolute error (MAE) and root mean squared error (RMSE) values as well 

as the number of additional runs required by each model. Besides, improvements in the 

predictive accuracy are more apparent in MAE and RMSE values obtained for the low-

scored instances. We recognize that the simple linear regression model does not account for 

the interactions between different features. However, ANNs use nonlinear activation 

functions to overcome this limitation, which also helps ANNs to achieve better predictive 

accuracy for our problem.

Using bagging to construct ensembles of ANNs further improves predictive accuracy 

especially in terms of the additional number of runs required by each model. While the ANN 

model alone suggested that an additional 4626 simulation evaluations would generate all the 

acceptable parameter combinations, bagANN model achieves the same level of performance 

through the evaluation of only 2741 additional parameter combinations.

We also demonstrate how bagANN performance varies as a function of the training set size 

and report the estimates on the additional number of runs required for different threshold 

values in Table 2. For this purpose, we sample 30 different training sets for each training set 

size and provide the average values for the performance measures. As the training set size 

increases, MAE and RMSE improve overall and for the low-scored instances. However, 

because we randomly select the initial training sets, there exist discrepancies in the reported 
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results. For instance, while training set size of 50,000 leads to the best MAE and RMSE 

values for the low-scored instances, MAE and RMSE values for the overall instances are 

worse compared to the training set size of 40,000. Despite these inconsistencies, our results 

indicate that, as the training set size increases, bagANN model’s predictive accuracy 

increases at a higher rate for low-scored instances and the number of additional evaluations 

decreases considerably. On the other hand, increasing the size of the training set beyond 

30,000 instances do not lead to significant performance gains. For example, when the 

training set size is 30,000, by setting the threshold value δ = 15, we obtain 97% of all 

acceptable instances by performing 1903 additional simulation evaluations, whereas when 

the training set size is 40,000 and δ = 15, we obtain 99% of all acceptable instances by 

evaluating 1936 additional parameter combinations.

Our next experiment tests the benefit of using an active learning framework to select the 

instances that are provided to the bagANN for training. In this experiment, we compare our 

active learning algorithm to a method that randomly selects the instances that are added to 

the training set. For both cases, we repeat the algorithm for 30 different initial training sets 

each including 2000 parameter combinations and stop the algorithm when our training set 

reaches to 5000 instances. Figure 4 shows that the active learning algorithm can locate all 

acceptable parameter combinations by evaluating only a fraction of all instances whereas the 

random selection method needs to evaluate significantly more instances to achieve similar 

performance. In fact, random selection method does not achieve the same level of 

performance with the active learning algorithm even if we continue sampling instances until 

the training set reaches 10,000 instances. Error bars in Figure 4 indicate that active learning 

results are slightly more variable with respect to the initial training set compared to random 

selection. We also conduct a one-way sensitivity analysis on initial training set size and 

batch size parameters of the active learning algorithm. Figure 6 shows that the active 

learning algorithm performs better for the initial training sets with 1500–2000 instances. In 

addition, Figure 7 shows that although performance of the active learning algorithm is not 

significantly affected by the choice of the batch size, smaller batch sizes should be more 

preferable.

In our final experiment, we use the stopping condition based on warm-up period and 

consecutive number of iterations without new acceptable instances in the training set. We 

find that, on average, the active learning algorithm stops when the total number of evaluated 

parameter combinations reaches 5620. These 5620 instances contain all 69 acceptable 

parameter combinations that were reported by Batina et al. [20], which implies that 

evaluating only 1.49% of all 378,000 instances would be sufficient to obtain all acceptable 

parameter combinations. We also perform a one-way sensitivity analysis on the stopping 

condition parameters of the active learning algorithm. Table 4 shows that while increasing 

the k value leads to more simulation evaluations, it does not lead to a significant 

improvement in the number of acceptable parameter combinations. Similar analysis on the 

length of warm-up period shows that our active learning algorithm is not sensitive to the 

changes in warm-up period. However, using a limit on the length of warm-up period ensures 

that active learning algorithm does not terminate prematurely.
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Active learning algorithm requires approximately 2 hours and the evaluation of 5000 

parameter combinations takes 22 hours on a 30-core computer. Thus, the total processing 

duration for the active learning algorithm is 24 hours of CPU time and this is a significant 

improvement over the time required for evaluation of 378,000 parameter combinations, 

which is approximately 70 days of CPU time.

DISCUSSION

Simulation models with unobservable parameters frequently resort to calibration, which may 

require a large number of simulation runs. Finding the best parameter values by evaluating 

all possible parameter combinations is usually burdensome and requires considerable 

computational time. In this study, we address the problem of determining the most 

promising input values so that calibration can be completed by evaluating only a small 

subset of all parameter combinations. For this purpose, we use several machine learning 

approaches and provide several key statistics on the predictive accuracy of each method. Our 

results show that the computational burden of the calibration may be reduced significantly 

and the calibration is feasible even for complex simulation models.

To the best of our knowledge, the study by Kong et al. [2] is the only calibration work that 

described a framework to reduce the number of parameter combinations to be evaluated. 

More specifically, Kong et al. [2] use metaheuristics such as simulated annealing [26] and 

genetic algorithms [27] to search the parameter space to find the best parameter combination 

for a lung cancer simulation model. They also provide a method for measuring the closeness 

of the actual calibration targets and simulation outcomes. While their approach effectively 

avoids evaluating all parameter combinations, it is able to identify only one (or a small 

number of) acceptable parameter combination that matches the target outcome without 

actually assessing the quality of the outputs for other parameter combinations. On the other 

hand, identifying all or a big portion of acceptable parameter combinations can help guard 

against non-identifiability problems in calibration. As our approach provides estimations on 

outcomes of any parameter combination, one can take advantage of all parameter 

combinations to better understand the effects of parameter uncertainty on model 

conclusions.

Our computational experiments indicate that an ANN can identify the promising parameter 

combinations with high accuracy. We further enhance the predictive accuracy of the ANN by 

using an ensemble method called bagging. Finally, we develop an active learning algorithm 

that further increases the predictive accuracy of the prediction model while reducing the 

number of simulation runs required for the calibration. We show that, for the example 

calibration process given in Batina et al. [20], most of the promising parameter combinations 

can be obtained by evaluating less than 2% of all parameter combinations. We acknowledge 

that while the active learning algorithm performs better, stand-alone usage of a prediction 

model may still be preferable especially considering the complexity of the active learning 

algorithm. For instance, one may prefer using the stand-alone bagANN model if the 

objective is not to explore as many acceptable parameter combinations as possible.
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Our active learning algorithm and bagANN prediction model do not guarantee finding every 

acceptable parameter combination and we are able to report the percentage of acceptable 

parameter combinations found by our method only because Batina et al. [20] reported the 

number of acceptable parameter combinations in their study. In addition, because the active 

learning algorithm stops when there are no new acceptable parameter combinations found in 

k consecutive iterations, the number of acceptable parameter combinations obtained by the 

active learning algorithm can be used as an estimate on the total number of acceptable 

parameter combinations in the parameter space. Note that there are no exact procedures for 

the selection of the warm-up period and the k value and these parameters may significantly 

affect the performance of the prediction model. For instance, if we increase the length of 

warm-up period or k, we expect our bagANN model to predict scores more accurately. 

However, increased values for these parameters also lead to more simulation runs. 

Therefore, it is important to find the right balance between the prediction model’s predictive 

accuracy and the total number of simulation runs required to obtain this accuracy. We 

perform a one-way sensitivity analysis to demonstrate the impact of stopping criteria 

parameters on the performance of active learning algorithm.

While we demonstrate our method using a previously developed cancer simulation model, it 

can easily be applied to other simulation models that require the evaluation of a large 

number of parameter combinations for the calibration. In general, calibration processes of 

the simulation models require going through similar steps. After deciding on model-specific 

scoring scheme and determining the set of parameter combinations, modelers can use the 

two approaches presented in his study. The first approach is summarized in Figure 1 and 

involves constructing a prediction model using the initial simulation evaluations and 

estimating the scores of the remaining parameter combinations. While this approach is easier 

to implement, it is difficult to determine ideal training set size and threshold score δ, which 

is used to determine which parameter combinations to evaluate. The second approach is to 

use an active learning algorithm, which starts with a prediction model that is constructed 

using a very small training set and reconstructs this model by iteratively adding more 

instances to the training set as shown in Figure 4. As we start with a very small training set 

and only add those instances to the training set that lead to a better prediction model, active 

learning approach generally requires significantly less simulation evaluations and also 

includes a natural stopping criterion. Modelers may choose between these two approaches 

according to the complexity of their model and available computational resources. In 

addition, because of the similarities in the calibration processes, we expect our approaches to 

perform well for other simulation models. However, model-specific features such as the 

number of unobservable parameters and scoring scheme may affect some parameters of our 

algorithms (e.g., initial training set size and stopping criteria parameters of the active 

learning algorithm) as well as the type of the machine learning algorithm used as the 

prediction model.

Several parameters related to prediction models and the active learning algorithm are 

determined based on expert opinions and empirical analysis. We conduct numerical 

experiments to show the effects of some of these parameters such as initial training set size 

and threshold score δ on model performance. On the other hand, we rely on the most 

commonly used methods in the literature and our preliminary analysis for the selection of 
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many other parameters such as type of the activation function used in the ANN and type of 

the clustering approach employed in the active learning algorithm. In addition, we recognize 

that other prediction models, including different types of regression models and ensemble 

methods, may perform better than bagANN for a general simulation model. However, 

determining the best prediction model and comparing the performance of ensemble methods 

is beyond the scope of this study.

Our study has some limitations. First, it is important to note that training a prediction model 

using bagANN requires more CPU time compared to using other machine learning methods 

presented here. However, considering that we use 30,000 parameter combinations as our 

training and test sets and each simulation evaluation takes 480 seconds, training time for the 

bagANN is still reasonable for the UWBCS. On the other hand, training bagANN may not 

be computationally feasible for the simulation models with more unobservable parameters. 

In such situations, using a conventional ANN as a prediction model could be a viable option 

as conventional ANNs require significantly shorter training times as shown in our 

experiments. Secondly, our computational experiments are limited to UWBCS and 

depending on the simulation model and the scoring approach used, alternative machine 

learning methods such as support vector machines or Bayesian networks could demonstrate 

better performance. In any case, our active learning algorithm can easily be used in 

conjunction with other machine learning methods that are used as prediction models for the 

calibration problem.
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Appendix

Algorithm 2

Active Learning for Simulation Calibration

Input: Scored instances set L, unscored instances set U,

average number of instances in a cluster k, query batch size B,

random sample size B’, query strategy φ(·)

// learn a model using L

M = train(L)

repeat

  S = ∅

  for b = 1 to kB

    // select the lowest scored instance

     φ(x)

    

  end

  {C1, …, CB} = cluster(S)

  for b = 1 to B

    // select the lowest scored instance in cluster Cb
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     φ(x)

    // evaluate instance to obtain its score

    evaluate

    

    

  end

  // select a random sample of size B′ from L

  S′ = select(U, B′)

  // evaluate instances to obtain their scores

  for b′ = 1 to B′

    evaluate(xb′)

  end

  L = L ∪ S′

  U = U − S′

  M = train(L)

until some stopping criterion;
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Figure 1. 
Overview of the usage of a prediction model in simulation calibration.
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Figure 2. 
Envelopes to score the fit of breast cancer incidence from the simulation model as compared 

with the SEER Program and the Wisconsin Cancer Reporting System (WCRS).
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Figure 3. 
An illustrative graph showing a feed-forward ANN with an input layer with 2 inputs, a 

hidden layer with 3 hidden units, and 1 output unit.
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Figure 4. 
Flowchart of the simulation-model calibration process using active learning.
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Figure 5. 
Learning curves showing the number of acceptable parameter combinations found as a 

function of the number of training instances: active learning compared with random 

selection. 254×169mm (72 × 72 DPI)
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Figure 6. 
Learning curves for different initial training set sizes.
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Figure 7. 
Learning curves for different batch sizes used in the active learning algorithm.
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Algorithm 1

Calculate Expected Number of Runs

Input: test instances T, all instances

1 S, threshold score δ

2 T′ ← {i ∈ T: l(i) ≤ δ}

3 Δ ← max i ∈ T′{f(i)}

4 ENRuns ← Σi ∈SI{f(i) ≤ Δ}
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Table 1

Breast cancer natural history input parameters used in UWBCS model calibration

Parameter Name Best fit
in the original
combined race

UWBCS
model

Sampled parameter values for the
calibration of race-specific model

Number of
Parameters

Fraction of LMP tumors 0.42 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6 7

In situ tumor boundary 0.95 0.95 1

Max LMP size 2 2 1

LMP dwell time 0.5 1, 2, 3 3

Onset proportion 0.9 0.80, 0.85, 0.90, 0.95, 1.00 5

APC lag 3 1, 3, 5, 7 4

Percentage of aggressive tumors 0.01 0.01, 0.05, 0.10, 0.15, 0.20 5

Percentage of highly aggressive tumors 0.02 0.006, 0.010, 0.040, 0.070, 0.100 5

Mean tumor growth 0.12 0.00, 0.01, 0.02, 0.03, 0.04, 0.05 6

Variance tumor growth 0.012 0.00, 0.01, 0.02, 0.03, 0.04, 0.05 6

UWBCS, University of Wisconsin Breast Cancer Simulation; LMP, limited malignant potential; APC age-period-cohort
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