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Cooperative Clustering Digitizes Biochemical
Signaling and Enhances its Fidelity
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ABSTRACT Many membrane-bound molecules in cells form small clusters. It has been hypothesized that these clusters
convert an analog extracellular signal into a digital intracellular signal and that this conversion increases signaling fidelity. How-
ever, the mechanism by which clusters digitize a signal and the subsequent effects on fidelity remain poorly understood. Here
we demonstrate using a stochastic model of cooperative cluster formation that sufficient cooperation leads to digital signaling.
We show that despite reducing the number of output states, which decreases fidelity, digitization also reduces noise in the sys-
tem, which increases fidelity. The tradeoff between these effects leads to an optimal cluster size that agrees with experimental
measurements.
INTRODUCTION
Signaling at the cell membrane occurs in a highly organized
manner. Many membrane-bound sensory molecules are not
uniformly distributed, but instead exhibit a high degree of
spatial patterning. A key example is found on the mem-
branes of eukaryotic cells, where signaling proteins such
as receptors, kinases, and GTPases form small clusters of
~5–10 molecules (1–5). These clusters are thought to be
maintained by dimer and larger complex formation (6–9),
dynamical instabilities (10,11), and features of the mem-
brane environment such as cytoskeletal partitioning and
lipid segregation (1,12,13). Despite the prevalence of mo-
lecular clustering, the precise role of clustering in the
signaling process remains unclear.

Here we investigate the possibility that clusters improve
signal transmission by discretizing a continuous input
signal. Previous experimental and computational work on
the Ras GTPase (2,14) and the CD59 receptor (3,4) has sug-
gested that clusters operate at saturation, meaning that each
individual cluster produces a pulse of signaling output that is
independent of the input stimulus and constant over the
cluster lifetime. This observation has led to the speculation
that clusters turn an analog (smooth) signal into a digital
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(steplike) signal (15). However, explicit evidence of clus-
ter-induced digitization, e.g., in dose-response curves, is
lacking. Previous work has also demonstrated that operating
at saturation allows the total signaling output to remain a
linear function of the input (2,14). Linearity has then been
identified with high signaling fidelity, leading to the specu-
lation that clustering increases fidelity (15). However, this
definition of fidelity ignores noise in the signaling process.
Low noise is a central requirement of any high-fidelity trans-
mitter. Indeed, the importance of noise reduction has been
recognized in the context of Ras clusters (9), but its relation
to digital signaling and transmission fidelity has yet to be
elucidated.

Intuitively, a high-fidelity signaling system should map
many input states to distinct output states with as little noise
as possible (Fig. 1 A). From this perspective, the expected ef-
fects of digitization on fidelity are not immediately clear. On
the one hand, digitizing an input-output curve reduces the
number of output states because nearby inputs redundantly
give the same output (compare the upper-left and lower-left
panels in Fig. 1 A). Therefore, just as pixelating an image re-
duces its recognizability, we might expect that digitizing a
signal should reduce its fidelity. On the other hand, fidelity
benefits from noise reduction (compare the upper-left and
upper-right panels in Fig. 1 A). Therefore, if digitizing
concomitantly reduces noise in a signaling system, we might
expect that digitizing a signal should increase its fidelity. The
existence of both opposing factors makes it difficult to pre-
dict the effect of digitization on fidelity a priori.
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We investigate the relationship among clustering, digiti-
zation, and fidelity using theory and stochastic simulation.
We develop a minimal model for cluster formation based
on the Ras signaling system, for which several key parame-
ters are experimentally known. We quantify fidelity using
the mutual information (16), which captures in a natural
and principled way the aforementioned benefits of
increasing the state space and reducing the noise. The fidel-
ity is then the (log of the) number of input signals that can be
uniquely and reliably mapped to output signals. The output
signal in this case is defined as the number of maximally
sized clusters. We find that with sufficient binding coopera-
tivity, digital signaling emerges naturally. Associated with
digital signaling is a noise reduction that initially increases
the fidelity as a function of the cluster size. Ultimately, how-
ever, when the cluster size grows large, digitization reduces
the number of available output states. The tradeoff between
these two effects leads to an optimal cluster size that maxi-
mizes the signaling fidelity. Varying the only unknown
model parameter reveals that the range of optimal cluster
sizes is tightly constrained and agrees well with experimen-
tally observed ranges. This suggests, in line with our related
work on spatial partitioning (17), that protein clusters on
cell membranes are tuned to maximize the transmission of
signaling information.
MATERIALS AND METHODS

We consider a minimal stochastic model in which clusters Cj form by the

sequential addition of monomers X (see Fig. 1 B):

X þ X#
k

m
C2; X þ C2#

k

m=b
C3;

X þ C3#
k

m=b2
C4; . X þ Cn�1#

k

m=bn�2
Cn:

(1)

The first reversible reaction describes the formation and dissociation of di-

mers. Subsequent reactions describe the addition of monomers one-by-one

up to a maximum cluster size n. Binding is cooperative, meaning that mo-

lecular affinity within a cluster increases with cluster size. We assume that
A B

signal (like the upper right) into a less-noisy digital signal (like the lower left),

mation. N active Ras molecules form clusters by sequential and cooperative mon

stream. To see this figure in color, go online.
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the association rate k is diffusion-limited, and therefore cooperativity is

modeled by allowing the dissociation rate to decrease with cluster size. Spe-

cifically, dimers dissociate with rate m, and each subsequent dissociation

rate is reduced by a factor b > 1 as the cluster size increases (18). Thus,

there are two key parameters: b sets the strength of cooperativity; and n

sets the maximum cluster size, independent of b. Equation 1 and similar

models are well studied in the context of nucleation and growth processes,

but typical treatments are deterministic (e.g., the Becker-Döring equations

(19)). A more recent stochastic treatment has revealed interesting digitiza-

tion phenomena (20) that persist even when Eq. 1 is extended to include

coagulation and fragmentation (21). Cooperativity was not considered in

these studies, and importantly, the impact of signaling noise and the ensuing

effects on signaling fidelity remain unexplored.

In the context of the Ras system, the monomers X represent active Ras

molecules. Ras molecules dimerize on the cell membrane (6,7) with a

measured dissociation constant of m=k � 103 mm�2 (6). Ras is known to

form not only dimers, but also larger clusters. Here we use the dimer

data to set the basic timescale for cluster dissociation. Larger cluster forma-

tion is thought to be promoted by the presence of scaffolds (22,23) or other

proteins (8), as well as the confinement of molecules within cytoskeletal or

lipid domains (24). Stimulation of growth factor receptors increases the

abundance of active Ras molecules. Thus we take the total number N of

active Ras molecules as the input parameter in our model. Our results are

not sensitive to this choice: we later show that taking as our input parameter

the rate of monomer activation, which is more directly a function of growth

factor concentration, leads to similar results. Disruption of clustering leads

to loss of downstream signaling, suggesting that the signal only propagates

from clustered molecules (1,2). Thus, we take the number m of maximally

sized clusters Cn as the output of the model. Our results are also not sensi-

tive to this choice: we later show that taking the number of clusters larger

than a certain threshold as our output leads to similar results. In the Ras sys-

tem, the output is propagated further downstream via the Ras-Raf-Mek-Erk

signaling pathway (2). If the output does not fluctuate rapidly on the time-

scale of downstream signaling, then any digitization effects caused by the

clustering will also propagate downstream.

We simulate the reactions in Eq. 1 in stationary state using the Gillespie

algorithm (25) (and later make analytic progress using the fact that Eq. 1 is

a closed system in equilibrium). The two-dimensional diffusion-limited as-

sociation rate is given by the measured diffusion coefficient of Ras mole-

cules, k � D � 1 mm2=s (6,26,27), such that m ¼ 103 s�1. In a given

simulation we take both n and N to be fixed, although as mentioned above

we later relax both of these assumptions. Fixing n is valid if clusters are

limited in size, e.g., by available binding sites on a scaffold protein

(22,23). Fixing N is valid if (1) the total number of molecules in a reaction

area changes slowly, e.g., if molecules are confined within a domain

(17,28); and (2) if Ras deactivation is slow compared to clustering dy-

namics. We perform simulations for N in the range 1� Nmax, where
FIGURE 1 Digital signaling of Ras clusters at

the cell membrane. (A) Schematic illustration of

the expected effects of digitization and noise

on the fidelity of signal transmission. As in infor-

mation theory, we define fidelity as the number of

input signals that can be uniquely and reliably

mapped to an output. An analog (smooth) response

with low noise has the highest fidelity (upper left).

Increasing noise decreases fidelity (upper right). A

digital (steplike) response also has reduced fidelity

because nearby inputs lead to redundant outputs

(lower left). A digital response with high noise

has the lowest fidelity (lower right). Here we

explore how clustering can turn a noisy analog

and the associated benefits for signal fidelity. (B) Model of Ras cluster for-

omer addition, up to a maximal size n. The m clusters of size n signal down-
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Nmax ¼ 100 molecules (we find qualitatively similar results for different

Nmax values, with fidelity scaling as logNmax in general). Given the typical

measured Ras densities of N=A � 10� 103 molecules/mm2 (2,6), this cor-

responds to a domain area of A ¼ 0:1 mm2. We therefore set the association

propensity to ahk=A ¼ 10 s�1.
RESULTS

Cooperativity leads to digital signaling and
increased fidelity

First, we consider a single maximum cluster size n and
investigate the effects of cooperative binding. Fig. 2 A illus-
trates the input-output response of our clustering model with
n ¼ 7 and for several values of the cooperativity parameter
b. We see that as more molecules N are added to the system,
more clusters m form. The number of clusters is a random
variable, and therefore at a given molecule number there
is a distribution of cluster numbers pðm jNÞ in steady state
(irrespective of initial conditions). In Fig. 2 A we charac-
terize each distribution by its mean and standard deviation,
which illustrates not only the average response but also the
associated noise.

Fig. 2 A demonstrates that at low cooperativity the
response is analog (smooth), whereas at high cooperativity
the response is digital (steplike). Therefore cooperativity is
required for digital signaling in our model. The reason is
that the propensity to form dimers, which is a necessary
step to cluster formation in our model, is low: the forward
propensitya ¼ 10 s-1 ismuch smaller than the backward pro-
pensity m ¼ 103 s-1. This means that among monomers and
dimers alone, most molecules will be found in the monomer
state. This result is supported by observations of Ras dimer-
ization on lipid bilayers (6). Thus, without cooperativity,
even if larger clusters are allowed, the monomer state will
dominate. The effect of increasing cooperativity is to slow
down dissociation from the larger clusters, and thereby
push the system further into the maximally clustered state.

Then, when the majority of molecules are found in the
maximally clustered state, the number of clusters becomes
highly sensitive to the total number of molecules. Specif-
A B
ically, when the system contains less than n molecules, no
clusters can form, but when the system contains nmolecules
exactly, one cluster forms with high probability. This effect
continues as the number of molecules increases, such
that with N molecules, the maximum number of clusters
zhfloorðN=nÞ forms with high probability. The propensity
for the system to form as many clusters as possible creates
the digital signaling effect.

Fig. 2 A also demonstrates that in addition to digitizing
the signal, increasing cooperativity reduces the noise. This
also makes sense in light of the above intuition: maximizing
the propensity to cluster narrows the distribution of cluster
number m for a given total molecule number N. In the
extreme case, the system would form z clusters with cer-
tainty, and the distribution pðm jNÞ ¼ dmz would have zero
noise. This is the key mechanism of noise reduction induced
by digitization.

Fig. 2 B shows the fidelity as a function of cooperativity.
Fidelity is defined by the mutual information between the
input N and the output m (16). Because the fidelity is a mea-
sure of information, we denote it as I. The mutual informa-
tion between any two variables is a scalar quantity, in bits,
that measures the log of the number of input states that
are mapped to distinct output states. It is defined as (16)

I ¼
X
Nm

pðN;mÞlog pðN;mÞ
pðNÞpðmÞ: (2)

Intuitively, we see that if the two variables are independent,
pðN;mÞ ¼ pðNÞpðmÞ, there is no information, I ¼ 0. As the
variables become more dependent, I increases, up to the
lesser of the two variables’ entropies, which is the maximum
information that can be extracted. Because our model pro-
vides the conditional distribution pðm jNÞ, we use the prob-
abilistic identities pðN;mÞ ¼ pðm jNÞpðNÞ and pðmÞ ¼P

NpðN;mÞ to write Eq. 2 as

I ¼
X
Nm

pðm jNÞpðNÞlog pðm jNÞP
N0pðm jN0ÞpðN0Þ: (3)
FIGURE 2 Cooperativity leads to digital

signaling and increased fidelity. (A) The mean

input-output response is analog (smooth) for low

cooperativity (black) and digital (steplike) for

high cooperativity (red). Noise also decreases

with cooperativity. Data points and error bars

show the mean and standard deviation of

pðm jNÞ, respectively. All curves start at m ¼ 0,

but two are shifted downward for visual clarity.

(B) The fidelity increases with cooperativity.

(Dashed line) Noiseless digital limit I ¼
log½ðNmax þ 1Þ=n�. In (A) and (B), the maximum

cluster size is fixed at n ¼ 7, and other parameters

are Nmax ¼ 100, a ¼ 10 s�1, and m ¼ 103 s�1, with

simulations run for T ¼ 104 s. To see this figure in

color, go online.
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We take pðNÞ ¼ 1=ðNmax þ 1Þ to be uniform, meaning that
all possible values of N from 0 to Nmax are equiprobable. We
have checked that our conclusions are unchanged if instead
pðNÞ is peaked.

We see in Fig. 2 B that the fidelity increases with cooper-
ativity. This implies that for a given maximal cluster size,
noise reduction outweighs the state-space reduction that is
associated with digitization (Fig. 2 A). That is, as coopera-
tivity increases, even though fewer distinct output states
can be transmitted, these states are far less noisy. The
fidelity ultimately saturates with cooperativity, because in
a noiseless system with uniform input the mutual informa-
tion is given by the log of the number of output states,
I ¼ log½ðNmax þ 1Þ=n�. This value is approached in the limit
of high cooperativity b (Fig. 2 B) and mathematically is ob-
tained from Eq. 3 in the limit where pðm jNÞ ¼ dmz, and
Nmax þ 1 is divisible by n (see Appendix A).
Digital signaling results in an optimal cluster size

We next investigate how the signaling fidelity is affected by
the cluster size. Fig. 3 A shows the input-output response
for several values of the cluster size n. For small n, the effect
of cooperativity is insufficient to drive the system into the
maximally clustered state. The input-output response is
smooth and the noise is high (black curve in Fig. 3 A). The
high noise corresponds to low fidelity, as shown by the blue
curve in Fig. 3 B at small n. However, as n increases, the frac-
tion ofmonomers that are in themaximally clustered state in-
creases due to the cooperativity, and the input-output relation
becomes digital (blue curve in Fig. 3 A). The noise reduction
associated with digital signaling leads to an increase in fidel-
ity with n, as shown by the blue curve in Fig. 3 B at interme-
diate n. Finally, as n becomes large, only a few output states
A B

FIGURE 3 Digital signaling results in an optimal cluster size. (A) The mean

digital (steplike) for high cluster size (red). While increasing the cluster size n

leads to an optimal cluster size (see B). Data points and error bars show the

m ¼ 0, but two are shifted downward for visual clarity. (B) Fidelity exhibits a m

reduction. Simulation results (blue circles) are corroborated by the analytic app

(cyan squares, Eqs. 8 and 9) and large n (green triangles, Eq. 4; black line). (C) I

by digitization and noise (compare to Fig. 1 A). Noise is reduced ðh/0Þ, and then
occurs at intermediate n when noise is low, but digitization is not too high. In all p

simulations run for T ¼ 105 s. To see this figure in color, go online.
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are possible, because only a few clusters can be populated
(red curve in Fig. 3 A). The state-space reduction leads to
a decrease in fidelity with n, as shown by the blue curve
in Fig. 3 B at large n. The tradeoff between noise reduc-
tion and state-space reduction leads to the optimum n� in
Fig. 3 B at which the fidelity is maximal.

To elucidate these effects quantitatively, we derive ana-
lytic approximations to the cluster distribution pðm jNÞ and
the fidelity I. First, in the limit of large n[ 1, we recognize
that the system is almost entirely driven to the maximally
clustered state, pðm jNÞzdmz. Then, as above, the fidelity re-
duces to Izlog½ðNmax þ 1Þ=n�when Nmax þ 1 is divisible by
n (Fig. 3B, black curve).A careful accounting of the available
output states whenNmax þ 1 is not divisible by n (see Appen-
dix A) leads to the refined expression

I ¼ 1

Nmax þ 1

�
ðNmax � rÞlogNmax þ 1

n

þ ðrþ 1ÞlogNmax þ 1

rþ 1

�
; (4)

where r is the remainder when Nmax is divided by n. Equa-
tion 4 is shown in Fig. 3 B (green triangles) and accounts for
the minor bumps in the fidelity at large n that occur due to
this effect of indivisibility.

To understand the limit of small n, we seek a more general
expression for the cluster distribution pðm jNÞ. In fact, the
joint distribution over the numbers of all molecule types is
obtained exactly by recognizing that Eq. 1 is a closed system
in equilibrium. The joint probability is then given by the
grand canonical distribution (29),

pðc2; c3;.; cn�1;mjNÞ ¼ N lc22 l
c3
3 .lcn�1

n�1l
m
n

x!c2!c3!.cn�1!m!
; (5)
C

input-output response is analog (smooth) for low cluster size (black) and

increasingly digitizes the signal, it also decreases the noise. This interplay

mean and standard deviation of pðm jNÞ, respectively. All curves start at

aximum at n� due to the tradeoff between noise reduction and state-space

roximation (red line, Eq. 6), as well as expressions in the limits of small n

ncreasing the cluster size moves the system through the phase space defined

the state space is reduced, increasing digitization ðd/1Þ. Maximal fidelity

anels, parameters are b¼ 3, Nmax ¼ 100, a¼ 10 s�1, and m¼ 103 s�1, with
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where cnhm, the constant N is set by normalization, the

free monomer number x ¼ N �Pn
j¼2jcj is set by molecule

conservation, and lj ¼ aj�1=½mj�1=bðj�1Þðj�2Þ=2� is set by

detailed balance: it is the ratio of the product of all forward
rates to the product of all backward rates governing the
formation of species Cj. To obtain pðm jNÞ we would sum

over all other molecule numbers, but this is difficult analyt-
ically. Therefore we make the approximation that at suffi-
ciently high cooperativity all molecules are either in the
monomer state or in the maximally clustered state,
i.e., c2 ¼ c3 ¼ . ¼ cn�1z0. We have checked using simu-
lations that this approximation is indeed valid for most
values of n and N, the reason being that there are two ‘‘sinks’’
in the model, as seen in Eq. 1: because a � m, the monomer

state is one sink (first reaction); and when a[m=bn�2, the
maximally clustered state is the other sink (last reaction).
Under this approximation, Eq. 5 becomes

pðm jNÞz ~N lmn
ðN � nmÞ!m!; (6)

where ~N is a new normalization constant. Intuitively, Eq. 6

is the stationary distribution corresponding to the effective
scheme where cluster formation happens in one instanta-
neous step,

nX#
ln

1
Cn: (7)

Fig. 3 B (red curve) shows the fidelity computed using Eq. 6.

We see that the approximation captures the key features
seen in the simulation result, including the increase in I
with n at small n, the decrease at large n, and the location
of the optimum n�. We therefore turn to Eq. 6 to understand
the benefit of noise reduction.

To approximate the noise in Eq. 6, we rewrite the
factorials using Stirling’s approximation and expand
f ðmÞh� logpðm jNÞ to second order around its minimum
m to obtain the Gaussian noise s2h1=f 00ðmÞ. The result is
that the mean m satisfies the equation

m ¼ lnðN � nmÞn; (8)

and s2 is given by
s2 ¼ mðN � nmÞ
N þ nðn� 1Þm: (9)

Equation 8 is expected because it is the steady state of the

macroscopic rate equation corresponding to Eq. 7. Equa-
tions 8 and 9 are validated in Fig. 3 B by confirming that
at small n the fidelity computed numerically from the
Gaussian approximation (cyan squares) agrees with that
calculated analytically from Eq. 6 (red curve).

Because Eq. 8 is a polynomial equation of arbitrary de-
gree, it is difficult to find a general expression for m. How-
ever, when n is small, most molecules are still present as
monomers. As n increases, more and more molecules end
up in the clusters of maximum size. Therefore, in the case
of small n, the average number of clusters m is far from
its maximum value � N=n, and we can make the approxi-
mation ehnm=N � 1. Expanding Eqs. 8 and 9 to first-or-
der in e gives m ¼ lnN

nð1� neÞ and s2 ¼ lnN
nð1� 2neÞ,

and therefore, a signal/noise (SNR) of

SNR ¼ m2

s2
¼ lnN

n þO�
e2
�
: (10)

Recalling that ln ¼ ½abðn�2Þ=2=m�n�1, we obtain SNR ¼
½abðn�2Þ=2=m�n�1Nn. This expression is an increasing function
of nwhen n> n0hlogðmb3=2=aNÞ=logb, which is easily veri-
fied by differentiating the log. For example, setting
N ¼ 1�100 and b ¼ 3 produces the range of small values
n0 ¼ 1:5�5.7. Thus, we see that after a brief decrease, the
SNR increases with n. This behavior is consistent with the
dependence of the fidelity on n seen in Fig. 3 B for n< n�.
Indeed, this behavior is precisely the effect of noise reduc-
tion: except at the smallest n values, increasing n allows for
higher cooperativity, thereby reducing the noise and causing
the SNR (and in turn the fidelity) to increasewith cluster size.

Finally, we demonstrate in Fig. 3 C how varying the clus-
ter size moves the system through the phase space suggested
by Fig. 1 A. We compute the average noise in the response
h ¼ hs2i and quantify the degree of digitization as
d ¼ 4hjm� mmaxN=Nmax j i=mmax. In these expressions, av-
erages and maxima are taken over N, and m and s2 are the
N-dependent mean and variance values of pðm jNÞ from
simulations. The digitization d is the average deviation
from the straight line in the ðN;mÞ plane from ð0; 0Þ to
ðmmax;NmaxÞ, with the normalization 4=mmax ensuring that
d ranges from 0 to 1. The value d ¼ 0 corresponds to a
mean response m ¼ mmaxN=Nmax that is completely analog,
i.e., linear with N, while the value d ¼ 1 corresponds to a
mean response m ¼ mmaxqðN >Nmax=2Þ that is a maximally
digital two-state switch.

Fig. 3C demonstrates that as the cluster size increases, the
noise is reduced ðh/0Þ, and then the state space is reduced
ðd/1Þ. Optimal fidelity is achieved for an intermediate clus-
ter size ðn� ¼ 10Þ, when the noise is low, but the digitization
is not so severe that too few states are available. Such a fine
degree of digitization, wherein each cluster signals digitally
but there aremany clusters (see the blue curve in Fig. 3A), has
been described as a digital-analog system, such that clusters
act collectively as an analog-to-digital-to-analog converter
of an external analog signal (2,15,30). Our results demon-
strate explicitly and quantitatively that this analog-to-digi-
tal-to-analog regime is optimal for signaling fidelity.
Optimum is robust to model assumptions

We now relax both model assumptions, namely that n and N
are fixed. Allowing n to vary means that signaling is no
Biophysical Journal 110, 1661–1669, April 12, 2016 1665
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longer restricted to only the clusters of maximal size Cn.
Instead, we allow clusters of many sizes Cj to signal. Specif-
ically, we define a threshold jmin such that all clusters with
jRjmin can signal, and we then vary jmin. We continue to
use m to denote the number of clusters that signal down-
stream, and we compute the fidelity I½N;m� as before.
Fig. 4 A shows that the presence of an optimum n� is robust
to the choice of jmin. In fact, the optimum persists even when
jmin is as low as 0:3n, for which clusters of almost any size
can signal downstream.

Allowing N to vary corresponds to accounting for the up-
stream process by which Ras molecules are activated and
deactivated. For simplicity, we incorporate upstream activa-
tion using the approximate model in Eq. 7. We allow Ras
molecules to be activated from a large pool of inactive mol-
ecules at a constant rate, in bursts of size b, and deactivated
at a constant rate g. Deactivation can occur within a cluster,
at which point the cluster dissociates into the remaining
n� 1 active monomers. Together with Eq. 7, we have

[!Ng=b bX; X/
g

[; Cn�!ng ðn� 1ÞX: (11)

The first two reactions describe the gain and loss of active
Ras molecules X, respectively. The third reaction describes
the dissociation of a cluster when any one of the n mono-
mers deactivates with rate g. Without this reaction, the
free monomers X would be at a constant chemical potential.
Then the number of free monomers would be constant on
average, but not the total number of monomers. In this
case, clustering would not be induced via the mechanism
that we study here, because our mechanism critically relies
on the idea that the total number of monomers is fixed or
constant on average. More generally, we expect that not
only are the free monomers deactivated, but also monomers
that are in the cluster. The third reaction in Eq. 11 captures
this idea, in such a way that the mean total number of mono-
mers is constant, and independent of their activation-
deactivation dynamics. Indeed, the mean total number of
monomers x þ nm is independent of g and b, and given
A B

(6–8 (1) and 4–10 molecules (36)) and CD59 clusters (3–9 molecules (3,4)). P

(sufficient to identify the optima); and in both, Nmax ¼ 100, a ¼ 10 s�1, and m
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by N. Therefore, N is now the mean of a fluctuating number
of molecules, instead of the fixed total number of molecules.
As before, we compute the fidelity I½N;m�.

Fig. 4A shows that the optimum persists in this model with
upstream activation dynamics. The overall value of the fidel-
ity is reduced in this model, which makes sense because the
upstream activation process introduces additional input fluc-
tuations into the system.We also see that fidelity decreases as
g increases, because larger g promotes cluster breakup via
the third reaction in Eq. 11. Fewer clusters mean a narrower
output range, and thus a decreased fidelity. While increasing
g decreases fidelity because of cluster breakup, we also find
that larger gmakes clustering more beneficial than signaling
via the monomers themselves, as detailed further in the Dis-
cussion. Altogether, Fig. 4 A demonstrates that the presence
of an optimal cluster size n�, as well as its value, is robust to
the model assumptions.
Optimal cluster size agrees with experiments

What sets the value of the optimal cluster size n�? The only
unknown parameter in the model of Eq. 1 is the cooperativity
b, and indeed n� varieswith b. However, evenwhen b is varied
over two orders of magnitude, the majority of high-fidelity n�

values remain within the range 5%n�(10 (Fig. 4 B). The
lower bound occurs because even for very large b, a mini-
mum number of binding events is required for cooperativity
to take effect and drive the system to the clustered state. The
upper bound occurs because although very small b leads to
larger values of n�, these solutions then suffer from low fidel-
ity due to the unavoidable state-space reduction at large n

(Fig. 3 B). Together these effects keep n� tightly constrained
within the range 5%n�(10. Interestingly, this range agrees
remarkably well with cluster sizes observed in experiments,
both for Ras and for the CD59 protein (Fig. 4 B).

It is worth emphasizing that Fig. 4 B contains no free
parameters. All parameters that are not optimized or
varied are taken from measurements of Ras density, diffu-
sion, and dissociation. Therefore, the agreement of the
FIGURE 4 Optimal cluster size is robust to

model assumptions and agrees with experiments.

(A) Optimum persists both when we vary the min-

imal cluster size jmin that can propagate the signal

downstream (open symbols) and we allow the total

number of active Ras molecules to fluctuate, with

deactivation rate g, adding input noise to the sys-

tem (solid symbols). (Black dashed line) Fidelity

when only monomers are present (see Discussion).

(B) Distribution of optimal cluster size n� for 100

cooperativity values sampled from b ¼ 1.25–100

(uniformly in log space). The most frequent n�

values also have the highest mean fidelity (colors)

and are contained within the range 5%n�(10, in

good agreement with the observed ranges for Ras

arameters: (A) b ¼ 3 (solid symbols), b ¼ 3, and T ¼ 104 s; (B) T ¼ 10 s

¼ 103 s�1. To see this figure in color, go online.
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model predictions with the experimental cluster size data in
Fig. 4 B presents strong evidence that clustered sensory mol-
ecules are tuned to maximize fidelity via digital signaling.
DISCUSSION

We have seen that cooperative molecular clustering leads
to digital signaling and increased signaling fidelity. The in-
crease in fidelity is surprising, because digitization reduces
the number of available output states, which makes many
input values redundant. Alone, this effect would reduce fidel-
ity. However, this effect is compensated by a noise reduction
that accompanies digital signaling. Noise reduction increases
fidelity. The tradeoff between state-space reduction and noise
reduction results in an optimal cluster size that maximizes
signaling fidelity. The range of optimal cluster sizes pre-
dicted by themodel with no free parameters agrees strikingly
well with data on the Ras and CD59 systems.

In our model, the number of clusters m increases roughly
linearly with the total number of molecules N, both for
analog and digital signals (Figs. 2 A and 3 A). It has been
argued that an equilibrium model, such as Eq. 7, would
not yield a linear relationship because mass-action kinetics
imply a sharp polynomial increase of m with the free mono-
mer number x (2,9). Indeed, this polynomial dependence ap-
pears directly in Eq. 8. However, because the total molecule
number is fixed, i.e., x þ nm ¼ N, even though m increases
sharply with x, it does not necessarily increase sharply with
N. Instead, we find that m increases roughly linearly with N.
Therefore, our results imply that if the total molecule num-
ber is fixed or varies sufficiently slowly, an equilibrium
model can produce a linear input-output relationship, which
has been argued to be necessary to explain clustering data in
the Ras system (1,2).

Our model predicts that due to cooperativity, the typical
cluster lifetime is longer than the typical dimer lifetime.
We estimated the dimer lifetime from Ras dissociation
and density data (6) to be m�1 � 1 ms. On the other hand,
the cluster lifetime is set by the rate-limiting step for cluster
dissociation, t � ðm=bn�2Þ�1 (Eq. 1). This time is longer
than 1 ms; for example, with typical values n ¼ n� � 7

and b � 3, we would predict t � 0:3 s. Indeed, cluster life-
times inferred from transient immobility data are also on the
order of tenths of seconds, not milliseconds: for Ras,
tz0:1�1 s (8,30) and for CD59, tz0:57 s (3,4). This
agreement with experiments supports the model presented
here, and it raises the interesting question of what are the
benefits and limitations of longer-lived clusters.

We have found that an optimal cluster size in the range of
~5–10 molecules allows for higher fidelity than any other
cluster size. Does it allow for higher fidelity than a strategy
of not clustering at all, and instead signaling using mono-
mers only? To investigate the scenario in which signaling
proceeds via monomers (instead of larger clusters), we
consider a system consisting of only the reactions in
Eq. 11, thus, without those describing cluster formation.
The output m in this scenario is simply the active monomer
number, and the fidelity is computed from the stationary dis-
tribution pðm jNÞ. In Fig. 4 A, for example, the fidelity is
I z 1.73 bits (black dashed line). This is higher than the
fidelity with clustering (solid symbols), meaning that clus-
tering is not the optimal strategy. In general, we find that
clustering is only the optimal strategy at large b, g, and ln
in Eqs. 7 and 11. Large b is expected because then monomer
activation is bursty and thus noisy. Large g is also expected
because then the monomer activation dynamics are faster
than the cluster formation dynamics, and clustering inte-
grates over the upstream noise. The benefit of integration
persists despite the fact that large g promotes cluster
breakup as described in the previous section. Finally, large
ln keeps the mean cluster number high, which is necessary
for a large output range and thus, high fidelity. Outside of
this regime, clustering may have additional advantages
over using only monomers, such as introducing a delay
from a millisecond to tenths of a second as described above,
which could prevent premature propagation of a spurious
input signal. Given that clustering occurs, our study shows
that an optimal cluster size exists, is robust to modeling
assumptions, is tightly constrained, and agrees with experi-
mental estimates.

Our results relate to recent findings on the accuracy of
sensing a single, constant input concentration using cooper-
ative cluster formation. In equilibrium systems, such as the
system studied here (Eq. 1), it has been shown that cooper-
ativity increases sensing accuracy (31). Indeed, we find here
that accuracy is maximized in the limit of maximal cooper-
ativity (Fig. 2 B). It was also found that in equilibrium sys-
tems, accuracy is maximized in the limit of maximal cluster
size (31), which would correspond to n ¼ Nmax. However,
we do not find n ¼ Nmax here. Instead we find a finite
optimal n�. The reason is that we do not maximize the accu-
racy of sensing a single input, but rather a range of inputs.
While a large cluster size allows a system to measure one
input very reliably, it also reduces the number of inputs
that can be measured. This tradeoff leads to the optimal
cluster size n�. Finally, in contrast to purely equilibrium sys-
tems, it has been shown that in the context of an Ising-like
model of receptor activation in the bacterial chemotaxis sys-
tem for nonequilibrium systems that time-integrate the re-
ceptor dynamics (32,33), cooperativity does not improve
sensing accuracy. The reason is that cooperativity not only
increases the gain, but also slows down the receptor dy-
namics. The slowing down then actually decreases the
time-averaged accuracy (32,33), unlike in equilibrium sys-
tems that do not time-integrate the receptor dynamics, but
instead rely on an instantaneous readout of the receptor
(31). As mentioned above, we also find here that clustering
slows down the dynamics, and for the same reason this may
hamper time-integrated sensing accuracy downstream. We
leave the question of how the downstream system integrates
Biophysical Journal 110, 1661–1669, April 12, 2016 1667
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the Ras clustering dynamics as an interesting topic for future
work.

The mechanism we investigate likely integrates with
other features of the Ras system that contribute to high-
fidelity signaling. For example, it is been shown that
enzyme-mediated positive feedback leads to digital, two-
state activation of Ras (34), which could very well enhance
the subsequent cluster-induced digitization elucidated
here. Moreover, confinement alone, even without coopera-
tive binding, has been shown to increase the fidelity of
Ras signaling (17), and clustering could therefore further
enhance this effect. Clustering also enhances downstream
signal propagation in the Ras-mediated mitogen-activated
protein kinase cascade (35). It will be interesting to explore
how these features are integrated in the Ras system.

The mechanism that we uncover here is very generic. The
essential elements are that (1) as the total number of active
monomers rises, the total number of signaling clusters in-
creases in a stepwise fashion; and (2) the noise decreases
with the cluster size. It is this tradeoff between noise reduc-
tion and state-space reduction that leads to an optimal clus-
ter size. Strong cooperative clustering as described in this
article is one mechanism of noise reduction. But any clus-
tering mechanism in which the noise decreases with cluster
size would suffice. It is conceivable that clustering via lipid
rafts or perhaps even large scaffolds would also lead to the
same effects. It will be interesting to explore the extent to
which cluster-driven digitization occurs across other do-
mains of biology.
APPENDIX A

Here we derive the fidelity in the noiseless limit of pðm jNÞ ¼ dmz. Inserting

pðm jNÞ ¼ dmz into Eq. 3, one obtains

I ¼
X
Nm

dmzpðNÞlog dmzP
N0dmz0pðN0Þ; (12)

where we recall that z ¼ floorðN=nÞ and correspondingly z0 ¼ floorðN0=nÞ.
Recalling that pðNÞ ¼ 1=ðNmax þ 1Þ, we have
I ¼ 1

Nmax þ 1

X
Nm

dmzlog
dmzðNmax þ 1ÞP

N0dmz0
: (13)

The Kronecker delta dmz collapses the m sum,
I ¼ 1

Nmax þ 1

X
N

log
Nmax þ 1P

N0dzz0
; (14)

where we have recognized that dzz ¼ 1. The term dzz0 is 1 when

floorðN=nÞ ¼ floorðN0=nÞ and 0 otherwise.

When Nmax þ 1 is divisible by n, so that the last step of the step function

zðNÞ is complete, then for any N there are n values of N0 that satisfy

floorðN=nÞ ¼ floorðN0=nÞ. Therefore,

I ¼ 1

Nmax þ 1

X
N

log
Nmax þ 1

n
: (15)
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The summand does not depend on N and can be pulled out of the sum.

Because the limits of the sum are N ¼ 0 to N ¼ Nmax, it evaluates to

Nmax þ 1, which cancels the prefactor, leaving

I ¼ log
Nmax þ 1

n
; (16)

as in the main text. Intuitively, the fidelity is the log of the number of output

states ðNmax þ 1Þ=n.

When Nmax þ 1 is not divisible by n, the last step of the step function

zðNÞ is not complete. For all but the last step, n values of N give rise to

the same z value, but for the last step, only rþ 1 values give rise to the

same z value, where r is the remainder whenNmax is divided by n. Therefore

we partition the N sum in Eq. 14 over these two domains, all but the last step

ðN˛f0;.;Nmax � r� 1gÞ and the last step ðN˛fNmax � r;.;NmaxgÞ,

I ¼ 1

Nmax þ 1

" XNmax�r�1

N¼ 0

log
Nmax þ 1P

N0dzz0

þ
XNmax

N¼Nmax�r

log
Nmax þ 1P

N0dzz0

#
: (17)

In the first term, for any N there are n values of N0 that satisfy

floorðN=nÞ ¼ floorðN0=nÞ. In the second term, for any N there are rþ 1
values of N0 that satisfy floorðN=nÞ ¼ floorðN0=nÞ. Therefore, Eq. 17 re-

duces to

I ¼ 1

Nmax þ 1

" XNmax�r�1

N¼ 0

log
Nmax þ 1

n

þ
XNmax

N¼Nmax�r

log
Nmax þ 1

rþ 1

#
: (18)

As before, the summands can be factored out of the sums, leaving�

I ¼ 1

Nmax þ 1
ðNmax � rÞlogNmax þ 1

n

þ ðrþ 1ÞlogNmax þ 1

rþ 1

�
; (19)

as in Eq. 4 of the main text.
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