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ABSTRACT Regulated deformations of epithelial sheets are frequently foreshadowed by patterning of their mechanical prop-
erties. The connection between patterns of cell properties and the emerging tissue deformations is studied in multiple experi-
mental systems, but the general principles remain poorly understood. For instance, it is in general unclear what determines
the direction in which the patterned sheet is going to bend and whether the resulting shape transformation will be discontinuous
or smooth. Here these questions are explored computationally, using vertex models of epithelial shells assembled from prismlike
cells. In response to rings and patches of apical cell contractility, model epithelia smoothly deform into invaginated or evaginated
shapes similar to those observed in embryos and tissue organoids. Most of the observed effects can be captured by a simpler
model with polygonal cells, modified to include the effects of the apicobasal polarity and natural curvature of epithelia. Our
models can be readily extended to include the effects of multiple constraints and used to describe a wide range of morphogenetic
processes.
INTRODUCTION
Regulated deformations of epithelial sheets play important
roles during tissue morphogenesis and can be driven by a
variety of mechanisms, the simplest of which rely on
spatial patterns of apical cell contractility (1–3). These pre-
patterns are commonly established by upstream signaling
processes, which upregulate the activity of the actomyosin
networks on the apical surfaces or apical edges in a subset
of cells within the epithelium (4,5). Intracellular nonunifor-
mities in contractility trigger shape changes of individual
cells, leading to three-dimensional (3D) deformations,
such as localized tissue invaginations. This sequence of
processes, from patterning of apical contractility, to
spatially restricted cell shape changes, to 3D tissue defor-
mations has been documented in a wide range of experi-
mental systems (6–10).

A canonical example is provided by the early stages of
mesoderm invagination in Drosophila, where apical
constriction of cells on the ventral side of the embryo trans-
forms a convex epithelial shell into a more complex shape
with an U-like cross section (11). In this system the apical
surfaces of epithelial cells are facing toward the rigid
membrane surrounding the embryo. In another well-
studied experimental model—the developing Drosophila
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egg chamber—the epithelium has opposite polarity, with
the apical surfaces oriented toward the oocyte, which is en-
closed by the epithelial sheet (8,12). In this case, a two-
dimensional (2D) patch of the follicle cells evaginates,
bending in the direction of the membrane surrounding the
egg chamber. This deformation is thought to be guided, at
least in part, by the embedded contour of apically constrict-
ing epithelial cells.

The general principles governing 3D deformations
induced by patterns of apical contractility remain poorly un-
derstood. It is in general unclear what determines the direc-
tion in which the patterned sheet is going to bend and
whether the resulting deformation will be discontinuous or
smooth. Several mathematical and computational models
have been proposed to explore these questions, but none of
them is sufficiently versatile for analyzing the interplay of
multiple physical and geometrical factors (6,7,10,13–18).
For instance, multiple models have been used to describe
the invaginations in the early embryos (6,7,10,18). However,
most of these models consider only a 2D cross section of the
epithelial shell, which limits the class of shape transforma-
tions that can be analyzed.

Here we provide what appears to be a minimal, yet phys-
ically realistic computational framework that enables sys-
tematic exploration of epithelial deformations induced by
spatial patterns of active and passive cell properties. Our
approach is based on the recently proposed energy formula-
tion in which every cell is modeled as a prism with apical,
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Shape Changes in Epithelial Shells
basal, and lateral surfaces that can have different properties
(19). We use this model to construct epithelial shells enclos-
ing a fluid-filled volume and surrounded by a hard mem-
brane, mimicking a scenario encountered in developing
tissues and tissue organoids. We then use numerical contin-
uation algorithms to explore how these model epithelial
shells deform in response to the prepatterns of apical
contractility. We find that, for most cases, the deformations
are smooth, i.e., they happen without bifurcations, when
viewed as a function of the amplitude that characterizes
the spatial pattern of apical contractility. We also demon-
strate that a simpler 2D model (in which epithelial shells
are constructed from polygonal cells) can describe the ef-
fects predicted by the 3D model and can be used to explore
a wide range of morphogenetic processes.
FIGURE 1 Schematic representation of our vertex models. (A and B)

Schematic representation of the 3Dmodel. (A) Amodel 3D cell with distinct

apical, basal, and lateral surfaces. (B) Schematic highlighting different ten-

sion terms in the 3Dvertexmodel. (C) Schematic explanation of themodified

2D vertexmodel. Themodified 2Dmodel idealizes the epithelial sheet as the

midsurface (shown in black) of an epithelial monolayer with finite thickness

2h and assumes that a contractile segment (shown in gray) joins the centers of

the apical faces. (D) The figure shows two adjacent 2D cells S1 and S2 with

shared edge j, cell centers (CS1, CS2), and unit outward normals (NS1, NS2),

pointing toward the outer shell. The value uj0 is the unit vector joining the

cell centers and h is the offset parameter. See text for more details. The red

line highlights a contractile segment that is offset by a distance from the sur-

face along the cell normals. To see this figure in color, go online.
MATERIALS AND METHODS

3D vertex model

Vertex models constructed from 3D cells have been proposed to study

epithelial morphogenesis in multiple experimental systems (19–23). Based

on these previous studies, we used the following energy functional to model

an epithelial monolayer constructed from cells with distinct apical and basal

surfaces (Fig. 1, A and B):

E3D ¼ s
X

e

le þ a
X

l

Sl þ g
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Vc � V0

c
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:

(1)

In this expression, the first term sums over all apical edges e, the second

term sums over lateral surfaces l, the third term sums over basal surfaces b,

and the last term sums over cells c. The first term corresponds to the line

tension along the apical edges of neighboring cells; le is the edge length

and s is the apical line tension coefficient. The second and third terms

correspond to the contributions from lateral and basal tensions, which are

proportional to the lateral and basal surface areas (Sl, Sb) with coefficients

a and g, respectively. These coefficients model the resistance to deforma-

tion due to the cytoskeletal meshwork that underlies the surface. The last

term penalizes the deviation of the cell volume, Vc, from its target value,

V0
c , with compression modulus B to approximate cytoplasmic incompressi-

bility. For more details, see Section S1 in the Supporting Material.

In our 3D model, we define prepatterned apical edges to represent a con-

tractile ring R embedded in the apical surface (shown in red in Fig. 2 A1 and

Fig. 3 A1) or an apically constricting patch of cells P (shown in red in Fig. 2

B1 and Fig. 3 B1). The first pattern is motivated by the embedded compres-

sive cable observed in follicle cells duringDrosophila appendage formation

and early sea urchin embryo, which displays localization of the motor

protein myosin (8,24). The second pattern is motivated by biological set-

tings in which a group of cells is influenced by uniform actomyosin

constriction across the apical surface (2,25,26). Apical edges belonging

to the contour or the patch are assigned an apical line tension (s þ G),

which is larger than the apical line tension s of the other nonpatterned

edges. This is implemented through an additional energy term for the pre-

patterned edges

EG ¼ G
X

i ˛ R or P

li; (2)

where the index i runs over all edges belonging to the apical ring R or apical

patch P.
2D vertex model

Most of the previously published 2D vertex models were used to describe

the dynamics of epithelia constrained to two spatial dimensions (27–29).

More recently, we have used these models to explore 3D deformations

induced by prepatterning of cell properties (8,9,30)Fig. 4). We extended

these models so that they can account for the natural curvature of the sheet,

and, importantly, for the intrinsic apicobasal polarity of epithelial cells. The

energy in this model is defined in the following way:
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(3)

The first term sums over all cells c, the second term sums over all edges j,

and the last term sums over all interior edges j0, i.e., edges shared by two

adjacent cells s1ðj0Þ and s2ðj0Þ. The first term corresponds to sheet elasticity,

where Ac is the area of cell c, A0
c is its target area, and m is the stretching

modulus. The second term captures intercellular interactions in the form

of tensile forces along cell-cell edges, where lj is the length of the edge j

and s is the line tension coefficient. The last term represents the bending

energy term, where b is the bending elasticity coefficient and kj0 represents
the local natural curvature of the shell (kj0 is roughly the rest value of the

dihedral angle between the faces adjacent to edge j0, and it scales like the
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FIGURE 2 3D deformations induced by prepatterns of line tension in a

model with 3D cells for the apical-in case; see text for details. (A1 and B1)

Initial configurations, showing the inner surface (i.e., apical side and omitting

the outer basal surface) of the shell, with different heterogeneities: (A1) Con-

tractile ring. (B1) Patch of apically constricting cells. (A2 and B2) Represen-

tative evaginated states, showing the inner surface, where the enclosed patch

bends outward (positive deflection, d> 0, as defined in Fig. S3). (A3 and B3)

Cross-section representation of equilibrium shapes (A2 and B2), respectively.

(A4andB4)Steady-state diagrams showingdeflectiondwith increasingparam-

eterG. (Solid line) Stable steady states. Cross sections of representative steady

states (A1, B1, A2, and B2) are shown as insets. Parameter values are listed in

Table S2 in the Supporting Material. To see this figure in color, go online.
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natural curvature of the midsurface times the typical cell size; see Section

S2.1 for details). Here Ns denotes the outward unit normal to a cell s (i.e.,

the normal vector of each cell points toward the outside of the closed shell).

The value uj0 is the unit vector joining the cell centers (Fig. 1, C and D),

uj0 ¼ Cs2ðj0Þ � Cs1ðj0Þ��Cs2ðj0Þ � Cs1ðj0Þ
�� ; (4)

where Cs2ðj0 Þ and Cs1ðj0 Þ are cell centers, defined as the mean position of the

nodes belonging to the cells s1 and s2, respectively (Fig. 1, C and D). The
bending energy term defines an at-rest value of the angle between the nor-

mals of adjacent cells, which depends on kj0 (and is proportional to kj0 for

small kj0 ) and hence implements the notion of natural curvature. For more

details, see Section S2.

In our 2Dmodel, we idealize the epithelial sheet as themidsurface of a 3D

epithelialmonolayer (Fig. 1C).We proceed to showhowwemimic the effect

of the prepatterns in our 2Dmodel that are present on the apical surface of an

epithelium (Fig. 1 D). From now on, we will refer to this representation of

prepatterns as being offset from the midsurface. Such prepatterns include a

contractile ringR (Fig. 5A1) and a constricting patchP (Fig. 5B1): a contrac-

tile ring R is defined by a closed path joining the centers of a ring of adjacent

cells (Fig. 5 A1), while a constricting patch P represents a subset of the mesh

and is implemented by adding a line tension along all segments joining the

adjacent cell centers that are contained within this subset (Fig. 5 B1). Seg-

ments belonging to either type of prepattern are assigned a line tension G

and an offset parameter h, and an additional energy term is considered:

EG ¼ G
X

i ˛R or P

���Cs2ðiÞ � Cs1ðiÞ
�� � h

�
Ns2ðiÞ � Ns1ðiÞ

�
, ui

�
;

(5)

where the index i runs over all edges belonging to the apical ring R or apical

patch P, and h is one-half the thickness of the real tissue.
The key feature of Eq. 5 is that it represents the line tension of segments that

are offset by a distance h from themidsurface (see Section S2 for details), but

does so by using solely the degrees of freedom of the 2D model, namely the

positions of the nodes lying onto themidsurface. The line tension parameterG

acts in twoways: it brings the cell centers closer together and, when hs 0, it

bends the surface so that the end points of the normal vectors come close

together (h> 0) or further apart (h< 0). Note that the line tension prepattern-

ing parameter G in the model with 3D cells has qualitatively similar effects.

In the special case kj0 and h ¼ 0, this model reduces to the 2D vertex

model that has been used in the literature to understand epithelial deforma-

tions for flat epithelial sheets in different contexts (8,9,28,30). Hereafter, we

will refer to that particular case as the naturally planar 2D vertex model

(because kj0 ¼ 0, the bending energy term corresponds to a naturally flat

sheet). Note the new terms that we introduce in this work, namely the one

proportional to kj0 in Eq. 3 and the one proportional to h in Eq. 5; both depend

on the nodal positions through the same expression ðNs2ðiÞ � Ns1ðiÞÞ � ui. As

a result, both terms have a similar numerical implementation.
Modeling the effects of constraints

To study the effects of epithelial shell curvature, i.e., a fluid-filled inner cav-

ity and an outer stiff membrane during epithelial bending, we consider an

initial homogeneous spherical configuration and include additional terms

in the energy functions:

E ¼ BY

�
VY � V0

Y

�2 þ e
X

k

1

ðRC � RkÞn þ E2D=3D þ EG:

(6)

Here, the first term penalizes deviations from the initial volume of the in-

ner cavity. VY is the volume enclosed by the closed surface, V0
Y is the initial



FIGURE 3 3D deformations induced by prepat-

terns of line tension in a model with 3D cells for

the apical-out case; see text for details. (A1–C1)

Initial configurations, showing the outer surface

(i.e., apical side) of the shell, with different hetero-

geneities: (A1) Contractile ring. (B1) Patch of

apically constricting cells. (C1) A ring of apically

constricting cells, two cells wide. (A2–C2) Repre-

sentative invaginated states, showing the outer sur-

face, where the enclosed patch bends inward

(negative deflection, d < 0 as defined in Fig. S3).

(A3–C3) Cross-section representation of equilib-

rium shapes (A2–C2), respectively. (A4–C4)

Steady-state diagrams showing deflection d with

increasing parameter G. (Solid lines) Stable states;

(dashed lines) unstable steady states. Cross sec-

tions of representative steady states (A1–C1 and

A2–C2) are shown as insets. Parameter values are

listed in Table S2. To see this figure in color, go

online.

Shape Changes in Epithelial Shells
volume, and BY is a compression modulus. The second term corresponds to

the outer membrane stiffness (16,18) that runs over all vertices on the outer

surface of the shell and restricts the radial motion of vertices within a sphere

of radius RC. This sphere is concentric with the homogeneous spherical

configuration from which the system is initialized. The center of the initial

spherical configuration acts as a reference center to calculate the radial dis-

tance of the vertices. The term Rk denotes the radial distance of the vertex k,

and hence Rk � RC represents the membrane thickness near that vertex. The

value ε is a membrane stiffness parameter, and n is the exponent of the

repulsive potential term that models the effects of the outer stiff membrane.
Numerical methods

To find an equilibrium shape for a typical configuration in the 3D vertex

model, we solved the system of nonlinear algebraic equations that corre-

spond tovanishing of thegradient of the energywith respect to nodepositions

by Newton-Raphson iteration. The number of equations was halved for the

corresponding configurations in the 2D vertex model. Initial guesses were
obtained by direct forward Euler integration following overdamped gradient

dynamics. In some cases, rotational and translational symmetries had to be

factored out through appropriate pinning conditions, as described in Section

S3. Pseudo-arc-length continuation (31,32) was used to follow solution

branches in parameter space and to go around turning points. The eigen-

values of the Jacobian upon convergence quantify the stability of the

computed equilibrium shapes. Branches were terminated when equilibrium

solutions featured vertices too close to each other (edge length< 0.01). The

merging of vertices and the rearrangement of cell neighborswere not consid-

ered here. We used the Armadillo, a Cþþ linear algebra library, to solve the

linear systems of equations and calculate leading eigenvalues (33).
Homogeneous configurations and model
parameters

In all cases considered below, we start with a system with spatially uniform

cell properties at a mechanical equilibrium. This equilibrium configuration
Biophysical Journal 110, 1670–1678, April 12, 2016 1673
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FIGURE 4 3D bending of closed epithelial shells in the naturally planar

2D vertex model due to the embedded contractile ring. (A) Initial equilib-

rium configuration with the contractile ring (shown in gray). (B) Represen-

tative invaginated state, where the enclosed patch bends inward (negative

deflection, d < 0). (C) Representative evaginated state, where the enclosed

patch bends outward (positive deflection, d> 0). Dashed red line represents

patterned edges that lie behind the evaginated patch. (D) Representative un-

stable equilibrium configuration. (E) Steady-state diagram showing deflec-

tion d with increasing parameter G. (Solid lines) Stable states; (dashed

lines) unstable steady states. Insets (I) and (II) highlight the breakup of

the pitchfork bifurcation in the naturally planar 2D vertex model due to cur-

vature (discussed more in Fig. S1). Cross sections of representative steady

states (A–D) are shown as insets. Parameter values are listed in Table S3. To

see this figure in color, go online.
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FIGURE 5 3D deformations induced by prepatterns of line tension in a

model with 2D cells for the apical-in case; see text for details. (A1 and

B1) Initial configurations with different heterogeneities: (A1) contractile

ring; (B1) constricting patch. Both are implemented as subsets of the

dual mesh, which is used to offset contractile patterns; see text for details.

(A2 and B2) Representative evaginated states. (A3–B3) Steady-state dia-

grams showing deflection d with increasing parameter G corresponding to

the prepatterning defined in (A1) and (B1), respectively. (Solid line) Stable

steady states. Cross sections of representative steady states (A1–B1 and

A2–B2) are shown as insets. Parameter values are listed in Table S4. To

see this figure in color, go online.
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is then used as a starting point for numerical continuation that analyzes

the effects of spatial patterns of cell properties, with the amplitude of the

pattern chosen as continuation parameter. To construct the initial equilib-

rium states for our model epithelial shells, we analyzed an idealized system

sheet with uniform cell properties. For the 2D vertex model, we considered

a shell constructed from regular hexagons (Fig. 1 D). For the 3D model, we

considered a shell constructed from a lampshade shape with hexagonal

apical/basal surfaces (Fig. 1 A). In both these cases, one can analyze the

explicit expressions for the overall energy as a function of the geometric

and model parameters. The geometric parameter for the 2D model is the

edge length of the unit hexagonal cell. For the 3D model, the geometric pa-

rameters are the edge length of the hexagonal apical and basal surfaces and

the height of the unit cell. The minima of such functions provide a relation-

ship between equilibrium cell shape and tissue properties.



Shape Changes in Epithelial Shells
Once the parameters were found for an idealized sheet at an equilibrium,

we used DistMesh to realize an epithelial shell with a finite number of cells

tiling a closed surface (34). This meshing package builds triangular tessel-

lations on a sphere for the given edge length. As an input geometry for the

2D vertex model, we used these tessellations to construct polygonal cells by

considering centers of triangular mesh elements as vertices of epithelial

cells. To construct the 3D vertex model input geometry, we first constructed

the inner surface of the epithelial shell using the 2D model input geometry

approach and then extended the vertices radially to a given height to form

3D cells. This produces a globally curved epithelial shell with a finite num-

ber of 3D lampshade-shaped cells, i.e., cells with asymmetric apical and

basal surfaces. Further details are provided in Section S6.1.
RESULTS

Three-dimensional vertex model

Three-dimensional vertex models have previously been used
to study dynamic tissue morphogenesis for cell aggregates
and spatially uniform cell sheets (21,22,27). Recently, Han-
nezo et al. (19) extended a similar framework to model
different shapes of epithelial cells. Here, we use a simplified
3D vertex model (Eq. 1), along with the additional term for
prepatterns (Eq. 2), to numerically find equilibrium shapes
in an epithelialmonolayer inducedby the in-plane prepatterns
of apical contractility. We also analyze the effects of a fluid-
filled cavity and an outer membrane (Eq. 6) on out-of-plane
deformations induced by such prepatterns.All of these factors
are present in different developmental contexts, including
Drosophila appendage formation (12,35) and the blastula-
to-gastrula transition in different species (6,7,10,18,36,37)

To understand the effect of model parameters on cell
morphology and to provide good initial guesses for the nu-
merical calculation of equilibrium shapes, we calculated
equilibrium shapes for flat as well as curved homogeneous
epithelial monolayers. The analysis was performed for ideal
cases where apical and basal surfaces were approximated as
hexagons. For the 3D vertex model with planar cells,
increasing the lateral tension coefficient (a) makes the equi-
librium cell shape more columnar, whereas increasing the
basal tension coefficient (g) makes the cell more squamous
(Fig S4, C and D). We discuss the effects of basal and lateral
tension coefficients in greater detail in Section S6.1. We use
this information to construct the initial homogeneous
configuration (G ¼ 0) with given model parameters (see
Materials and Methods) and then apply different prepatterns
(G > 0) and solve for the equilibrium shapes.

We started with a closed shell monolayer of 3D cells,
which had polarity similar to the cells in the follicular
epithelium in the developing Drosophila egg, where the api-
cal side forms the inner surface of the epithelium (apical-in
case, Fig. S1 D (8)). Consistent with recent observations
(38), we kept the value of the cell-volume compression
modulus B large, to make sure that the deviation from the
initial cytoplasmic volume of each cell was small. We
then introduced spatial patterns of apical contractility. We
considered two prepatterns of apical constriction in different
settings: (I) an embedded contractile ring (Fig. 2 A1) and
(II) a patch of apically constricting cells (Fig. 2 B1). As
mentioned before, the first prepattern is motivated by the
study of Drosophila appendage formation (8). The second
prepattern is found in diverse developmental settings in
which a group of cells undergoes apical constriction driving
localized tissue bending (2,25,26).

We found one continuous branch of stable equilibria in
which the epithelium bent in the basal direction (evagina-
tion) for both apical contractility prepatterns (Fig. 2, A4
and B4). Due to cytoplasmic incompressibility, a patch of
cells undergoing apical constriction leads to the expansion
of the basal surface and thus causes the sheet to bend
in the apical-to-basal direction. Inclusion of an outer mem-
brane term kept the configuration more spherical (Fig. S8),
and increasing the inner-fluid compression modulus (BY)
decreased deflection without affecting the qualitative nature
of the equilibrium shapes (Fig. S9).

We then considered a scenario in which the apical side
forms the outer surface of the shell (apical-out case,
Fig. S1 C) by reversing the polarity and keeping the energy
formulation the same. A similar scenario is observed during
the blastula-to-gastrula transition in many species, such as
sea urchin (24) and Drosophila (37). We introduced similar
prepatterns of apical contractility as before (Fig. 3, A1 and
B1) and found one continuous branch of stable steady states
for the case of a patch of apically constricting cells in which
the epithelial shell formed an invagination (Fig. 3 B4). How-
ever, in the case of prepatterning with a contractile ring, we
observed bistability in the shapes of shells (Fig. 3 A4). This
shape bistability was not present in configurations with
smaller shell curvature (Fig. S12) or with a one-cell-wide
ring (Fig. S11). We also considered a prepattern of line ten-
sion in the form of a two-cell-wide ring of apically constrict-
ing cells, which was inspired by the pattern of actomyosin
localization during primary invagination in the sea urchin
embryo (24,39). Here, as well, we found one continuous
branch of stable invaginated shapes (Fig. 3 C4).

To summarize, in response to most of the analyzed pat-
terns of apical contractility, the 3D model predicts a smooth
transition to the evaginated state when the apical surface
forms the inner surface and to the invaginated states when
the apical surface forms the outer surface of the shell.
Naturally planar 2D vertex model

Naturally planar 2D vertex models provide a computation-
ally simpler framework to model epithelial deformations,
while still incorporating the essential physical features of
the apical surface of the epithelium that drive such transfor-
mations. In this section we determine what aspects of the 3D
model can be captured with a naturally planar 2D vertex
model. We use the model presented by Murisic et al. (30)
as our starting point. This model can be viewed as a special
case of the 2D model introduced here (h ¼ 0; kj0 ¼ 0).
Biophysical Journal 110, 1670–1678, April 12, 2016 1675
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Similar to our analysis of the model with 3D cells, we
examined the case of a closed shell with different prepat-
terns of apical cell contractility. In contrast to the 3D model,
the naturally planar model showed no out-of-plane deforma-
tions for a constricting patch prepattern. However, for a
contractile ring, we found two disconnected branches of
steady-state solutions (Fig. 4). Equilibrium shapes with cells
deflecting outward (the evaginated state) formed a contin-
uous branch of steady states from an initially homogeneous
configuration, whereas solutions with cells deflecting in-
ward (the invaginated state) formed a disconnected branch
(Fig. 4 E).

This steady-state diagram can be traced back to the pitch-
fork bifurcation observed by Murisic et al. (30) in the pres-
ence of contour forces for flat configurations. However, the
pitchfork bifurcation here is imperfect, as the sheet curva-
ture breaks the symmetry present in the flat configuration
case (Fig. S5). We observed that the turning point of the
branch of invaginated states shifts to the right as the curva-
ture of the initial homogeneous configuration is increased.
This is consistent with the past analysis of buckling in Elas-
tica (a thin strip of elastic material) with imperfections, such
as preferred curvature or misaligned axial load (40–42).

The presence of an outer membrane term tends to keep
the configuration more spherical (Fig. S6, A and B). As ex-
pected, increasing the inner-fluid compression modulus ðbYÞ
and bending elasticity coefficient (b) made it more difficult
to bend the epithelium. It decreased the deflection of evagi-
nated shapes for a given value of G and shifted the limit
point to the right (Fig. S6, D and E). We observed similar
imperfect pitchfork bifurcations for different stretching
moduli m.

In sum, we observed a typical imperfect pitchfork bifur-
cation for the closed shell configuration. The addition of
an inner fluid-filled cavity and outer membrane term does
not affect the qualitative response of the naturally planar
2D vertex model, influencing only the domain of shape bist-
ability. The results of the naturally planar 2D vertex model
suggest that the initially curved and homogeneous epithe-
lium can smoothly bend, due to contour forces, only in the
outward direction, which is similar to the response of the
apical-in case of the 3D model to a contractile ring. Thus,
this model does not capture all of the effects predicted by
the 3D model, particularly the deformations driven by an
apically constricting patch.
2D vertex model

As noted above, the naturally planar 2D vertex model
cannot capture different aspects of the 3D model, including
apicobasal polarity, natural curvature of the sheet, and a
smooth transition from homogeneous configuration to
invaginated states in the presence of an apical constriction
pattern. Here we show that the 2D model with natural curva-
ture, as introduced in Eqs. 3–5, is fully consistent with the
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3D model responses to different prepatterns, while main-
taining the simpler framework of the 2D model. The model
includes additional terms making the sheet naturally curved
and incorporates apicobasal polarity by offsetting the pre-
patterns away from the sheet’s midsurface such that they
lie on the apical side of the shell.

Similar to previous sections, we considered two prepat-
terns of apical contractility: a contractile ring (Fig. 5 A1)
and a constricting patch (Fig. 5 B1), now offset from the
2D sheet. We started with a homogeneous closed shell
configuration at equilibrium, for which we set the value of
kj0 equal to the average angle between the normals of the
adjacent cells (see Section S2.1 for details). We then intro-
duced the prepatterns of constriction in two settings corre-
sponding to apical-in (h < 0) and apical-out (h > 0) cases
(note that we defined the cell normals in both cases such
that they always point outwards with respect to the shell).
For the apical-in case, we found that each prepattern pro-
duces a continuous branch of equilibrium shapes as we
increased G in which the epithelium bent in the outward di-
rection (the evaginated state) (Fig. 5, A3 and B3). For the
apical-out case, the constricting patch prepattern produces
one continuous branch of equilibrium shapes with the
epithelium bending in the inward direction (the invaginated
state; Fig. 6 B3). However, we observed bistability in the
shapes of shells in the case of the contractile ring prepattern
(Fig. 6 A3). Increasing the inner-fluid compression modulus
ðBYÞ decreased deflection without affecting the qualitative
nature of the steady-state diagram (Fig. S10). Thus, the re-
sults obtained with the 2D vertex model are qualitatively
similar to results from the 3D vertex model, suggesting
that the additional terms can effectively capture the features
of the complete 3D description of the epithelial sheet and its
responses to different patterns of apical cell contractility.
DISCUSSION

We used vertex models to explore how the spatial patterns of
cell contractility lead to 3D deformations of epithelial shells.
Previous studies of such deformations used appropriately
modified elastic shell theories to make connections between
biophysical descriptions of epithelia and a large body of
tools and ideas from continuum mechanics (15,17,43,44).
Although these studies canmimic a number of canonical pro-
cesses, including vertebrate neurulation, they are difficult to
adapt to different biological systems, such as morphogenesis
driven by cell rearrangements, directed migration, or cell
proliferation (36). Furthermore, the spatial patterns of apical
contractility that drive 3D epithelial deformations are
commonly fine-grained. For instance, the early stages of sea
urchin gastrulation are triggered by a contractile ring that is
only two cells wide (24). These observations provide a clear
motivation for models that can resolve individual cells.

A number of cell-based models, similar to the vertex
models used in our work, have been used to describe
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FIGURE 6 3D deformations induced by prepatterns of line tension in a
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(A3 and B3) Steady-state diagrams showing deflection d with increasing

parameter G. (Solid lines) Stable states; (dashed lines) unstable steady

states. Schematic cross sections of representative steady states (A1, B1,

A2, and B2) are shown as insets. Parameter values are listed in Table S4.
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deformations in 2D cross-sections of epithelial tissues
(6,7,29,30). The most extensive work has been done to
model the formation of the ventral furrow in the early
Drosophila embryo (10,37). We extended these models to
three dimensions, making it possible to investigate deforma-
tions induced by a broader class of spatial patterns of apical
contractility. Our results can be summarized as follows:
Model epithelia constructed from 3D cells, with distinct api-
cal and basal properties, can readily generate both invagi-
nated and evaginated shapes. The direction of bending is
dictated by the apicobasal orientation of the epithelium:
cells with increased apical contractility bend out of the sheet
in the apical-to-basal direction. In contrast, naturally planar
2D vertex models predict that two different equilibrium
shapes (invaginated and evaginated) coexist for the same
set of parameters. The invaginated state exists as an isolated
branch, which cannot be reached by continuous changes in
the parameters of the spatial prepatterns; this is in contrast to
the predictions of the 3D model. It also lacks the ability to
include the apicobasal polarity or the natural curvature of
the epithelial monolayer.

To address these issues, we proposed a modified 2D
vertex model that better accounts for the 3D nature of
the epithelium. This was accomplished by incorporating
additional terms into the energy function. These terms effec-
tively offset contractile patterns from the sheet and include
the natural curvature of the epithelium. The modified model
can readily capture the full effects of the 3D model. Most
importantly, it can generate both evaginated and invaginated
shapes depending on the apicobasal polarity of the epithelial
shell. This suggests that the modified 2D vertex model can
be used to describe shape transformations in a broader class
of systems, especially those in which 3D deformations are
driven by asymmetric apical contractility patterns, while
maintaining the computational simplicity of the 2D frame-
work. In our current work, we are using these models to
explore shape transformations that include cell rearrange-
ments and directed cell migration.
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35. Osterfield, M., T. Schüpbach, ., S. Y. Shvartsman. 2015. Diversity
of epithelial morphogenesis during eggshell formation in drosophilids.
Development. 142:1971–1977.

36. Solnica-Krezel, L., and D. S. Sepich. 2012. Gastrulation: making and
shaping germ layers. Annu. Rev. Cell Dev. Biol. 28:687–717.

37. Rauzi, M., A. Ho�cevar Brezav�s�cek, ., M. Leptin. 2013. Physical
models of mesoderm invagination in Drosophila embryo. Biophys. J.
105:3–10.

38. Gelbart, M. A., B. He, ., M. Kaschube. 2012. Volume conservation
principle involved in cell lengthening and nucleus movement during
tissue morphogenesis. Proc. Natl. Acad. Sci. USA. 109:19298–19303.

39. Kimberly, E. L., and J. Hardin. 1998. Bottle cells are required for
the initiation of primary invagination in the sea urchin embryo. Dev.
Biol. 204:235–250.

40. Tauchert, T., and W. Lu. 1987. Large deformation and postbuckling
behavior of an initially deformed rod. Int. J. Non-Linear Mech.
22:511–520.

41. Ba�zant, Z. P., and L. Cedolin. 2010. Stability of Structures: Elastic,
Inelastic, Fracture and Damage Theories. World Scientific, Singapore.

42. Xu, S. P., M. R. Xu, and C. M. Wang. 2013. Stability analysis of
nonlocal elastic columns with initial imperfection. Math. Probl. Eng.
http://dx.doi.org/10.1155/2013/341232.
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