Skip to main content
. 2016 Apr 16;40(6):132. doi: 10.1007/s10916-016-0482-9

Table 9.

Accuracy comparison of the proposed RIFM model with either geometric or non-geometric-based methods

RIMONE SLO Images
Features (i.e. geometric or TP FN TN FP Sn Sp Acc p value TP FN TN FP Sn Sp Acc p value
non-geometric)
RIFM 36 3 81 4 92.3 % 95.3 % 94.4 % 17 2 31 1 89.5 % 96.9 % 94.1 %
Geometric based Methods
Geo-metric (Vertical CDR) 29 10 80 5 74.4 % 94.1 % 87.9 % <0.10 16 3 29 3 84.2 % 90.6 % 88.2 % =0.28
Geo-metric (Horizontal CDR) 26 13 76 9 66.7 % 89.4 % 82.3 % <0.01 14 5 28 4 73.7 % 87.5 % 82.4 % <0.10
Geo-metric (Vasculature Shift) 26 13 75 10 66.7 % 88.2 % 81.5 % <0.01 14 5 20 12 73.7 % 62.5 % 66.7 % <0.001
Non-geometric based Methods
Global Features (Mix) 35 4 74 11 89.7 % 87.1 % 87.9 % <0.10 13 6 28 4 68.4 % 87.5 % 80.4 % <0.10
Textural Features (Variable Offset) [18, 19] 30 9 71 14 76.9 % 83.5 % 81.5 % <0.01 11 8 18 12 57.9 % 56.2 % 56.9 % <0.001
Textural Features (Variable Scale) [18, 19] 35 4 74 11 89.7 % 87.1 % 87.9 % <0.10 12 7 21 11 63.2 % 65.6 % 64.7 % <0.005
Textural Features (Scale + Offset) [18, 19] 35 4 74 11 89.7 % 87.1 % 87.9 % <0.10 13 6 28 4 68.4 % 87.5 % 80.4 % <0.10
Higher Order Spectra Features [19] 34 5 74 11 87.2 % 87.1 % 87.1 % <0.05 12 7 24 8 63.2 % 75.0 % 70.6 % <0.01
Gabor Features [51] 34 5 75 10 87.2 % 88.2 % 87.9 % <0.10 11 8 24 8 57.9 % 75.0 % 68.6 % <0.01
Wavelet Features [15] 31 8 65 20 79.5 % 76.5 % 77.4 % <0.001 11 8 24 8 57.9 % 75.0 % 68.6 % <0.01
Gaussian Features 32 7 67 18 82.1 % 78.8 % 79.8 % <0.01 10 9 26 6 52.6 % 81.3 % 70.6 % <0.05
Dyadic Gaussian Features 28 11 75 10 71.8 % 88.2 % 83.1 % <0.05 10 9 26 6 52.6 % 81.3 % 70.6 % <0.05