
INTESTINAL ALKALINE PHOSPHATASE: A SUMMARY OF ITS 
ROLE IN CLINICAL DISEASE

Jason Fawley, MD1,2 and David Gourlay, MD1,2

1Medical College of Wisconsin, Milwaukee, WI USA

2Children’s Hospital of Wisconsin, Milwaukee, WI USA

Abstract

Over the past few years, there is increasing evidence implicating a novel role for Intestinal 

Alkaline Phosphatase (IAP) in mitigating inflammatory mediated disorders. IAP is an endogenous 

protein expressed by the intestinal epithelium that is believed to play a vital role in maintaining gut 

homeostasis. Loss of IAP expression or function is associated with increased intestinal 

inflammation, dysbiosis, bacterial translocation and subsequently systemic inflammation. As these 

events are a cornerstone of the pathophysiology of many diseases relevant to surgeons, we sought 

to review recent research in both animal and humans on IAP’s physiologic function, mechanisms 

of action and current research in specific surgical diseases.
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Introduction

Intestinal Alkaline Phosphatase (IAP) has an important role in gut mucosal defense. IAP has 

been shown to be decreased during conditions that commonly effect surgical patients and 

therefore may contribute to the morbidity experienced by surgical patients. Expression of 

IAP is known to be affected by prematurity, starvation, and inflammation. Basic research has 

demonstrated IAP to inactivate bacterial pathogens as well as promote bacterial colonization 
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of the intestine with commensal organisms. Data from several animal and human research 

trials have demonstrated exogenous IAP may have an effect in mitigating intestinal and 

systemic inflammation in a variety of diseases commonly treated by surgeons.

Currently, human recombinant for of IAP is undergoing Phase 2 clinical trials and therefore 

in the near future may become adjunct to other treatment options. The purpose of the review 

is increase the awareness of IAP for general surgeons and how it may impact their patients. 

We will review the known mechanisms of action of IAP as well as recent research 

investigating its role in surgical diseases.

Alkaline Phosphatases

IAP is a member of the Alkaline Phosphatase (AP) family which are ubiquitous enzymes 

distributed among different tissues throughout the body. In humans, four genes encode AP 

enzyme isoforms: tissue non-specific AP (TNAP), intestinal AP (IAP). placental AP and 

germ cell AP [1] (Table 1.) Each of these enzymes shares significant homology. Germ cell 

AP is predominately expressed by germ cell neoplasms and otherwise is not normally 

expressed to a significant degree in normal tissue. [2] As one would expect placental AP is 

expressed by the placenta and normally not expressed by other tissues except for by 

seminomas and some germ cell neoplasms for which it is used as a tumor marker. [3] TNAP 

is mainly expressed in liver, bone and kidney but is also found in circulating leukocytes and 

colon and its expression within the intestine is increased during inflammation. [4, 5] The 

function of TNAP is not entirely understood but its genetic absence has been linked to 

hypophosphatemia and therefore it is believed to play a role in bone matrix mineralization. 

[6] IAP is predominately expressed by the intestinal epithelium whereas the other three 

isoforms are not. [4, 5] IAP is expressed and secreted by intestinal epithelial cells and 

remains active within the mucosal membrane as well as the intestinal lumen. IAP is also 

secreted into the serum, where it remains biologically active. Expression of IAP is found 

throughout the intestine but is highest in the duodenum while its phosphatase activity is 

highest in the terminal ileum. [7] The expression of IAP is regulated by developmental 

stage, nutrition, and inflammation. [4, 5]

Mechanisms of Action of IAP and Possible Role in Disease

Of these four isoforms, a large amount of focus has been given to IAP and its role in human 

disease affecting the intestine. The four major functions of IAP in maintaining intestinal 

homeostasis can broadly be categorized into: regulation of bicarbonate secretion and 

duodenal surface pH, long chain fatty acid absorption, mitigation of intestinal inflammation 

through detoxification of pathogen-associated molecular patterns and regulation of the gut 

microbiome. [4, 5] (Figure 1.) As it’s name suggests IAP functions as a phosphatase and its 

reported substrates include lipopolysaccharide (LPS), flagellin, CpG DNA, and nucleotide 

di- and tri-phosphates. [8–10] While all these functions of IAP are important to maintaining 

intestinal homeostasis, it is the ability of IAP to inactivate LPS, regulate the microbiome and 

affect metabolism of adenosine tri-phosphate and diphosphate (ATP and ADP, respectively) 

that warrant specific discussion.
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Inactivation of LPS

LPS is a constituent of the cell wall of gram-negative bacteria and is abundant in the 

gastrointestinal tract. It has been implicated in causing systemic inflammation and septic 

shock. The toxicity of LPS resides in the Lipid-A moiety, which permits it to bind to toll-

like receptor-4 (TLR4). Removal of one of the two phosphate groups on the Lipid- A moiety 

reduces LPS toxicity 100 fold. [11] (Figure 2.) This reduction in the toxicity of LPS inhibits 

downstream intracellular signaling. LPS acts by binding to TLR4, which acts through two 

distinct pathways to cause inflammation. These two pathways are either dependent or 

independent on the adaptor molecule, MyD88. The MyD88 dependent pathway acts mainly 

through NF-kB to cause release of proinflammatory cytokines. [12] By preventing the 

activation of TLR4, IAP prevents the activation of NF-kB and its subsequent translocation 

into the nucleus. Ultimately, this prevents the expression of pro-inflammatory cytokines.

The role of IAP in inactivating LPS and preventing intestinal inflammation was first 

examined in vivo in zebrafish. [13] These studies made two interesting observations. The 

first observation was that the presence of bacteria is necessary to induce the expression of 

IAP in the intestine. Using conventionally reared zerbafish it was determined that IAP 

expression is significantly increased 5–8 days post-fertilization. However, in germ-free 

zebrafish, IAP expression is significantly diminished indicating the presence of bacteria is 

required for IAP expression. Additionally, when germ-free zebrafish were fed bacteria, IAP 

expression increased to normal levels. Further, feeding LPS alone to germ free zebrafish was 

sufficient to induce expression of IAP. The second observation was that IAP could inactive 

LPS in vivo and prevent intestinal inflammation. In comparison to wild-type, IAP knock-

down zebrafish had significantly increased neutrophil recruitment to the small intestine with 

ingestion of LPS. [14] However, when IAP was ingested prior to LPS, the intestinal 

inflammation was significantly diminished. These studies indicate that IAP plays a key role 

in suppressing the inflammatory response to LPS in the intestine. In summary, these 

experiments demonstrate that the presence of LPS and/or bacteria induce the expression of 

IAP and in absence of IAP LPS and/or bacteria lead to intestinal inflammation. Therefore 

one can conclude that IAP is an essential protective mechanism for intestinal inflammation.

Further evidence in support of the attenuation of the LPS load from the intestinal 

microbiome is IAP location within intestinal epithelial cells. IAP is anchored on the apical 

membrane of intestinal epithelial cells. [15] IAP can also be cleaved off the apical 

membrane and secreted within the lumen. [16–18] The intestinal epithelial microvilli secrete 

vesicles that are highly enriched with functional proteins, which include IAP. [19] What is 

most important about these vesicles is that while they were shown to be able to 

dephosphorylate LPS, they prevented the adhesion of pathogens and commensal bacteria to 

intestinal epithelial cells in vitro. Additionally, the presence of pathogens stimulated the 

secretion of these vesicles. [20]

The Intestinal Microbiome

In addition to providing a defense against microbes, recent evidence supports that IAP plays 

a role in determining which bacteria colonize the gut. [21] Bacterial 16S small subunit 

ribosomal RNA genes were used to examine the microbiome in the feces of IAP knock-out 
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mice and compared to wild-type mice. The IAP knock-out mice feces contained fewer and 

less diverse bacteria than the wild-type mice. Phylogenetic analysis showed that IAP-KO 

mice have more Clostridia class of bacteria belonging to the Firmicutes phylum than WT 

mice. This difference was reversed by feeding the IAP knock-out mice supplemental IAP. In 

the same study, the effect of antibiotics on the intestinal microbiome and subsequent 

infection from Salmonella typhimurium was examined. Streptomycin was fed to both IAP 

knockout and wild-type mice and then the feces were examined for the presence of 

commensal bacteria for several days. In comparison to the IAP knockout mice, the wild-type 

mice recovered commensal bacteria in the feces much more quickly and had a lower risk of 

mortality when fed Salmonella typhimurium. [21]

Dephosphorylation of Tri- and Di-Phosphorylated Nucleotides

In addition to detoxification of bacterial pathogens, IAP may also help regulate the intestinal 

microbiome. One mechanism recently identified by which IAP may positively regulate the 

intestinal microbiome is through dephosphorylation of phosphorylated nucleotides in the 

intestinal lumen. [22] Both in vitro and in vivo, increasing quantities of Adenosine 

Triphosphate (ATP) promoted less bacterial diversity and inhibited the growth of commensal 

bacteria. In a series of experiments it was identified that IAP promoted the growth of aerobic 

and anaerobic bacteria in stool and did so by conversion of ATP to adenosine within the 

intestinal lumen. (Figure 3.) Adult IAP knock-out (KO) mice were shown to have fewer and 

also different types of aerobic and anaerobic microbes in their stools compared with wild 

type (WT) mice. This abnormality was reversed by providing supplemental enteral IAP to 

the IAP KO mice.

Similarly, conversion of ATP and ADP to adenosine may have a protective role in sepsis 

induced acute kidney injury. Adenosine is a known scavenger of oxygen free radicals. 

Adenosine also may confer protective effects in the kidney by vasodilation of the arterioles 

of the renal medulla. This is associated with an increase in medullary blood flow and thus 

medullary oxygenation. [23]

Specific Surgical Disease Where IAP May Play a Role in Disease and 

Treatment

Inflammatory Bowel Disease

The etiology of inflammatory bowel disease (IBD), which includes Crohn’s disease and 

ulcerative colitis, remains relatively unknown. IBD is characterized by chronic inflammation 

of the intestine. The exaggerated inflammatory response is thought to be multifactorial and a 

combination of genetic, immunological and bacterial factors. [24] It is hypothesized that 

inappropriate and ongoing activation of the mucosal immune system against luminal 

contents are the cause of the intestinal inflammation. Activation of the innate immune 

system within the intestine is dependent upon recognition of microbes and their ligands by 

pattern recognition receptors. Bacterial products like LPS and flagellin are known to illicit 

necessary mucosal defense immune responses that prevent invasion of opportunistic 

bacteria. However, dysregulation of the host immune response or impaired mucosal defense 

against gut flora may lead to excessive intestinal inflammation. [25–27]
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It remains uncertain whether the excessive inflammation is due to dysregulation of the 

mucosal immune response or impaired protective factors. However, it may be a combination 

of both. In both children and adults who have IBD, the colonic mucosa has been found to 

have a significantly higher TLR4 expression when compared to healthy controls. [28, 29] 

Furthermore, this dysregulated immune response occurs in response to the intestinal flora 

since germ free mice fail to develop intestinal inflammation in a mouse model of colitis. [30] 

There is evidence that the intestinal flora in IBD patients is altered. The biggest alteration 

most studies examining the microbiome in IBD patients is a reduction in alpha diversity, 

representing the total numbers of species present. [31] In addition to increased inflammatory 

regulators, there appears to be impaired protective factors in patients with IBD. As 

previously discussed, IAP plays a central role in the regulation of intestinal inflammation 

and decreased expression of IAP has been demonstrated to be associated with IBD. [26] IAP 

was found to be significantly decreased in the terminal ileum of patients with inflamed tissue 

obtained from intestinal biopsies via colonoscopy from adult patients with both Ulcerative 

Colitis and Crohn’s disease. Additionally, the IAP expression in non-inflamed tissue of those 

with IBD was decreased compared to healthy controls. Decreased expression of IAP has also 

been reported in pediatric patients with IBD. [32]

These finding suggested that decreased expression of IAP may play a role in IBD. Several 

studies have examined whether exogenous IAP could prevent colitis in experimental animal 

models. In particular, enteral administration of dextran sulfate sodium to rats has been used 

as a validated model to initiate intestinal injury similar to that observed in IBD. Using this 

model, supplementation of enteral IAP was shown to be protective against intestinal injury. 

Rats given IAP demonstrated decreased inflammatory changes as observed histologically, as 

well as reduced inflammatory cytokine expression in the terminal ileum and colon. [33] 

Further, gut barrier dysfunction is known to occur from a variety of insults. In mice with gut 

barrier dysfunction induced by intestinal ischemia either by temporary SMA occlusion or 

remote ischemia/reperfusion, the absence of IAP in IAP-knockout mice resulted in increased 

severity of intestinal inflammation and increased bacterial translocation when compared to 

wild-type mice. [34] Similarly it has been demonstrated that IAP knockout mice had a more 

severe histologic injury as well as increased inflammatory cytokine expression when 

compared to wild-type mice in a murine model of chronic colitis. [35] More importantly, 

exogenous administration of IAP significantly attenuated inflammation in both IAP 

knockout and wild-type mice in the chronic colitis model. These data suggest that the 

absence of IAP is associated with an increased severity of intestinal injury in colitis models 

and supplemental, enteral replacement could be protective.

Based on these animal experiments, the potential use of enteral IAP to treat IBD was further 

explored in patients who had steroid and/or immunosuppressant moderate to severe 

ulcerative colitis. [36] Twenty-one patients were given a 7-day course of calf IAP and were 

reevaluated at day 21. At 21 days these patients had a significant decrease in their disease 

severity as measured by the Mayo score and Modified Truelove-Witts Severity index. The 

improvement in clinical symptoms as associated with a reduction in serum CRP and stool 

calprotectin suggesting decreased intestinal inflammation. IAP was well tolerated without 

signs of toxicity in this study.
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While the etiology of IBD is complex and multifactorial, current evidence indicates IAP 

may have a therapeutic role without the risk of harmful effects associated with current 

immunotherapies. (Table 2.) To further examine the therapeutic effectiveness of IAP in the 

treatment of IBD, a phase II clinical trial is expected to begin enrollment in the near future 

using a human recombinant form of IAP.

Necrotizing Enterocolitis

Necrotizing enterocolitis (NEC) is a disease of unknown etiology that affects the 

gastrointestinal tract of premature infants. It is the most common life-threatening 

gastrointestinal surgical emergency, occurring in about 7% of infants with a birth weight of 

500 – 1500g. [37] The mortality rate of NEC ranges between 20 – 30%, and is the highest 

among those who require surgery. [38] However, NEC is rare in the full term infant. There 

are numerous risk factors associated with development of NEC, however, prematurity and 

formula feeding has been the only consistent observation in those who develop NEC. 

Despite many risk factors being recognized, the etiology of NEC remains elusive. The 

pathogenesis of NEC is incompletely understood, but generally considered to be a 

multifactorial disease process. A combination of genetic predisposition, immature intestine 

that is highly immunoreactive and abnormal bacterial colonization are all believed to be 

causative factors. [39, 40] (Figure 4.)

There are many differences between the mature and immature intestine that increase it 

susceptibility to inflammation. Amniotic fluid contains multiple proteins, which are 

important for maturation of enterocytes. [41] In the intrauterine environment, the intestinal 

epithelial cells are continuously exposed to these proteins. However, preterm enterocytes 

have not been provided the opportunity to mature and therefore, are hyper-responsive to 

stimulation. [41, 42] Consequentially, when exposed to microbes and luminal contents, the 

immature enterocyte may have an exaggerated and robust inflammatory response. [41, 43]

The hyper-responsive mucosa of the neonatal intestine maybe due to exaggerated 

stimulation of the immune response or impaired regulation of the inflammatory response. It 

is likely a combination of the two that lead to the development of NEC. TLR4 receptor 

expression has been shown to be increased shortly after birth. [44, 45] Mice deficient in 

TLR4 are protected from the development of NEC. [46] Additionally, stressors such as early 

enteral feeds, hypoxia and LPS have been demonstrated to initiate translocation of the NF-

kB to the nucleus with increased expression of cytokines. [42] Growing evidence suggests 

that abnormal colonization, or dysbiosis may occur in the newborn intestine just prior to 

development of NEC. [47, 48] One of the larger studies to date suggested that dysbiosis in 

the first two weeks of life correlated with subsequent risk of development of NEC. [49] 

Using 16S RNA gene sequencing from stool samples it was demonstrated that newborns 

who later developed NEC had lower alpha-diversity, indicated a lower diversity of the types 

of bacterial species present. In addition to the loss of diversity, the intestinal microbiome of 

newborns with NEC had less Propionibacterium and increased amounts of Firmicutes and/or 

Proteobacteria compared to those without NEC. The increased abundance of gram-negative 

bacteria as demonstrated by increased Proteobacteria may result in excessive TLR4 

activation which is believed to be an important early event in the pathogenesis of NEC. 
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Propionibacterium is a commensal bacterium and thought to help mitigate the risk of 

developing NEC. However, none of those that developed NEC had detectable levels of 

Propionibacterium. This finding is consistent with the concept that the early presence of 

commensal bacteria helps induce intestinal homeostasis. Another study examined the 

intestinal microbiome and identified that the predominant organism found in the feces of 

preterm newborns with sepsis was also found in the blood cultures. [50]

One important question is whether IAP is decreased in NEC. [51] A recent study in fact does 

demonstrate when compared to control rats, IAP protein expression and activity were 

significantly decreased in animals with experimental NEC. However, when animals 

subjected to the NEC protocol received exogenous enteral IAP, they were found to have 

comparable histology and IAP expression and activity to that of controls. [51] Subsequent 

follow-up experiments using the same NEC model have shown enteral IAP decreased both 

intestinal and systemic inflammatory mediator production as well as improved gut barrier 

function. [42, 52, 53] While the enteral formulation helped reduce the severity of the 

intestinal injury, systemic administration did not. However, despite having no effect on 

intestinal inflammation, systemic IAP was shown to significantly decrease the systemic 

inflammatory response suggesting that systemic administration of IAP may be useful 

clinically to treat NEC related sepsis. [52]

Another important question is whether the deficiency of IAP leads to an increased risk of 

NEC or if NEC leads to decreased IAP expression. This question has not been answered, 

however, it was observed that preterm rats do have decreased expression of IAP. The preterm 

rats also exhibited increased expression of pro-inflammatory cytokines in the intestine and 

had increased intestinal permeability compared to full-term rats. It was also shown that the 

intestine of the preterm rat compared to the term rat was more sensitive to LPS stimulation. 

Importantly, simply feeding supplemental IAP decreased both the intestinal inflammation 

and permeability. Based on these findings the use of prophylactic enteral IAP may be a 

novel therapeutic strategy to prevent NEC.

While enteral IAP supplementation was found to decrease the severity of intestinal injury in 

an NEC model, the use of systemic IAP did not decrease intestinal injury. [52] However, 

when given by intra-peritoneal injection, IAP decreased the expression of serum cytokines in 

rat pups with experimental NEC compared to placebo. This suggests that systemic IAP may 

not prevent NEC but may be useful in combating the systemic sepsis associated with NEC.

Sepsis

One of the most common causes of mortality in the surgical patient is sepsis. This is a 

complex disease process characterized by a massive inflammatory response leading to 

release of large quantities of inflammatory cytokines, including tumor necrosis factor, 

interferon-γ, and interleukin-2. This results in hemodynamic changes leading to 

hypotension, poor tissue perfusion and multi-organ failure. Despite increases in medical 

management of the septic patient, there is still a mortality rate of approximately 30%. [54] 

While the mainstay of treatment of the septic patient is source control, few novel treatments 

have proven to be effective in mitigating end-organ injury due to sepsis.
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Given that LPS is a potent instigator of sepsis and the ability of IAP to inactivate LPS, 

several investigators have explored the systemic use of IAP to treat sepsis. Bentala et al. 

treated mice with the placental AP after injection of a lethal dose of LPS. [55, 56] The 

survival rate at six days after injection of LPS improved from 57% to100% with placental 

AP treatment. Due to the fact that calf IAP is a rich source of alkaline phosphatase, further 

studies were conducted to determine if IAP has the same physiologic effects in vivo as 

placental AP. [57] Mice who received IAP after a lethal dose of E. coli had a survival rate of 

80%, compared to 20% when saline was given. In addition, those who received IAP had no 

change in the white blood cell count and the Tumor Necrosis Factor-α response was 

suppressed by 98%. [57] Su et al. were able to provide additional support by inducing septic 

shock secondary to peritonitis in sheep by intra-peritoneal injection of feces. Sheep who 

received IAP demonstrated improved gas exchanged as measured by the PaO2/FiO2 ratio, 

decreased concentrations of interleukin-6 and prolonged survival. [58]

In addition to increasing the survival, IAP has been demonstrated to improve acute kidney 

injury (AKI). Animal experiments indicate that following an ischemic injury alkaline 

phosphatase activity is depleted in the kidney. [59] Besides the effect of IAP to inactivate 

LPS, IAP may also play an important part in host defense by dephosphorylating 

extracellular ATP to adenosine. Adenosine exerts potent anti-inflammatory and renal tissue 

protective effects. [23]

Based on these and other animal studies, phase 1 and 2 clinical trials using IAP in septic 

patients to prevent AKI have been conducted using an intravenous formulation of bovine 

derived IAP. Systemic IAP was well tolerated and had little to no observed toxicity or side 

effects. [60] Septic patients who received IAP had significant improvement in kidney 

function, as demonstrated by decreases in median plasma creatinine levels and creatinine 

clearance. [61, 62] This was associated with the IAP treated patients having a trend towards 

reduction in dialysis requirement and duration. [62] Additionally, septic patients without 

AKI were less likely to develop AKI after the infusion of IAP. [61] IAP has demonstrated a 

benefit not only in levels of inflammation, but reducing mortality rates and end-organ 

damage.

A randomized clinical trial evaluating a human-recombinant form of IAP is currently 

enrolling patients in a Phase 2 randomized clinical trial. IAP may prove to be an interesting 

adjunct in the management of the septic patient.

Antibiotic Associated Diarrhea

The use of antibiotics has increased over the years to treat bacterial infections. However, 

their use is not completely benign. While antibiotics do eradicate bacterial infections, they 

have also been implicated in destroying the normal commensal flora. This allows for 

opportunistic bacteria to colonize and infect the host. [63] For example, mice treated with 

streptomycin require a smaller inoculation of Salmonella enterica serovar Typhimurium 

(<10 colony forming units, CFU), compared to 1 million CFU required to infect control 

mice. [64] This reduction in intestinal commensal flora has been demonstrated to be dose 

dependent. [65] The replacement of commensal bacteria with pathogenic bacteria has 

clinical consequences. Mice pretreated with antibiotics followed by oral gavage of 105 CFU 
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of C. difficile died within 3 days of treatment, whereas mice not exposed to antibiotics failed 

to demonstrate evidence of disease. [66] The cause of antibiotic associated diarrhea has been 

the focus of many epidemiologic studies. The implicating cause has been identified as 

replacement of the commensal flora with pathogenic bacteria, with C. difficile being a 

common pathogen. [67–69]

The role of IAP in maintaining the microbiota has been described above. IAP deficient mice 

and found fewer and different types of bacterial species compared to wild type mice. [21] 

Mice treated with antibiotics had fewer and different types of bacteria. When the antibiotic 

treated mice also received IAP throughout treatment, they experienced rapid restoration of 

the gut flora that would have otherwise have been lost. [21] However, maintenance of the gut 

flora does not directly provide evidence of a clinical difference in the IAP treated mice. To 

investigate this point, mice were given antibiotics as well as gavage fed C. difficile and S. 

Typhimurium with and without IAP. Mice who received IAP were able to maintain their 

weight, had reduced clinical severity score and gut inflammation, as well as demonstrating 

improved survival compared to mice that were not given IAP. [64]

From the evidence provided it is likely that IAP provides protection from antibiotic 

associated diarrhea through the maintenance of the intestinal microbiota. Although further 

work in humans is needed, IAP may prove to be an excellent adjunct to antibiotic therapy to 

prevent not only associated diarrhea but colitis as well, especially in the critically ill.

Metabolic Syndrome

Metabolic syndrome is composed of a cluster of disorders that include central obesity 

(abdominal fat distribution), insulin resistance, abnormal lipid profile (dyslipidemia), fatty 

liver, and hypertension. [70, 71] This syndrome has long-term consequences and ultimately 

leads to type II diabetes, nonalcoholic fatty liver disease and atherosclerosis. Those who 

suffer from this syndrome have a significantly higher mortality rate largely due to coronary 

heart disease and other cardiovascular disease. [72] This is concerning as the number of 

adults in the United States suffering from this syndrome has been estimated to be 

approaching almost 40%. [73]

Recent research has suggested chronic endotoxemia is an underlying factor in the 

pathogenesis of metabolic syndrome. One factor associated with chronic endotoxemia is a 

high-fat diet. [74] Mice that were given a 4-week high-fat diet had similar levels of 

circulating endotoxin to mice that underwent 4 weeks of continuous subcutaneous infusion 

of LPS. [74] Importantly, mice that were fed a high-fat diet had a change in the intestinal 

microbiome to a high proportion of LPS-containing species. [74] This persistent 

endotoxemia leads to a chronic low-grade inflammatory state with increased levels of 

inflammatory cytokines. [74] Additionally, the chronic inflammation is associated with 

damage to pancreatic beta cells, hepatocytes and vascular endothelium. [75–77]

One proposed mechanism for this chronic systemic inflammation is due to intestinal LPS 

being complexed with chylomicrons. [78] A high fat diet leads to excess chylomicron 

formation (with complexed LPS) which enter systemic circulation through mesenteric lymph 

nodes. High fat diets not only cause systemic inflammation, but local intestinal inflammation 
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as well. [79] The increased expression of inflammatory cytokines in the intestine increases 

gut permeability, promotes bacterial or endotoxin translocation, and further worsens 

systemic inflammation.

Given the pathogenesis of metabolic syndrome, IAP represents a novel therapeutic strategy 

based on its ability to attenuate LPS mediated inflammation. Mice who were deficient in 

IAP were found to have increased intestinal permeability and circulating levels of LPS. [80] 

Additionally, they demonstrated features of metabolic syndrome, such as central obesity and 

insulin resistance. [80] When control mice were given a high-fat diet supplemented with 

IAP, not only did IAP supplementation prevent the development of metabolic syndrome, but 

was also able to reverse the features of metabolic syndrome as well. [80] While this work is 

still in the preclinical stage, it none-the-less provides encouraging data about a novel 

treatment strategy to prevent the highly morbid and expensive complications related to 

metabolic syndrome.

Conclusion

Research examining the role of IAP in multiple disease processes, as well as its role a 

therapeutic option is a relatively young field of study. IAP has been demonstrated to 

inactivate LPS as well as promote commensal bacterial colonization of the intestine. 

Absence of or a deficiency of IAP appear to increase the risk of disease through changes in 

the microbiome, increased intestinal inflammation and permeability thereby leading to 

systemic inflammation and potentially sepsis. Preclinical data thus far strongly suggest IAP 

can mitigate this pathologic process. Recent development of a human recombinant form of 

IAP has led to an increase potential for commercialization of IAP as a therapeutic strategy. 

Ongoing clinical studies of the human recombinant IAP will be essential to determine if IAP 

will be a therapeutic strategy to prevent dysbiosis, intestinal inflammation, and systemic 

inflammation that occur in a number of disease process that affect surgical patients.
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Figure 1. 
Adapted from Lalles. [5] Summary of the multiple functions of intestinal alkaline 

phosphatase.
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Figure 2. 
Diagram depicting the mechanisms by which IAP prevents LPS mediated inflammation. IAP 

dephosphorylates LPS resulting in a decrease in toxicity. Additionally, IAP blocks activation 

of NF-kB preventing translocation to the nucleus and expression of pro-inflammatory 

cytokines.
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Figure 3. 
Adapted from Malo et al. [22] IAP helps to regulate the intestinal microbiome through 

dephosphorylation of phosphorylated nucleotides (ATP) in the intestinal lumen. Increasing 

quantities of ATP promote less bacterial diversity and inhibited the growth of commensal 

bacteria. This effect is ameliorated by dephoshorylation of nucleotides.
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Figure 3. 
The premature intestine is associated with increased TLR4 expression. Shortly before the 

onset of necrotizing enterocolitis, there is an alteration in the microbiome with increased 

numbers of pathogenic bacteria. This leads to an increase LPS leading to mucosal injury and 

decreased mucosal restitution. However, as shown in figure A IAP deactivates intraluminal 

LPS preventing activation of the TLR4 cascade. Additionally, it is hypothesized that IAP 

prevents the alteration in the microbiome.
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Table 1

Summary of the alkaline phosphatase isoforms and their known clinical significance.

Isoform Location Function

Tissue non-specific (TNAP) • Liver

• Bone

• Kidney

• Unknown

• Genetic absence has been linked to hypophosphatemia

Intestinal (IAP) • Intestinal Epithelial Cells • Detoxification of Bacterial Endotoxin

• Dephosphorylation of Tri- and Di-Phosphorylated 
Nucleotides

• Regulation of the Intestinal Microbiome

• Regulation of Intestinal Lipid Absorption

Placental (PLAP) • Placenta • Tumor marker for Seminomas and Germ Cell Neoplasms

• Detoxification of Bacterial Endotoxin

Germ Cell (GCAP) • Germ Cell Neoplasms • Unknown
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Table 2

Table of studies providing evidence to the multifactorial nature of Inflammatory Bowel Disease and how the 

use of IAP may mitigate some of the factors.

Author Study Type Findings

Szebeni B et al. (2008) • Human • Increased expression of TLR2 and TLR4 in the colonic mucosa of children with 
IBD

Cario et al. (2000) • Human • Increased expression of TLR4 in the colonic mucosa of adults with IBD

Madsen, KL (1999) • Mice • Experimental colitis does not develop in germ-free mice

Madsen, KL (1999) • Mice • Lactobacillus species is decreased with increased adherent bacteria species in 
IL-10 deficient model of colitis

• Supplementation of Lactobacillus attenuated the development of colitis

Molnar et al. (2012) • Human • Decreased IAP protein levels in inflamed mucosa in children with IBD

Ramasamy et al. (2011) • Mice • IAP deficient mice had worse colitis scores in (DSS)-induced colitis compared to 
wild-type mice. Oral administration of IAP attenuated the disease

Tuin et al. (2008) • Human

• Mice

• Decreased IAP mRNA expression in inflamed mucosa in adults with IBD

• Oral supplementation of IAP decreased inflammation in (DSS)-induced colitis

Goldberg et al. (2008) • Mice • IAP deficient mice have increased bacterial translocation in response to intestinal 
ischemia

Lukas et al. (2010) • Human • Oral administration of IAP decreased Mayo and Modified Truelove-Witts Severity 
index scores and C-reactive protein levels in adults with Ulcerative Colitis
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