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Abstract

Despite their equal stoichiometry in spliceosomes, U1 snRNP (U1) is typically the most abundant 

snRNP in vertebrates. What regulates U1 over-abundance and snRNP repertoire in general is 

unknown. Sm core assembly is a key step in snRNP biogenesis mediated by the SMN complex. 

All pre-snRNAs are delivered by the snRNA-specific RNA-binding protein (RBP) Gemin5 to join 

SMN-Gemin2-recruited Sm proteins. Here, we find that the U1-specific RBP U1-70K bridges pre-

U1 to SMN-Gemin2-Sm, establishing an additional, Gemin5-independent Sm core assembly 

pathway. We show that U1-70K hijacks SMN-Gemin2-Sm, enhancing U1’s and inhibiting other 

snRNAs’ Sm core assembly, thereby promoting U1 over-abundance and regulating snRNP 

repertoire. Ubiquitous SMN-Gemin2’s surprising ability to facilitate transactions between 

different RBPs and RNAs explains its puzzling multi-RBP valency and myriad transcriptome 

perturbations associated with SMN’s deficiency in neurodegenerative spinal muscular atrophy. We 

propose that SMN-Gemin2 is a versatile RNP exchange that functions broadly in RNA 

metabolism.

INTRODUCTION

U1 snRNP (U1) is needed in eukaryotes both for pre-mRNA splicing
1, 2 and telescripting, 

suppression of premature cleavage and polyadenylation that ensures full-length 

transcription
3–7

. U1’s additional function in telescripting likely explains why human cells 

have a great U1 abundance compared to the other spliceosomal snRNPs (U2, U4, U5 and 

U6)
8
. All the spliceosomal snRNAs that acquire Sm cores (U1, U2, U4, U5 and the minor 

spliceosome’s U11, U12, U4atac) have an snRNA-defining motif, the snRNP code, 

consisting of the Sm site (AU5–6G), around which the Sm core forms, and an adjacent 3′ 

terminal stem-loop
9–11

. In Sm cores, Sm hetero-dimers Sm D1D2 (D1D2) and Sm BD3 

(BD3) and -trimer Sm FEG (FEG) subunits are arranged in order of D1, D2, F, E, G, D3 and 

B, and each Sm protein interacts with a single nucleotide of the Sm site
12–17

. The snRNP 
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code [~50 nucleotides (nt)] is recognized by the RBP Gemin5
18–20

. Sm core assembly is 

mediated by the SMN (Survival Motor Neurons)-Gemins complex, a large oligomeric 

complex (30–70S) comprised of SMN, Gemins2–8 and Unrip
9,21,22

. The SMN-Gemins 

complex is ubiquitously expressed in eukaryotes (except Saccharomyces, which have a 

Gemin2 ortholog but no detectable SMN) and is found both in the nucleus and in the 

cytoplasm. SMN and its interacting protein Gemin2, the two most highly conserved SMN-

Gemins complex’s components, bind Sm proteins
23–25

. Pre-snRNAs, including pre-U1 

snRNA, are delivered to SMN-Gemin2 by Gemin5, where they encounter the Sm protein 

and acquire Sm cores
20

. Sm core assembly is a pre-requisite for the snRNP maturation, 

including the 5′-monomethyl guanosine cap hypermethylation (to form a 

trimethylguanosine), its 3′-end processing, and for snRNPs’ functions
26,27

. U1 in vertebrates 

differs from other snRNAs in two respects: it has a divergent snRNP code due to its non-

canonical Sm site (AUUUGUG or AUUUCUG) that has weaker binding affinity to 

Gemin5
19

, and its Sm core assembly strongly depends on stem-loop 1 (SL1), a U1-specific 

structure outside the snRNP code
28–30

. Interestingly, earlier studies have shown that SL1 

alone can inhibit Sm core assembly
30

; however, the role of SL1 and U1’s divergent snRNP 

code in Sm core assembly remain unknown. Here we investigated the roles of these U1 

elements in Sm core assembly aiming to understand how U1 overabundance is achieved and 

more generally what factors contribute to cells’ unequal snRNP repertoire.

RESULTS

U1-specific U1-70K protein bridges U1 snRNA to the SMN complex

To understand the role of U1’s SL1 and snRNP code in Sm core assembly, we compared the 

binding of SMN complex components (SMN, Gemin2–8 and Unrip) to biotinylated pre-U1, 

mature U1, U1A3 (a U1 SL1 mutant defective in the U1-snRNP specific U1-70K 

binding)
28

, U1ΔSm (a U1 Sm site mutant that cannot assemble Sm core), super-U1 (a 

chimeric U1 in which the Sm site was replaced by a canonical Sm site, AUUUUUG), U4 

snRNA (U4), a canonical snRNP code containing snRNA, and U4ΔSm. The RNAs were 

incubated in human (HeLa) cell extracts in which either SMN, Gemin5 or U1-70K had been 

knocked down by RNAi (Fig. 1a, input). Although U1-70K has not been previously 

suggested to have a role in Sm core assembly, we tested its effect because it is the only 

protein known to bind SL1
28,29

. For most experiments we used pre-U1, which is 50nt longer 

at the 3′-end than U1, because it represents the U1 substrate for Sm core assembly in cells
20

. 

For U4, whose precursor is only 6nt longer than mature U4, there is little difference between 

the precursor and mature forms (data not shown).

As expected, Gemin5 knockdown abolished U4 association with the SMN complex
18

, 

particularly with SMN-Gemin2, while SMN knockdown had no effect on U4 binding to 

Gemin5 (Fig. 1a, U4). U4ΔSm did not bind Gemin5 or any component of the SMN complex 

(Fig. 1a, U4 ΔSm).

In contrast, the association of pre-U1, U1 (data not shown) or U1ΔSm with SMN-Gemin2 

was only partially decreased by Gemin5 knockdown, but was strongly decreased by U1-70K 

knockdown (Fig. 1b). However, U1-70K knockdown had no effect on U4 association with 

the SMN complex (Fig. 1a, U4). U1A3 binding to the SMN complex was unaffected by 
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U1-70K knockdown, but was reduced by Gemin5 knockdown, suggesting that U1A3 can 

associate with the SMN complex through Gemin5, albeit more weakly than U4 due to U1’s 

non-canonical Sm site (Fig. 1b, U1A3). Super-U1 binding to the SMN complex was 

unaffected by U1-70K knockdown but was strongly decreased by Gemin5 knockdown (Fig. 

1b, super-U1). Thus, U1-70K can bridge pre-U1 and U1 to the SMN complex apparently 

independent of and in addition to Gemin5, while the binding of U4 to the SMN complex 

strictly depends on Gemin5. These data demonstrate that while pre-U1 can use either 

U1-70K or Gemin5, U1-70K is normally the main adaptor to SMN-Gemin2-Sm proteins. 

These observations also suggest that U1’s Sm site may have diverged to become a weaker 

Gemin5 binder because this allowed U1 to use an alternate route to bind the SMN complex.

U1-70K enhances U1’s and inhibits other snRNPs’ Sm core assembly

Next, we used a quantitative snRNP assembly assay
31,32

 to determine the role of U1-70K 

and Gemin5 in Sm core assembly. (Fig. 2a and Supplementary Data Fig. 1). As expected, 

Sm core assembly on all tested RNAs depended on SMN-Gemin2 and required an Sm site. 

Gemin5 knockdown decreased Sm core assembly of canonical snRNP code-containing 

snRNAs (U2, U4 and U5) and to a lesser extent on SL1-containing snRNAs. Strikingly, 

U1-70K knockdown decreased pre-U1 assembly (by 50%), but enhanced U2, U4 and U5 Sm 

core assembly (up to 100%). Loss of U1-70K binding or enhancement of Gemin5 binding in 

U1A3 and super-U1, respectively, made them more similar to non-U1 snRNAs. These 

observations indicate a new role for U1-70K as a specific pre-U1 Sm core assembly factor 

and an inhibitor of Sm core assembly on other snRNAs.

U1-70K regulates cells’ snRNP repertoire

We then studied the effect of U1-70K knockdown on U1 snRNP abundance in cells. U1-70K 

RNAi decreased steady-state U1 by 25–40% and increased other snRNPs by 10–30% (Fig. 

2b, snRNP). To determine the effect on the rate of Sm core assembly, we quantitated the 

amount of snRNAs that assembled Sm cores in a two-hour pulse-label with 4-thiouridine
33

. 

This showed that U1-70K knockdown decreased U1 snRNP production and increased 

formation of other snRNPs (Fig. 2b, nascent snRNP). U1-70K knockdown had no effect on 

SMN or Sm proteins levels (Supplementary Data Fig. 2). In contrast to U1-70K, Gemin5 

knockdown had no effect on U1’s but decreased other snRNPs’ assembly. These findings are 

consistent with the in vitro Sm core assembly and demonstrate that U1-70K is required for 

generating U1 over-abundance compared to the other snRNPs and regulates cells’ snRNP 

repertoire.

U1-70K domains bind SMN and mediate Sm core assembly

Delineation of U1-70K’s domains showed that U1-70K’s C-terminal arginine- and serine-

rich (RS) domain (aa230–437), which is important for splicing
34

, was not required for 

bridging pre-U1 to the SMN complex (data not shown). However, recombinant U1-70K’s N-

terminal 194 amino acids (N194) restored the SMN complex’s association with pre-U1 in 

U1-70K knockdown cell extracts (Fig. 3a). Furthermore, N194 bound SMN directly and 

enhanced pre-U1- and inhibited U4-Sm core assembly (Fig. 3b, c). The smallest N194 

fragment that was necessary and sufficient to bind SMN was N90-194, which contains 

U1-70K’s SL1-specific RNA-binding domain (RBD/RRM; aa102–181)
29

, while the N-
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terminal domain lacking the RBD, N99 (aa1–99) did not bind SMN (Fig. 3c). Moreover, 

pre-U1 enhanced N194 binding to SMN (2.1 fold) (Fig. 3d). Thus, pre-U1 binding creates 

additional interactions between N194 and SMN, either by an RNA-mediated allosteric effect 

that increases U1-70K interaction surface with SMN or by additional binding interactions 

between pre-U1 with SMN. The ability of the same type of RBD as U1-70K’s to engage in 

protein interactions through a surface other than the RNA binding site has been described for 

other RBPs
35,36

.

N90–194 binding to SMN was abrogated by deletion of SMN’s C-terminal YG box, an 

oligomerization domain on which many of SMN’s interactions and function depend
37–39 

(Fig. 3e). This included SMNΔ7, the major SMN isoform expressed in SMA patients. 

SMNΔ7 lacks exon7-encoded 16 amino acids that constitute much of the YG box. Deletion 

of SMN exons 1, 2a and 2b (ΔN91) also impaired U1-70K binding, suggesting that a peptide 

including exon 2b-encoded domain that engages in homotypic interactions in oligomeric 

SMN
31, 40

, is also needed. A more detailed definition of SMN’s N90–194 binding site 

requires additional structural information about oligomeric SMN, which is presently 

unknown.

Unlike N194, N90–194 did not enhance pre-U1- or inhibit U4-Sm core assembly (Fig. 3f), 

suggesting that peptide(s) within U1-70K’s aa1–89 are needed for these activities. Recently 

determined X-ray crystal structures of mature U1 snRNP showed that U1-70K aa39–58 and 

aa10–31 contact the Sm core’s perimeter at two apposing sides, at D2F and BD3, 

respectively
12,14,17

. Deletion of aa1–39 (N40–194) caused loss of pre-U1 Sm core assembly 

enhancement, but did not diminish Sm core assembly inhibition on U4 (Fig. 3f). However, a 

further deletion of aa40–59 (N60–194) caused loss of U4 Sm core assembly inhibition. 

Thus, U1-70K’s snRNA-selective effect on Sm core assembly represents two separable 

activities: N40–194 is necessary and sufficient for U4 Sm core inhibition, but pre-U1 Sm 

core assembly enhancement requires in addition to aa1–39. N99, which lacks the RBD had 

no effect (Fig. 3f). This suggests that the RBD, particularly when bound to pre-U1, blocks 

other snRNAs’ access to Sm proteins.

U1-70K and Gemin2 cooperate to recruit all Sm proteins

N99 directly bound BD3, but not D1D2, or FEG (Fig. 4a, lanes 1–7). In contrast, and as 

shown previously, Gemin2 did not bind BD3 nor did it bind D1D2 or FEG alone, however, it 

formed a stable complex with Sm pentamer D1D2-FEG (Sm5)
24,25

. SMN bound Gemin2-

Sm5 is a key intermediate in Sm core assembly, and we therefore investigated if Gemin2 and 

U1-70K could collaborate in binding Sm. This showed that N99 did not bind Gemin2 (Fig. 

4a, lane 8), however complexes containing N99, Gemin2 and Sm5 or all 7 Sm proteins 

(Sm7) readily formed (Fig. 4a, lanes 12 and 15). The Sm7-containing complex would not be 

expected to form a stable Sm ring without an RNA’s Sm site
15

. Thus, U1-70K and Gemin2 

can cooperate to recruit all of the Sm core’s proteins, which neither alone could achieve.

These findings are congruent with recent crystal structures of SMN-Gemin2-Sm5 and U1 

snRNP
12,14,17,25

. Superimposition of the two structures supports the presence of an Sm core 

assembly intermediate in which Sm5 is bound simultaneously by Gemin2 and U1-70K (Fig. 

4b). It illustrates how U1-70K binds at the junction of D1D2 and FEG, position pre-U1’s Sm 
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site at the inner RNA-binding cleft, where N39’s (aa1–39) interactions with pre-U1 likely 

help position pre-U1’s Sm site in the Sm ring’s hole and recruit BD3 for Sm core 

closure
12,14,17

. U1-70K’s multiple interactions with SMN-Gemin2-Sm5, which may be 

initiated by pre-U1 binding, effectively hijack the Sm core assembly module, promoting U1 

assembly and disadvantaging other snRNAs. SMN plays a key role by serving as a scaffold 

for Gemin2, U1-70K, and Sm B, D3 and D1’s C-terminal arginine- and glycine-rich 

[RG(G)] domains
41–43

, described below.

DISCUSSION

Previous studies had suggested that the SMN complex is a dedicated Sm core assembly 

device that operates with a single RBP, Gemin5, which binds a single RNA structure, the 

snRNP code, and joins the SMN-Gemin2 subunit
20,25

. However, our studies demonstrate 

that SMN-Gemin2 can receive RNAs from at least one additional and structurally unrelated 

RBP (U1-70K) that has a different RNA-binding specificity (SL1). In Gemin5’s case there is 

a complete exchange between the RBP donor and the acceptor RBPs, Sm5. In contrast, 

U1-70K remains part of the mature RNP. Yet both paths use SMN-Gemin2, revealing SMN-

Gemin2 as a versatile platform for RBP-RNA transactions. SMN-Gemin2 RNP exchange 

function leverages the donor’s RNA specificity to produce a specific RNP, in this case Sm 

core that the Sm proteins on their own could not
44

. We refer to this function as RNP 

exchange and propose that SMN-Gemin2’s RNP exchange function provides a unifying 

theme that extends beyond Sm core assembly to play a central role in RNA metabolism. Our 

concept of SMN-Gemin2 as a general RNP exchange, represented in Fig. 5, rests on its 

ability to bind many RBPs and RNAs, which increases the opportunity for creating a greater 

RNP diversity, and explains many previous observations.

SMN and Gemin2, the SMN complex’s most highly conserved components, are 

ubiquitously expressed and essential for cell viability across eukaryotes
21

. Several features 

of SMN-Gemin2 make it particularly suitable for RNP exchange function. SMN is a highly 

oligomeric protein, making the SMN complex a large particle (30–70S), that contains 

Gemins 3–8 and unrip, including the putative RNA or RNP ATPase (Gemin3), whose 

precise functions are unknown, but likely assist RNP exchange. SMN has a relatively 

indiscriminate Tudor domain that binds methylarginine-modified peptides, a common post-

translational modification in RG(G) domains, found in numerous RBPs
41–43

. Oligomeric 

SMN-Gemin2’s pan-RBP binding Tudor domains is thus a multivalent station that can 

congregate diverse RBPs and their RNA cargos thereby promoting RNP exchange. Indeed, a 

bewildering number of RBPs in addition to Sm and Lsm proteins bind the SMN-Gemins 

complex, including hnRNP proteins (e.g., hnRNP A1, A2, Q, R, U, FUS/TLS), snoRNP 

proteins (e.g., fibrillarin, GAR1), the SRP component SRP54, and the transcription regulator 

CARM1
41,44–47

. However, the diverse RBPs that interact with the SMN complex could not 

be explained in terms of Sm core assembly. In addition, SMN can bind RNAs, albeit with 

low affinity and non-specifically
48

, which would increase its potential to maintain transient 

association with RNA intermediates. Therefore, a common theme is that SMN-Gemin2 

could facilitate formation of diverse RNPs from a multitude of RBP donors and acceptors.
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U1-70K’s unexpected role in Sm core assembly provides pre-U1 an exclusive path to build a 

great U1 abundance, allowing U1 level to be regulated separately from the other snRNPs. 

More generally, U1-70K emerged as a key regulator of snRNP repertoire. Other factors, 

including the number of snRNA genes, their transcriptional activity, and snRNPs’ stability 

undoubtedly also contribute to U1 abundance and snRNP repertoire. In humans, there are 

many (>100) U1 genes, pseudogenes and variants
49

 and many genes encoding other 

snRNAs, but they remain poorly annotated and little is known about their transcriptional 

activity. However, pre-snRNAs lacking Sm cores are rapidly degraded
50

, suggesting that the 

SMN complex could be a rate-limiting step in snRNP biogenesis. This makes the SMN 

complex and U1-70K’s ability to program its Sm core selectivity especially important 

factors in gene regulation.

SMN deficiency causes SMA, whose severity correlates both with the degree of SMN 

deficiency and a corresponding decrease in Sm core assembly
32,51

. However, SMA is 

associated with a large number of widespread perturbations in RNA metabolism, including 

alterations in snRNP repertoire and pre-mRNA splicing
51–55

. Among these are specific 

alternative splicing deficits that precede and can now explain important aspects of SMA’s 

synapto-pathology
55

. While splicing changes are a plausible outcome of snRNP changes, 

other transcriptome perturbations in SMN deficient cells, such as expression level changes, 

are more readily explained as resulting directly from the loss of the SMN complex’s RNP 

exchange capacity. Namely, that the SMN complex’s multiple interactions with RBPs indeed 

reflect its role as a versatile hub for chaperoning RNPs involved in diverse transcriptional 

and post-transcriptional processes. This perspective offers an important insight into the role 

of RBP mutations in other human diseases. For example, the SMN complex has recently 

intersected with several major neurodegenerative diseases caused by specific mutations in 

RBPs, FUS/TLS and TDP-43, which cause amyotrophic lateral sclerosis (ALS) and 

frontotemporal lobar degeneration (FTLD)
45,56–58

. These pathogenic mutants also elicit 

many transcription, splicing and microRNA changes. Notably, FUS/TLS (and TDP-43 via 

FUS/TLS) binds SMN’s Tudor domain, mediated by methylated arginines in its RG(G) 

domain, where a cluster of pathogenic mutations are found. Impairment of the SMN-Gemins 

complex’s general RNP exchange function due to poisoning by mutant RBPs, small 

molecule inhibitors or genetic SMN deficiency provides an alternative explanation for the 

myriad RNA metabolism perturbations in ALS and SMA.

METHODS

Cell culture, RNA interference and preparation of cell extracts

HeLa PV cells were grown in DMEM supplemented with 10% FBS, (L)-glutamine, 

penicillin and streptomycin. Cells lines were tested for mycoplasma contamination. 

Transfection of control siRNA or siRNAs targeting U1-70K or the SMN complex 

components (Dharmacon, GE healthcare) into HeLa cells was performed using 

Lipofectamine RNAiMax (Invitrogen) as described by the manufacturer. After 40–48 hr 

transfection, cells were harvested and lysated to obtain cytoplasmic extracts for in vitro 

assays as previously described
32

. Total protein concentrations of various extracts were 

determined by the Bradford protein assay (Biorad). For nascent snRNP measurements, 
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knockdown cells were metabolically labeled with 200 μM of 4-thiouridine (4-shU) for the 

last 2 hr of siRNA transfection
33

.

In vitro transcription and labeling of RNAs

All snRNAs used for in vitro assays were prepared by standard in vitro transcription using 

MEGAshortscript T7 transcription kit (Ambion) in the presence of 0.65 mM biotin-16-UTP 

(Roche) and 2.6 mM UTP
32

. Transcribed RNAs were purified by electrophoresis on 5M 

Urea-6% polyacrylamide gel, precipitated with ethanol and resuspended in RNase-free 

water. The concentrations of the labeled snRNAs were determined by UV absorbance at 260 

nm.

In vitro transcription and translation

In vitro transcription and translation reactions were performed with each plasmid in the 

presence of [35S]-methionine using the T7 TNT Quick Coupled Transcription/Translation 

systems (Promega), as previously described
25

.

Antibodies, western blotting and immunoprecipitation

The following antibodies were used in this study; α-SMN (2B1 or 8/SMN from BD 

transaction laboratory), α-Gemin2 (2E17 or 3F8 from Santa Cruz biotechnology), α-Gemin3 

(12H12), α-Gemin4 (64I1), α-Gemin5 (10G11), α-Sm (Y12), α-glutathione S-transferase 

(26H1 from Cell Signaling Technology), α-U1-70K (H111 from Synaptic Systems), α-

FXR1 (6BG10) and α-Magoh (21B12). Immunoprecipitation was performed with Y12-

immobilized onto magnetic Dynabeads protein G (Invitrogen) incubation in total HeLa cell 

extracts prepared in RSB-100 buffer (10 mM Tris-HCl, pH 7.8, 100 mM NaCl, 2.5 mM 

MgCl2) containing 0.1% NP-40 and protease inhibitors for 1.5 hr at 4°C. Supernatants were 

discarded and the beads were washed with RSB-500 containing 0.1% NP-40 five times. The 

beads were equilibrated with RSB-150 containing 0.02% NP-40 and collected for further 

experiments.

Plasmid construction, recombinant proteins expression and purification

cDNA plasmids of human U1-70K were constructed in pET42a vector (Novagen) with N-

terminal GST and C-terminal His(6X) tags. Procedure for recombinant protein expression 

and purification were modified from a previous study
6
. Proteins were affinity purified using 

Ni-NTA beads and eluted by 500 mM imidazole in lysis buffer. Eluted proteins were further 

purified by glutathione beads (GE healthcare), heparin column and size exclusion 

chromatography. Recombinant Gemin2 and Sm proteins were expressed in E. coli and 

purified as previously described
25

. For efficient protein expression, Sm BD3 do not contain 

C-terminal RG(G) domains. The recombinant protein concentrations were determined by the 

Bradford protein assay (Biorad).

In vitro RNA pull-down

Cytoplasmic extracts (2 mg/mL) from HeLa cells with individual knockdown were 

incubated with biotinylated snRNAs (10 nM) in the reconstitution buffer (20 mM HEPES, 

pH 7.9, 50 mM KCl, 5 mM MgCl2, 0.2 mM EDTA, 0.25 mg/mL yeast tRNAs (Sigma), 
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protease inhibitor and 0.2 U/μL RNasin RNase inhibitor (Promega)) in 96-well plates (20 

μL/well). Binding experiments were performed in cytoplasmic cell extracts at 4°C without 

addition of ATP to avoid Sm core assembly, which would occlude the Sm site. All reactions 

were carried out with gentle mixing at 750 rpm using the Thermomixer (Eppendorf) for 1 hr 

and RNA-protein complexes were captured by the M-280 streptavidin Dynabeads 

(Invitrogen) in 100 μL of RSB-150 buffer containing 0.02% Triton X-100, protease inhibitor 

and 0.2 U/μL RNase inhibitor for an additional hour. The beads were washed in RSB-200 

buffer containing 0.02% Triton X-100 five times using the Kingfisher 96 magnetic particle 

processor (ThermoFischer Scientific), as previously described
31,32

. Bound proteins on the 

beads were eluted by boiling in 10 μL of 1X sample buffer, resolved by SDS-PAGE and 

detected by western blotting. Uncropped scans of western blots are provided in 

Supplementary Data Set 1.

In vitro snRNP assembly

A high throughput and quantitative assay for in vitro Sm core assembly was performed as 

previously described
31,32

. In brief, cytoplasmic extracts (2 mg/mL) from HeLa cells were 

incubated with biotinylated snRNAs (10 nM) in the reconstitution buffer containing 2.5 mM 

ATP for 1 hr at 30°C. In complementation assays, 6.25–100 ng of recombinant U1-70K 

proteins were pre-incubated in the cytoplasmic extracts with U1-70K knockdown for 20 min 

at 30°C, and Sm core assembly reactions were initiated by addition of biotinylated snRNAs. 

Assembled snRNPs were captured by Y12-immobilized protein G magnetic beads in 100 μL 

of RSB-500 buffer containing 0.1% NP-40, protease inhibitor and 0.2 U/μL RNase inhibitor 

for an additional hour at 30°C. The beads were washed in RSB-500 buffer containing 0.1% 

NP-40 and 1 mg/mL heparin three times, then washed in the same buffer without heparin 

two times using the magnetic particle processor. The Y12-immunoprecipiated snRNPs on 

the beads were resuspended in 120 μL of RSB-150 buffer containing 0.02% NP-40 and 0.08 

μg/mL horseradish peroxidase-conjugated NeutrAvidin (Pierce) and gently mixed for 1 hr at 

30°C. The beads were washed again with the same washing buffer (RSB-500/0.1% NP-40) 

five times and resuspended in 150 μL of SuperSignal ELISA Femto substrate (Pierce) 

mixture. Chemiluminescence signals were detected at 495 nm using the Wallac Victor2 plate 

reader (Perkin-Elmer).

In vitro protein binding

Recombinant GST-U1-70K proteins (2.5 μg) were immobilized on the glutathione-

Sepharose beads (Invitrogen) in 500 μL RSB-200 buffer containing 0.02% Triton X-100. 

After washing unbound proteins, 5 μg of recombinant or in vitro-translated [35S]- 

methionine-labeled SMN proteins were incubated for 1 hr at 4 °C and then washed with the 

binding buffer four times. The bound proteins were eluted by boiling in 1X sample buffer 

and resolved by SDS-PAGE and visualized by SimplyBlue staining (Invitrogen), silver 

staining, or autoradiography. The band intensities were analyzed using Bio-Rad Quantity 

One software. Binding experiments were performed side-by-side with the same protein 

preparations and run on the same gel. Uncropped images of gels, autoradiographs or western 

blots are provided in Supplementary Data Set 1.
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Reverse transcription and RT-qPCR measurement of snRNAs

Total snRNAs were isolated using TRIzol (Invitrogen) as specified by the manufacturer. 

Steady-state snRNPs from HeLa cells were isolated by Y12 antibody immunoprecipitation 

and protease K digestion followed by phenol-chloroform extraction and ethanol 

precipitation. Nascent snRNPs were obtained by the same Y12 immunoprecipitation from 

cells that were metabolically labeled with 4-shU
33

. After isolation of steady-state snRNPs, 

free thiol groups of uridine in snRNA were biotinylated with 0.2 mg/ml of biotin-HPDP 

(Pierce) and captured by Dynabeads MyOne Streptavidin beads (Invitrogen). cDNA 

generation and quantitation of snRNA were performed as previously described
54

.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. The U1-snRNP-specific stem-loop 1 binding protein U1-70K bridges pre-U1 or U1 
snRNA to the SMN complex independent of Gemin5
(a) Western blot analysis of SMN complex components bound to biotinylated U4 and 

U4ΔSm snRNAs in HeLa cells from control, U1-70K, SMN or Gemin5 siRNA knockdowns. 

The input lanes show 20% of each of the cell extracts used. The knockdowns’ efficiencies 

relative to Magoh as loading control are indicated as % of residual protein for each 

knockdown compared to control (100%). A schematic illustration of U4 structure and its 

canonical Sm site in snRNP code, which is the RNA sequence necessary and sufficient for 
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Gemin5 binding, are indicated. (b) The same western blot analysis as in a for biotinylated 

U1, including U1 precursor (pre-U1), U1ΔSm, SL1 mutant (U1A3) and super-U1. A U30C) 

in the SL1, which abolishes U1-70K binding. Super-U1 is a mutation that replaces U1’s Sm 

site with a canonical Sm site. Uncropped scans of western blots are shown in Supplementary 

Data Set 1.
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Figure 2. U1-70K enhances U1 Sm core assembly, inhibits other snRNAs’ Sm core assembly in 
vitro, and regulates snRNP repertoire in cells
(a) Quantitative in vitro Sm core assembly activities on the indicated snRNAs in extracts 

from cells with control, U1-70K, SMN, Gemin2 or Gemin5 siRNA knockdowns. The Sm 

core assembly activities on each snRNA were compared to control RNAi extracts (100% 

activity), except U1ΔSm and U4ΔSm, whose relative activities were compared to pre-U1 

and U4, respectively. The error bars represent standard deviation from three independent 

biological replicates. (b) Quantitative measurements of snRNAs from the mature and 

nascent snRNPs in cells with control, U1-70K, SMN or Gemin5 knockdown by real-time 

RT-PCR. The relative amount of snRNAs compared to control RNAi are shown. The error 

bars represent standard deviation from three independent biological replicates.
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Figure. 3. U1-70K bridges pre-U1 snRNA to SMN and mediates preferential Sm core assembly 
on U1 snRNA over other snRNAs
(a) Western blot of SMN complex proteins bound to the biotinylated pre-U1 snRNA in 

U1-70K knockdown cell extracts complemented with recombinant U1-70K N194. The input 

lane shows 20% of the cell extracts and the N194 used for binding. (b) In vitro Sm core 

assembly activities on pre-U1 and U4 with increasing concentrations of N194 in U1-70K 

knockdown extracts. The rescued snRNP assembly capacities on snRNAs were determined 

by % changes from the U1-70K knockdown without N194. The error bars represent standard 

deviation from three independent biological replicates. (c) Binding of GST-U1-70K proteins 

to recombinant SMN protein. Schematic diagram of U1-70K and its deletion fragments with 

corresponding residue numbers are indicated. The input lane shows 10% of the SMN protein 

used for binding and the gel was visualized by Simplyblue staining. (d) Binding of GST-

N194 to SMN in the absences or presence of equimolar amount of in vitro transcribed pre-

U1. The protein gel was visualized by silver staining. (e) Binding of GST-N90–N194 protein 

to in vitro-translated [35S]-methionine labeled wild-type (WT) SMN and its domain 
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deletions. The input lanes show 10% of SMN’s deletion domains (N91, aa1–91; Tudor, 

aa92–158; Exon7, aa279–294; C106, aa189–294) and the gel was visualized by 

autoradiography. (f) snRNP assembly measurements as in b with N194 deletion fragments 

using 1.25 molar ratio of U1-70K proteins to snRNA. The error bars represent standard 

deviation from three independent biological replicates. Uncropped scans of blots, gels and 

autoradiographs are shown in Supplementary Data Set 1.
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Figure. 4. SMN-Gemin2 cooperates with U1-70K in Sm protein recruitment
(a) In vitro binding of GST-U1-70K N99 to Gemin2 and Sm proteins. Each Sm protein 

subunit, combinations of the subunits (lanes 1–7), Gemin2 only (lane 8) or Gemin2 with 

combinations of Sm protein subunit (lanes 9–15) are indicated. The input panel shows 10% 

of the proteins used for binding and the gel was visualized by silver staining. Uncropped 

images are shown in Supplementary Data Set 1. (b) Superimposed crystal structures of U1 

snRNP
12,14,17

 and SMN-Gemin2-Sm5
25

, showing cooperative roles in Sm core assembly 

intermediate of U1. Left, This Gemin2-Sm5-U1-70K intermediate contacts with pre-U1 

bound by U1-70K’s SL1 RBD, places pre-U1’s Sm site at the Sm5’s inner ring and prevents 

binding of other RNAs. U1-70K’s N-terminal domain binds directly to BD3, which helps in 

their recruitment and proper positioning for Sm ring closure. For clarity, two other U1 

snRNP specific proteins, U1A, which binds to SL2, and U1C, which binds to U1-70K and 

U1 snRNA, are not shown. Right, A rotated view compared with left, showing Gemin2 and 

U1-70K assist Sm protein recruitment. Gemin2 binds D1D2 through its C-terminal domain 

and FEG via its N-terminal domain. The loop connecting these two domains shown in a 

dashed line is disordered and its length (aa70–82) is likely sufficient to avoid a clash with 

U1-70K’s D2F binding. Two patches (aa10–31 and aa39–59) of N-terminal U1-70K bind at 
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the BD3 and D2F interface, respectively. The Figures were prepared with PyMOL (http://

www.pymol.org/).
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Figure. 5. Schematic representation of SMN-Gemin2’s function as a versatile hub for RNP 
exchange
The different colored spheres represent the diverse RBPs that bind multivalent SMN-

Gemin2. For simplicity, only the pre-snRNAs’ key features relevant to this pathway are 

shown. (a) Gemin5, which recognizes the snRNP code common to all pre-snRNAs, is a 

drop-and-go donor that does not remain with the fully assembled Sm core. (b) U1-70K, a 

pre-U1’s stem-loop 1 (SL1) binding protein associates with the SMN-Gemin2 and remains 

part of the completed Sm core. (c) A representative and hypothetical RNP, exemplified by 

FUS/TLS, associates with the SMN-Gemin2 as described in the text.
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