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Abstract

Building on a result of U. Reif on removable singularities, we construct C1 bi-3 splines that may 

include irregular points where less or more than four tensor-product patches meet. The resulting 

space complements PHT splines, is refinable and the refined spaces are nested, preserving for 

example surfaces constructed from the splines. As in the regular case, each quadrilateral has four 

degrees of freedom, each associated with one spline and the splines are linearly independent. 

Examples of use for surface construction and isogeometric analysis are provided.

1. Introduction

Geometrically continuous Gk spline complexes and generalized subdivision surfaces are the 

two most popular families of constructions for filling multi-sided holes in a regular tensor-

product spline lattice. Although many properties of subdivision surfaces can be computed by 

spectral analysis, their representation as an infinite sequence of ever smaller smoothly-

connected surface rings complicates their inclusion into existing industrial design 

infrastructure and the use of standard integration rules in their analysis. The finitely many 

polynomial spline patches of a Gk spline complex are typically more convenient and fit well 

into the CAD pipeline. However, refining a Gk spline complex requires careful book 

keeping. For, what used to be an edge where patches join with Gk continuity is now split into 

two. To represent the same spline complex, the pieces further away from the multi-sided 

hole have to remember to join using Gk rules rather than the regular Ck rules that the 

immediate regular neighborhood seems to prescribe. If we ignore the book keeping, we can 

refine Gk spline complexes, but the resulting spaces are not nested. That is, an initial surface 

or function may not have an exact representation in refined form. By contrast, refinement of 

subdivision functions yields nested spaces by construction.

Can we combine, for multi-sided configurations, a finite representation with simple nested 

refinability? After developing a solution, we realized that it was rather similar to work 

already published in U. Reif’s PhD thesis [Rei93, Rei97]. Reif proposed to project bi-cubic 

C1 splines into a subspace that, despite being singular at the central point of the n-sided cap, 

guarantees tangent continuity at the central, irregular point and C1 continuity everywhere 
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else. Inconveniently, the projected space has fewer degrees of freedom near the irregularity 

than in the surrounding regular spline regions; and these degrees of freedom can not be 

symmetrically distributed as proper control points. Our variant of Reif’s construction applies 

one localized 2 × 2 split (see Fig. 1a) so that the resulting degrees of freedom are uniformly 

distributed and so that

• regardless of the valences of its vertices, each quadrilateral of the input quad mesh 

is associated with four degrees of freedom.

In the regular case, where all the vertices of a quad have valence four, these four degrees of 

freedom are the B-spline control points of bicubic splines with double knots. Fig. 1a,b show 

basis functions near irregular points and the local split of the quad mesh that provides the 

full four degrees of freedom despite the projection. The splines complement and are 

naturally compatible with bi-cubic PHT splines [DCL+08, LDC10, KXCD15] for localized 

refinement. Fig. 1c illustrates a basis function near a PHT-refined n = 5 neighborhood.

1.1. Related Literature

In the 1990s, a number of C1 surface constructions were based on singularities at the 

vertices [Pet91, War92, PN93, NP94, Rei95a, Rei97] including constructions of curvature 

continuous surfaces [BR97, Rei95b]. A major contribution of Reif’s singular construction 

[Rei97] was a proof showing that the corner singularity is removable by a local change of 

variables; and that the resulting surface is tangent continuous at and near the central irregular 

point where more of fewer than four tensor-product patches come together. More recently, in 

the context of iso-geometry, Takacs and Jüttler [TJ12] analyzed singular spline 

constructions, but did not draw the connection to the earlier surface constructions. They 

observed that specific linear combinations of singular splines can be sufficiently regular for 

isogeometric analysis and closed with the prediction that “main targets for further analysis 

are approximation properties on singular domains”. The monograph [PR08] characterizes 

subdivision surfaces as smooth spline surfaces with singularities at the irregular points and 

establishes the differential-geometric properties of subdivision surfaces at the singularities. 

Subdivision functions have repeatedly been used as finite elements [COS00, CSA+02, 

Bar13, NKP14]. The linear independence of Loop and Catmull-Clark subdivision splines, 

except for the cube mesh, was proven in [PW06].

Reif’s construction is based on bicubic splines with double knots. These functions have been 

generalized for local refinement using T-corners where coarse and fine splines meet. The 

local refinability of these PHT splines [DCL+08, LDC10, KXCD15] nicely complements the 

ability we focus on: to create multi-sided blends.

Overview—Section 2 collects the notation and setup for constructing the splines near 

irregularities. Section 3 derives the splines. Section 4 discusses their properties: C1 

smoothness, refinability and linear independence of the functions associated with the four 

degrees of freedom of each quadrilateral. Section 5 discusses two uses of the splines.
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2. Definitions and Setup

We consider a network of quadrilateral facets or quads. The nodes where four quads meet 

are called regular, else irregular nodes. An irregular node must not be a direct neighbor of an 

irregular node, but may be a diagonal neighbor within the same quad. If the assumption fails, 

one Catmull-Clark-refinement step can enforce the requirement.

Except where the construction switches to the PHT construction to accommodate local 

refinement, every quad ℓ is associated with four basis functions, hence four degrees of 

freedom, , i, j ∈ {1, 2}. Surface and analysis space will consist of linear 

combinations Σcijfij with control points cij. We obtain basis functions , for example, by 

setting  and all other coefficients to zero and then applying the Algorithm of Section 3. 

It is convenient to define the basis function  piecewise by tensor-product polynomials b of 

bi-degree 3 in Bernstein-Bézier (BB) form

where  are the Bernstein-Bézier (BB) polynomials of degree 3 

and bij are the BB coefficients [Far02, PBP02].

3. Construction

Since the regular C1 bi-3 tensor-product spline and the construction of PHT splines are well-

known, we focus on constructing the BB patches of irregular quads surrounding the irregular 

node. Even this construction is remarkably simple.

Given the four degrees of freedom  of each quad k, we can convert the C1 bi-3 tensor-

product splines to their BB form: set the four interior BB-coefficient  or i, j ∈ {1, 2}. 

Then the remaining coefficients  are determined as averages to join patches with C1 

continuity. Patches ak corresponding to an irregular quad are split into four at u = v = 1/2. 

This yields 2×2 sub-patches (see Fig. 2a): hk,ij := Sak, i, j ∈ {1, 2}. The split S is equivalent 

to deCasteljau’s algorithm. We complete the construction by projecting into one plane the 

relevant BB-coefficients of the sub-patches immediately surrounding the irregular node.

Algorithm

Spline construction at an irregular node.

Input: B-spline-like control points , i, j ∈ {1, 2}, k = 0, …, n − 1 (see Fig. 2a) of quadrilaterals surrounding an n ≠ 4-
valent node.
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Output: A C1 spline complex consisting of 4n polynomial pieces bk,αβ that is singularly parameterized at the central 
point (Fig. 2b).

•
Conversion to BB form: set  for i, j ∈ {1, 2} and then compute the remaining coefficients , i, j 

∈ {0, 1, 2, 3} of the bicubic BB-patches ak(u, v), k = 1, …, n, as averages of the  so that the ak join C1 

except at the irregular point  that we set to the average of the surrounding control points 

.

• Subdivide the patches ak to get sub-patches hk,ij := Sak, i, j ∈ {1, 2}. When i +j > 2 then bk,ij := hk,ij.

•
Only the subpatches hk,11 that include the central point still require work. Abbreviating , we 
apply the projection P (cf. [Rei97, Sect.6]):

b11
b21
b12

: = P

h11
h21
h12

: =

P1 P2 P3
P4 P5 P6
P7 P8 P9

h11
h21
h12

(1)

where

, for ν = 1, …, 9, and j, k = 0, …, n − 1,

φn := 2π/n, ψ := arg((1 + iβsinφn)e−iφn/2), β := 1/10,

,

.

Average  for all edges and set  for all vertices of valence n.

4. Properties

Smoothness, namely the C1 continuity of the resulting surface, follows immediately from 

[Rei97, Theorem 1.2]. For 1 < p < 4, the Lp norms of the main curvatures the singularly 

parameterized surfaces are finite at and near the irregular points [Rei97, Theorem 1.4]. 

Refinability means that applying B-spline subdivision to the control net c and then applying 

the Algorithm yields the same surface as applying the Algorithm followed by subdividing 

the resulting Bézier patches by deCasteljau’s algorithm. Abbreviating the Algorithm as PSc, 

refinability is therefore equivalent to showing that the following diagram commutes:

(2)

Commutativity follows since, by definition of a projection, PPS = PS and PSPS = SPS, and 

S keeps a projected function unchanged.

To prove linear independence of the functions  associated with the control point , we 

first observe that the regular PHT elements are linearly independent, i.e. there is a functional 

that is one for one element and zero for all other elements (by definition they are not 

supported near the irregularity). Hence, to reproduce the zero function, we may set their 
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coefficients to zero and remove them from consideration. Of the functions associated with an 

irregular quad,  is also regular, hence can also be removed. For the remaining 3n 

functions  and  associated with one n-sided hole, consider their sub-patches bk,22, 

k = 0, …, n − 1. Let bk,22(1, 1) be the corner point not shared with any bk,ij , i +j < 4 and 

denote by  the functional acting on the patch bℓ,22 of a function by twice 

differentiating in the second variable followed by evaluation at (1, 1). Then  for 

all  except for  (see Fig. 3) and, symmetrically,  except for . This leaves 

only the maps  for consideration of dependence. Linear independence follows since 

 (differentiation twice in each variable) unless k = ℓ.

5. Some uses

In this section, we illustrate two uses of the C1 spline elements for irregular quad layout.

Surface construction from a quad mesh—Fig. 4c illustrates that, depending on the 

choice of coefficients, regular tensor-product bi-3 splines with double knots can have a poor 

highlight line distributions. The simple default choice of interpreting the quad-mesh vertices 

as bi-3 B-spline coefficients and inserting knots to obtain the  often yields good highlight 

lines in regular spline regions. For irregular neighborhoods, the surfaces generated by the 

Algorithm are only of moderate quality (see Fig. 4b,d). However, Fig. 4e shows that we one 

can choose functionals and optimize the coefficient placement near irregularities to generate 

surfaces of reasonable quality. We do not discuss this further since more research is required 

to see whether one can consistently obtain good shape with a simple recipe for different 

valences. While the resulting surfaces are still not ‘class A’, their highlight line distribution 

may be acceptable where IGA might be deployed, such as the inside surfaces of a car door.

Isogeometric analysis—Next, we test the C1 singular splines as isogeometric elements 

on two model problems: Poisson’s equation on the square and the Scorderlis-Lo roof 

benchmark problem of the shell obstacle course [BSL+85]. The latter demonstrates that the 

weak form of differential equations up to fourth order can be solved with the new finite 

elements.

Example 1—We solve Poisson’s equation:

(3)

on the square Ω := {(x, y) ∈ ℝ2 : 0 < x < 6, 0 < y < 6} with f := (4π2/9) sin((πx)/3) 

sin((πy)/3). The exact solution is u = 2sin((πx)/3) sin((πy)/3). We intentionally create a 

simple irregular partition of the square to be able to compare the convergence when 

computing with irregular layout to the well-known error reduction under refinement by 2−4 

on the regular layout. For the simple(st) irregular parition, we insert irregular points of 

valence 3 and of valence 5 as shown in Fig. 5a. We numerically solve Equation (3) by 
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Galerkin’s Method and assemble the stiffness matrix and the right-hand-side of the PDE 

system based on the Bézier coefficients of the splines.

Table 1 lists the L2, L∞ and H1 errors of isogeometric analysis on the irregular layout Fig. 

5a. This irregular layout is then uniformly refined. Solving, for comparison, the equation 

using tensor-product cubic spline that is five times uniformly refined yields L2, L∞ and H1 

errors of 7.2e-7, 4.9e-7 and 4.8e-05. That is, the error after ℓ = 5-fold refinement differs by 

roughly one order of magnitude in favor of the regular spline. Correspondingly, the 

convergence rates for the singular construction are almost the same as those for the regular 

spline refinement, namely almost 24 for the L2 norm and L∞ norm and close to 23 for the H1 

norm.

Table 2 list the L2, L∞ and H1 errors and the corresponding convergence rate measured for 

local PHT-type refinement Fig. 5(d,f). Fig. 5(c,e,g) illustrates that maximal errors decrease 

with each local refinement. Since the local refinement is applied to reduce the maximal 

error, the L∞ norm decreases while, as expected, the L2 and H1 errors do not change much.

Example 2—Next, we solve the Scorderlis-Lo roof benchmark problem in Koiter’s shell 

model [Koi70] under Kirchhof-Love assumptions. This is a fourth order PDE hence requires 

smoothness of the elements in the weak formulation. The displacement vector field of the 

thin shell is found by minimizing the total potential energy function, which depends on 

membrane strain, bending strain, body force and traction, Young modulus and Poisson’s 

ratio (see e.g.[COS00]).

With x and y our C1 bicubic splines and z the analytical height function, we modeled the 

roof as x := (x, y, z(x, y)). The quality of the computation is measured in Fig. 6f by tracking 

the maximum displacement (of the midpoint on the edge aligned with the cylinder’s axis). 

While local refinement along the boundary alone Fig. 6[a–d] only makes little progress, 

under uniform refinement the value converges quickly to the benchmark value.

6. Conclusion

We rediscovered and modified a construction of U. Reif to obtain a smooth spline complex 

where less or more than four tensor-product patches meet. Starting with a quad mesh, our 

modification yields a uniform distribution of degrees of freedom: each quadrilateral has four 

degrees of freedom and each degree of freedom is represented as a coefficient associated 

with one spline function. These spline functions are linearly independent. The resulting 

space complements PHT splines, is refinable and the refined spaces are nested. That is, 

surfaces constructed from the splines are unchanged under refinement.
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Figure 1. 
Piecewise bi-cubic refinable C1 basis functions fij. On quadrilaterals adjacent to irregular 

points, the basis functions of the spline space consist of 2 × 2 C1-connected polynomial 

pieces. Surface and analysis space consist of linear combinations Σcijfij with control points 

cij.
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Figure 2. 
Construction at an irregular node of valence n = 5. (a) Input: B-spline-like control points c, 

intermediate subpatches hk,ij and the subscripts {11, 12, 21, 22} of the inner Bézier control 

points of hk,11. (b) Output: Bézier points  obtained by projection P of the bi-3 patches 

hk,11(u, v).
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Figure 3. 

Nonzero BB coefficients ● of the basis function . The coefficient marked additionally 

with an × is nonzero only for . It is zero for  or , k = 0, …, n − 1 and for , k ≠ ℓ.
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Figure 4. 
(a,b)Surface with 3,5 and 6-sided singularly-covered neighborhoods. (c) Regular control net 

and highlight lines on a regular C1 bi-3 spline surface. (d,e) 3-neighborhood improved by 

optimizing coefficient positions.
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Figure 5. 
Poisson’s equation on the square [0, 6]2. (d) and (f) increase refinement local to the 5-valent 

points.
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Figure 6. 
Convergence of the displacement of the Scordelis-Lo roof to the benchmark.
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	Surface construction from a quad mesh—Fig. 4c illustrates that, depending on the choice of coefficients, regular tensor-product bi-3 splines with double knots can have a poor highlight line distributions. The simple default choice of interpreting the quad-mesh vertices as bi-3 B-spline coefficients and inserting knots to obtain the  often yields good highlight lines in regular spline regions. For irregular neighborhoods, the surfaces generated by the Algorithm are only of moderate quality (see Fig. 4b,d). However, Fig. 4e shows that we one can choose functionals and optimize the coefficient placement near irregularities to generate surfaces of reasonable quality. We do not discuss this further since more research is required to see whether one can consistently obtain good shape with a simple recipe for different valences. While the resulting surfaces are still not ‘class A’, their highlight line distribution may be acceptable where IGA might be deployed, such as the inside surfaces of a car door.Isogeometric analysis—Next, we test the C1 singular splines as isogeometric elements on two model problems: Poisson’s equation on the square and the Scorderlis-Lo roof benchmark problem of the shell obstacle course [BSL+85]. The latter demonstrates that the weak form of differential equations up to fourth order can be solved with the new finite elements.Example 1—We solve Poisson’s equation:(3)on the square Ω := {(x, y) ∈ ℝ2 : 0 < x < 6, 0 < y < 6} with f := (4π2/9) sin((πx)/3) sin((πy)/3). The exact solution is u = 2sin((πx)/3) sin((πy)/3). We intentionally create a simple irregular partition of the square to be able to compare the convergence when computing with irregular layout to the well-known error reduction under refinement by 2−4 on the regular layout. For the simple(st) irregular parition, we insert irregular points of valence 3 and of valence 5 as shown in Fig. 5a. We numerically solve Equation (3) by Galerkin’s Method and assemble the stiffness matrix and the right-hand-side of the PDE system based on the Bézier coefficients of the splines.Table 1 lists the L2, L∞ and H1 errors of isogeometric analysis on the irregular layout Fig. 5a. This irregular layout is then uniformly refined. Solving, for comparison, the equation using tensor-product cubic spline that is five times uniformly refined yields L2, L∞ and H1 errors of 7.2e-7, 4.9e-7 and 4.8e-05. That is, the error after ℓ = 5-fold refinement differs by roughly one order of magnitude in favor of the regular spline. Correspondingly, the convergence rates for the singular construction are almost the same as those for the regular spline refinement, namely almost 24 for the L2 norm and L∞ norm and close to 23 for the H1 norm.Table 2 list the L2, L∞ and H1 errors and the corresponding convergence rate measured for local PHT-type refinement Fig. 5(d,f). Fig. 5(c,e,g) illustrates that maximal errors decrease with each local refinement. Since the local refinement is applied to reduce the maximal error, the L∞ norm decreases while, as expected, the L2 and H1 errors do not change much.Example 2—Next, we solve the Scorderlis-Lo roof benchmark problem in Koiter’s shell model [Koi70] under Kirchhof-Love assumptions. This is a fourth order PDE hence requires smoothness of the elements in the weak formulation. The displacement vector field of the thin shell is found by minimizing the total potential energy function, which depends on membrane strain, bending strain, body force and traction, Young modulus and Poisson’s ratio (see e.g.[COS00]).With x and y our C1 bicubic splines and z the analytical height function, we modeled the roof as x := (x, y, z(x, y)). The quality of the computation is measured in Fig. 6f by tracking the maximum displacement (of the midpoint on the edge aligned with the cylinder’s axis). While local refinement along the boundary alone Fig. 6[a–d] only makes little progress, under uniform refinement the value converges quickly to the benchmark value.
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