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Abstract

Drug addiction takes a massive toll on society. Novel animal models are needed to test new 

treatments and understand the basic mechanisms underlying addiction. Rodent models have 

identified the neurocircuitry involved in addictive behavior and indicate that rodents possess some 

of the same neurobiologic mechanisms that mediate addiction in humans. Recent studies indicate 

that addiction is mechanistically and phylogenetically ancient and many mechanisms that underlie 

human addiction are also present in invertebrates. The nematode Caenorhabditis elegans has 

conserved neurobiologic systems with powerful molecular and genetic tools and a rapid rate of 

development that enables cost-effective translational discovery. Emerging evidence suggests that 

C. elegans is an excellent model to identify molecular mechanisms that mediate drug-induced 

behavior and potential targets for medications development for various addictive compounds. C. 
elegans emit many behaviors that can be easily quantitated including some that involve 

interactions with the environment. Ethanol (EtOH) is the best-studied drug-of-abuse in C. elegans 
and at least 50 different genes/targets have been identified as mediating EtOH’s effects and 

polymorphisms in some orthologs in humans are associated with alcohol use disorders. C. elegans 
has also been shown to display dopamine and cholinergic system–dependent attraction to nicotine 

and demonstrate preference for cues previously associated with nicotine. Cocaine and 

methamphetamine have been found to produce dopamine-dependent reward-like behaviors in C. 
elegans. These behavioral tests in combination with genetic/molecular manipulations have led to 

the identification of dozens of target genes/systems in C. elegans that mediate drug effects. The 

one target/gene identified as essential for drug-induced behavioral responses across all drugs of 

abuse was the cat-2 gene coding for tyrosine hydroxylase, which is consistent with the role of 

dopamine neurotransmission in human addiction. Overall, C. elegans can be used to model aspects 

of drug addiction and identify systems and molecular mechanisms that mediate drug effects. The 

findings are surprisingly consistent with analogous findings in higher-level organisms. Further, 

model refinement is warranted to improve model validity and increase utility for medications 

development.
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1. INTRODUCTION

Addictions represent a major and growing challenge in our society. Drug addiction takes a 

massive toll on both direct and indirect human and financial costs, including hundreds of 

thousands of deaths annually from alcohol and drug-related auto accidents, cancer, and other 

conditions resulting from alcohol and nicotine addiction, drug-associated homicides, and 

overdoses. The resulting costs to society are estimated to be hundreds of billions of dollars 

annually worldwide in lost productivity, drug enforcement, hospitalizations, and treatments 

for healthcare resulting directly or indirectly, from drug use.1 Clearly there is an urgent need 

for effective treatments and prevention strategies that are developed from an understanding 

of the basic mechanisms that underlie addictive behavior. Much of what we know about the 

neurobiology of addictions has been either discovered or enhanced through the use of animal 

models.2 This includes the discovery and characterization of some of the basic reward 

circuitry and the development of behavioral measures to model and study human addiction 

in animals.3

Here we discuss a relatively new model system to study addiction based on behavioral 

measures in a decidedly ancient and simple animal Caenorhabditis elegans. The review will 

briefly introduce animal modeling of addiction in vertebrates and invertebrates to provide 

some context for the following discussion of C. elegans models of addiction. Discussion 

then turns to specific drugs of abuse including alcohol, nicotine, cocaine, and 

methamphetamine, their effects in C. elegans, and some of the biologic systems and 

molecular targets identified with these models. Some ideas are presented indicating how C. 
elegans models may be developed and refined in the future to enhance model validity, 

increase utility for medications development, and improve model value for translational 

applications.

2. MODELS OF ADDICTION

Through the years, model systems, using primates and other mammals closely associated 

with humans, have provided essential information—particularly associated with the 

behavioral effects of drugs.4,5 However, a review of the literature on animal models of 

addiction shows that rodents (mainly rats and mice) are a very popular species for addictions 

research.2,6 This is due, in large part, to the fact that rodents share basic neurobiologic 

systems, both structurally and functionally, with humans. In this way, they have enabled the 

identification of circuitry underlying addictive behavior. In addition, these animals self-

administer drugs of abuse including ethanol (EtOH),6 stimulants including cocaine, nicotine, 

amphetamine, metham-phetamine,7,8 opiates such as heroin and morphine,9 and many other 

drugs including caffeine and THC.10,11 Self-administration provides validity to these 

models, indicating that such models recapitulate some aspects of drug-taking behavior.12 

Similarly, rodent models of addiction also show evidence of construct validity, in which 

some of the mechanisms and neurobiology that appear to mediate addictive behavior in 

humans also are present, and function through analogous systems in mammalian models.12 

Finally, rodent models also demonstrate predictive validity, indicating that drugs/treatments 

that reduce addictive behavior in humans, also show some efficacy in rodents.13 Overall, 

these models have, and continue to provide essential information about the neurobiology of 
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addiction and have been instrumental in the development of the few available pharmacologic 

treatments.14 However, relatively little is understood about the molecular foundations of 

addiction, and animal models that can quickly, efficiently, and systematically examine the 

underlying mechanisms of addictions have yet to be developed.

3. INVERTEBRATE MODELS

Recent work shows that addiction is a phylogenetically ancient process and indicates that 

many mechanisms that underlie addictions are present in invertebrates. Elegant behavioral 

models of addiction such as conditioned place preference (CPP), and other tools historically 

used to study aspects of addictive behavior in rodent models,15 have demonstrated that 

crayfish show drug reward, seeking, and withdrawal to cocaine, amphetamines, and 

opiates.16 Similarly, EtOH self-administration and conditioning paradigms have 

demonstrated that Drosophila melanogaster show preference responses to cues that had been 

previously paired with EtOH.17 Although some might find it surprising that such a simple 

animal can be used to model complex behaviors, behavioral models using invertebrates have 

played a central role in the discovery of the molecular mechanisms that underlie learning 

and memory.18 The nematode C. elegans is an excellent model organism with conserved 

neurobiologic systems that is used to model various disease states.19 It provides the 

researcher with numerous molecular and genetic tools, including a tractable and fully 

sequenced genome, the availability of thousands of mutants, and the ability to manipulate 

genes and their expression through transgenic approaches and RNAi techniques. In addition, 

a relatively short life cycle and a 3-day generation time from egg to adult can lead to a 

dramatic increase in the pace of discovery at a fraction of the cost of using higher level 

organisms. However, to date, there are few established C. elegans behavioral models of 

addiction. We have discovered that, like mammals and other invertebrates, C. elegans also 

develops a conditioned preference for cues after previous parings with methamphetamine or 

cocaine that is dependent on dopamine neurotransmission.20 Moreover, with drug pre-

exposure they demonstrate sensitization, cross-sensitization, tolerance, and cross-tolerance, 

all of which are hallmarks of addiction in humans. Validated C. elegans behavioral models 

of addiction designed to enable fast and accurate generation of data would provide the field 

with valuable and powerful tools to study the molecular mechanisms that underlie addiction, 

and open new avenues to identify new targets for medications development.

4. C. ELEGANS AS A MODEL SYSTEM TO STUDY ADDICTION

C. elegans is an obvious choice as a model system, as the first animal to have its genome 

completely sequenced,21 and with approximately 19,000 genes, more is known about the 

genetics and molecular make-up of C. elegans than any other ambulatory organism.22 C. 
elegans has been used to model many types of disorders in humans,19 including neurologic 

and psychiatric disorders ranging from Parkinson’s disease to Autism.23–25 Although 

rodents have been used to model addiction for many decades,26–29 the use of C. elegans as a 

model system to study addiction is a relatively recent development.30–33 Clearly, using C. 
elegans as a model for psychiatric disorders (such as addiction) has some limitations 

including a lack of some neurotransmitter systems such as norepinephrine. Also, till date, a 

limited number of valid behavioral models have been developed and characterized to study 
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the reinforcing properties of drugs. However, accumulating evidence indicates that C. 
elegans is an excellent model to identify molecular mechanisms that mediate drug effects 

and potential targets for medications development for various addictive compounds. C. 
elegans emit many behaviors that can be easily quantitated such as egg laying and 

defecation, as well as a host of movement and postural measures, including speed of 

locomotion and counting the number of body bends per unit time.34 Other measures 

document how C. elegans interacts with its environment, including chemotaxic behavior,35 

as well as associative and nonassociative learning.36 Many of these behaviors have been 

studied for decades and the neurobiologic systems and circuits that mediate them are well 

described, making C. elegans an excellent candidate model system to study the effects of 

drugs on behavior.

5. DRUGS OF ABUSE

5.1 Ethanol

Investigators have discovered that C. elegans can be used to study the effects of EtOH.37,38 

Several studies have established that C. elegans display concentration-dependent depression 

of a variety of behaviors, including locomotion, body bend amplitude, and egg laying, after 

exposure to EtOH.38 Importantly, the depressant effects on the locomotor activity of C. 
elegans occur when the internal tissue concentration of EtOH reaches levels that correspond 

to intoxicating blood alcohol levels in humans.39 To date, at least 50 genes have been 

identified that influence EtOH-associated behaviors in C. elegans, and several orthologs of 

these genes have been implicated in alcohol use disorders in humans.40 As with vertebrates, 

dopamine systems appear to play a role in EtOH-induced behavioral effects in C. elegans. 

EtOH induces state-dependent learning in C. elegans that is absent in animals with 

functional mutations in the vesicular monoamine transporter (cat-1) or tyrosine hydroxylase 

(cat-2). In certain experimental paradigms, C. elegans also show an EtOH preference 

response in choice tests that appears to be mediated through the dopamine and serotonin 

systems.41 Some of these early observations led to the development of a simple behavioral 

model to study the effects of EtOH in C. elegans and leverage the fully tractable molecular 

genetics available to researchers using this species. Investigators use some of these 

behavioral paradigms to identify mutations in individual genes that affect behavioral 

responses to EtOH in C. elegans. Once identified, conserved homologs of these genes may 

be examined for effects on alcohol-related behaviors in other animal models, and/or 

polymorphisms of such genes may be assessed in humans for possible roles in alcohol use 

disorders.

After isolating mutants that showed resistance to the behavioral effects of EtOH, Davies et 
al.42 found that mutations in the gene slo-1, a highly conserved gene which codes for a BK 

potassium channel that is homologous to one found in humans, produced resistance to the 

locomotor effects of EtOH.33,43 These effects of EtOH were found to be mediated through a 

direct action at the channel to increase current and to be selective for EtOH.38 The BK 

potassium channel appears to subserve behavioral responses across multiple species 

including humans.32,33,42 Additional work has identified a specific residue (T381I) on the 

channel that confers dramatic and selective resistance to the behavioral effects of EtOH.32 
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Thus, the BK potassium channel is a verified mediator of the effects of EtOH across phyla 

and may serve as a target for the identification and development of new treatments for 

alcohol use disorders.

An essential characteristic of EtOH effects in animal models is the development of 

tolerance, which is an adaptation that occurs when the same concentration of EtOH produces 

a reduced behavioral response after chronic or repeated exposure.33,44 After continued 

exposure to EtOH, acute functional tolerance becomes apparent in the Bristol (N2) wild-type 

C. elegans strain. However, such tolerance occurs much more rapidly in the Hawaiian 

CB4856 wild-type strain.45 This effect was found to be mediated by a variation in the npr-1 

gene. This gene codes for a neuropeptide Y (NPY) receptor homolog in C. elegans that was 

previously shown to underlie differences in social behavior and responses to food.46 

Moreover, NPY is known to regulate EtOH and food intake in vertebrate models.47,48 Since 

tolerance is a key feature in the progression to alcohol dependence in humans,49 NPY 

appears to be an excellent molecular target for treatment development50,51 and may be aided 

through the study of the npr-1 gene in C. elegans. More recently, EtOH-induced muscle 

hypercontraction (EHC) was found to be dependent on cholinergic signaling as the effect 

was significantly reduced in cholinergic signaling mutants (cha-1 and unc-17) and with 

exposure of the nonselective nicotinic cholinergic receptor antagonist mecamylamine.52 

Tolerance to EHC was evident in wild-type worms, but was absent in a Na+/K+ ATPase 

mutant eat-6(eg200). Interestingly, cholinergic functioning is also affected by long-chain 

polyunsaturated fatty acids and mutants deficient in this type of fatty acids show deficits in 

both the initial sensitivity to EtOH and in the development of acute functional tolerance.53 

These data implicate cholinergic systems, fatty acid metabolism, and Na+/K+ ATPase 

function in the acute activation and/or tolerance effects of EtOH in C. elegans, and similar 

systems may mediate EtOH effects in vertebrates through orthologous mechanisms.

Recent efforts in many research domains have focused on epigenetics. It has become 

increasingly clear that epigenetic factors such as histone modification play important roles in 

various aspects of addiction.54,55 A recent study employing EtOH response behaviors in C. 
elegans demonstrated that genes coding for components of the conserved switching 

defective/sucrose nonfermenting (SWI/SNF) chromatin-remodeling system are required for 

the development of acute functional alcohol tolerance in C. elegans and/or affect the initial 

sensitivity to EtOH.56 This study identified 12 different genes within this system that are 

involved in mediating these effects in worms. Moreover, allelic variations in SWI/SNF genes 

(especially in bromodomain containing 7 (BRD7)—homolog to swsn-9 in C. elegans) were 

associated with a diagnosis of alcohol dependence in a human genome-wide association 

study. Although it is likely that this study only begins to explore epigenetic mechanisms 

mediating the behavioral effects of EtOH, it does demonstrate the utility of using C. elegans 
models to identify possible epigenetic factors and to identify genes/proteins that may serve 

as future targets for medications development.

5.2 Nicotine

C. elegans are thought to express at least 27 different nicotinic acetylcholine receptor 

(nAChR) subunits,57,58 and thus a rich cholinergic pharmacology. As in higher-level 
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organisms, acetylcholine in C. elegans is critical for many essential behaviors involving 

muscle contraction, including movement, feeding, and egg laying and several nAChR genes 

have been identified.57 Nicotine application induces muscular hypercontraction and egg 

laying. Continuous exposure to nicotine affects control of egg laying59,60 which is 

dependent on the UNC-29 gene.59 Such exposure also results in tolerance, and nicotine-

adapted animals display uncoordinated locomotor activity when removed from nicotine61 

and tolerance is thought to be protein kinase C (PKC) dependent.59 Further work has 

demonstrated that nicotine-dependent behavior in C. elegans is controlled by transient 

receptor potential (TRP) proteins TRP-1 and TRP-2.62 A TRP channel (TRPA1) works to 

regulate the aversive responses to nicotine and has been identified as a potential target for 

nicotine pharmacotherapy development in humans.63 Overall, these studies demonstrate that 

nicotinic systems subserve many analogous functions in C. elegans and nicotine exposure 

produces behavioral effects that are also consistent with nicotine effects in humans. 

Furthermore, some specific mediators of nicotine responses appear to be highly conserved in 

C. elegans.

C. elegans have also been shown to display a concentration, time, and age-dependent 

attraction to nicotine that is reduced by exposure to the nonselective nicotinic receptor 

antagonists mecamylamine or varenicline.31 Worms with mutations in genes coding for the 

dop-1 or dop-2 dopamine receptors, or the acr-5 or the acr-15 nicotinic receptor subunit 

genes, also showed reduced approach to nicotine. The approach deficit in the acr-15 mutant 

could be rescued by selective re-expression in neurons but not muscle. C. elegans also show 

“reward-like” cue-conditioned preference for cues previously associated with nicotine which 

is absent in the acr-5 mutant.31 Together, these findings provide additional evidence that C. 
elegans may model not only the basic physiologic effects of nicotine, but also the 

motivational and rewarding properties of nicotine. Use of such models may help to identify 

the molecular underpinnings of nicotine dependence and identify new targets for the 

development of new smoking cessation pharmacotherapies.

5.3 Cocaine

C. elegans have conserved monoamine systems and a dopamine system that functions with 

remarkable similarity to vertebrates, including humans, in terms of signaling.64 Dopamine is 

involved in a wide variety of behaviors in the worm, including movement, egg laying, 

defecation, habituation to touch, as well as sensing and responding to food sources, and 

copulation behavior in males.64,65 The dopamine transporter (DAT-1) is sensitive to 

cocaine66 and the dopamine neurotoxin 6-hydroxydopamine induces selective dopamine 

neuronal degeneration in C. elegans as it does in vertebrates.67 Also, cocaine at relatively 

high concentrations (1.0+ mM) can moderately reduce locomotion velocity and this effect 

appears to be mediated mainly through the serotonin system.68 To determine if cocaine 

could induce reward-like behaviors in C. elegans, our group employed a Pavlovian 

chemosensory cue-conditioning paradigm in which cocaine was paired with an 

environmental stimulus (a distinctive food or salt cue).20 After multiple pairings, worms 

were tested in the absence of cocaine to determine if the history of cocaine coexposure 

affected the worms’ affinity for the cue. Cocaine pairing (5–50 μM) significantly increased 

preference for either a salt or food cue. The effect was absent in dopamine-deficient mutants, 
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including cat-1 (defective in vesicular packaging of monoamines including dopamine) and 

cat-2 (tyrosine hydroxylase deficient). The cue-conditioned response was rescued in the 

mutant strains by conducting the conditioning and testing procedures in the presence of 

exogenous dopamine.20 In all, these studies suggest that C. elegans may be an excellent 

model system to study the behavioral responses (including the rewarding properties) of 

cocaine.

5.4 Methamphetamine

Like cocaine, the addictive properties of methamphetamine in mammals are thought to be 

mediated, in large part, through its effects on dopamine transport.69 However, in addition to 

inhibiting uptake, methamphetamine also induces release, and prolonged exposure can 

induce biogenic amine neurotoxicity.70 In C. elegans, relatively high concentrations of 

methamphetamine were shown to have effects on egg laying (8.0+ mM), feeding (2.0+ mM), 

locomotion (16.0 mM), and survival (8.0+ mM) after 1 h of exposure.71 The lethal effects of 

methamphetamine (but not its effects on egg laying) were significantly reduced in a mutant 

strain (nsy-1 [eg691]) that had a single nucleotide mutation in the NSY-1 protein. The 

mutant also demonstrated resistance to the lethal effects of exposure to high concentrations 

of dopamine and 3,4-methylenedioxymethamphetamine (MDMA). The nsy-1 gene is 

associated with sensory neurons,72,73 has functions in the innate immune response,74 and 

appears to be an ortholog of apoptosis signal-regulating kinase-1.71 Little is known about the 

relationship between the neurotoxic and appetitive/addictive properties of 

methamphetamine, and C. elegans may serve as an appropriate model system to study this 

relationship and identify targets for treatments to possibly reduce the neurotoxic effects of 

methamphetamine.

As with cocaine, our group also investigated reward-like behaviors of methamphetamine in 

C. elegans using the Pavlovian chemosensory cue-conditioning paradigm.20 Previous 

methamphetamine pairing (50–500 μM) significantly increased preference for either a salt or 

food cue. Also similar to cocaine, the effect was absent in both dopamine-deficient mutants 

cat-1 and cat-2. The methamphetamine cue-conditioned response was also rescued in the 

mutant strains by conducting the conditioning and testing procedures in the presence of 

exogenous dopamine.20 These studies provide additional evidence that, as in mammals 

methamphetamine is mediating its rewarding effects through the dopamine system, and both 

the rewarding and neurotoxic effects of methamphetamine can be modeled in C. elegans.

6. CONVERGENT MECHANISMS OF DRUGS OF ABUSE IN C. ELEGANS

Although the majority of work examining behavioral responses to drugs of abuse in C. 
elegans thus far has been conducted in EtOH research, and additional work is needed with 

other abused drugs to better characterize the mechanisms of action across drug classes, some 

consistencies are apparent across the drugs examined in the current manuscript. In reviewing 

the molecular targets identified in the behavioral paradigms as described in Table 1, 

monoamine neurotransmission-associated genes are involved in mediating at least some 

behaviors induced by each drug.20,31,41,68,75–77 In particular, within this classification, 

mutation of the tyrosine hydroxylase gene cat-2 resulted in reductions in drug-induced 
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behaviors for each drug of abuse.20,76,77 Although this type of mutation is lethal in 

rodents,78 drugs of abuse have long been known to function, at least in part, through the 

dopamine neurotransmitter system3,27 and all of the addictive drugs examined here have 

direct or indirect effect on dopamine systems. Similarly, alterations that affect cholinergic 

neurotransmission also inhibit behavioral responses of C. elegans to nicotine.31,62 In this 

respect, these findings are consistent with known mechanisms of action of these drugs in 

higher-level organisms, including humans. Also like vertebrate species, drug effects in C. 
elegans appear to be affected by a wide variety of genes, proteins, and neurobiologic systems 

that are known to mediate and/or support neuronal function (see Table 1). However, since 

the majority of these targets to date have been tested in EtOH models, but not with other 

drugs of abuse, additional studies are needed to determine if these molecular targets are 

selective for EtOH or represent common mechanisms for multiple drugs of abuse.

7. LEVERAGING C. ELEGANS FOR MODEL DEVELOPMENT AND DRUG 

DISCOVERY

The previous discussion indicates that C. elegans can be used to model aspects of drug 

addiction and identify systems and molecular mechanisms that mediate drug effects. 

Overall, the findings are surprisingly consistent with analogous findings in higher-level 

organisms—including humans—and suggest that the effects of addictive drugs are highly 

conserved. Additional study is needed to better characterize these models and provide a 

better understanding of how exposure to drugs of abuse can change C. elegans neurobiology

—driving the animal to seek out further drug exposure. Fortunately, C. elegans has a 

tractable genome that enables both forward and reverse genetics approaches that can be 

applied to the study of addictions.33 Additional opportunities for further C. elegans model 

development in the addiction field includes modeling the consequences of drug exposure 

during critical stages of development. Previous work has described the anatomical effects of 

embryonic EtOH exposure in C. elegans which has some parallels to fetal alcohol syndrome 

in humans.86 However, few studies have examined the effects of drug exposure in 

development on future drug-associated behavior. Initiation of drug taking in humans 

typically begins in adolescence; thus, models that utilize the exclusive study of the effects of 

drugs in fully developed adults do not capture the impact of drugs on a developing nervous 

system. New models that focus on development, and/or take such factors into account, may 

better model the time course and progression of addiction in humans.

C. elegans are used for screening in a multitude of paradigms. Features such as low cost of 

maintenance, minimal space requirements, and the availability of image-analysis software 

for data collection affords advantages to C. elegans models in the development of high-

throughput assays for medications screening purposes. However, although C. elegans are 

surprisingly highly conserved functionally, differences in some neurotransmitter systems and 

receptor pharmacology between C. elegans and humans could indicate limitations in this 

approach. For instance, although C. elegans make anandamide and 2-

arachidonoylglycerol,87 cannabinoid receptors have yet to be identified in C. elegans.88 Such 

differences in molecular systems and pharmacology between C. elegans and vertebrates 

could be viewed as a limitation of the model and indeed could limit its application for 
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certain drug classes. However, as previously discussed, C. elegans do respond to many of the 

common drugs of abuse (e.g., EtOH and the psychomotor stimulants) and the recent 

discovery of a class of opioid receptors in C. elegans89 may provide a new avenue for drug-

abuse modeling and treatment screening in C. elegans.

In order to evaluate the possible utility of C. elegans models in medications screening, drugs 

with known efficacy to treat addictions (such as naltrexone) need to be tested to establish 

predictive validity of the C. elegans models. It would be expected that some agents might 

prove more effective than others based on divergent pharmacology. However, diversity in 

pharmacology and molecular systems in C. elegans may also serve as an important 

advantage of this model system and provide additional information about how specific 

compounds may work to reduce drug intake. For instance, topiramate is a compound with a 

rich pharmacology and many possible mechanisms to reduce EtOH drinking. One possible 

mechanism is through actions at voltage-sensitive sodium channels,90 which are absent in C. 
elegans.91 Should topiramate prove ineffective in reducing the EtOH preference response in 

C. elegans, it would strengthen the argument that these channels may have a role in 

mediating EtOH drinking/seeking in vertebrates. Thus, the effects of agents to reduce drug 

intake in these models may be viewed in light of the molecular homology of the systems 

thought to mediate their respective effects in order to determine the possible influence of 

divergent pharmacology on the results. Such data might provide important information about 

the pharmacology and molecular substrates mediating the effects of established 

pharmacotherapies. Moreover, the advent of gene editing technology (such as CRISPR) 

offers the potential to replace C. elegans receptors with their human orthologs to possibly 

improve the translational impact and further increase the predictive validity of such models. 

This could significantly increase the utility of these models to identify new targets/candidate 

drugs for the treatment of addiction.

8. CONCLUSIONS

Addiction is a worldwide problem with severe consequences to health, relationships, crime, 

and economics at every level. Unfortunately, there are very few effective pharmacotherapies 

available to treat addicts. Animal models have been used to better understand the 

neurobiologic underpinnings of addictive behavior and C. elegans has emerged as a viable 

model system to study addiction. Various drug-induced behaviors in C. elegans have been 

utilized to identify genes and biologic systems that mediate specific behavioral responses 

(Table 1). Many of these genes/systems have orthologous representation in vertebrate 

animals and several have been implicated in human addiction. Thus far, EtOH is the best-

studied drug of abuse in C. elegans behavioral models, and genes affecting alcohol-

associated behavior in worms have been linked to polymorphisms in orthologous genes in 

humans with alcohol-related sensitivity and/or disorders.40 In general, these genes fall into 

categories related to (1) alcohol metabolism (i.e., alh-6 and alh-13), (2) neurotransmitter/

modulator function including acetylcholine (unc-63), monoamines (cat-1), dopamine (dop-4 

and cat-2), serotonin (tph-1), GABA (unc-25), neuropeptide Y (npr-1), (3) cation channels 

(slo-1, nca-1, and nca-2), and (4) chromatin remodeling complexes (swsn-4 and swsn-9). 

These data suggest that a number of orthologous neurobiologic systems and molecular 

mediators of EtOH effects in humans are present and also involved in behavioral responses 
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to EtOH in C. elegans. In addition, the HUMTH01-VNTR polymorphism in the human gene 

coding for tyrosine hydroxylase is associated with reduced odds of dependent smoking.92 

Although less information is currently available on the precise mechanisms and targets 

common to both C. elegans and humans associated with behavioral responses to other drugs 

of abuse, the consistent finding of dopamine system involvement (i.e., cat-2) in multiple 

classes of addictive drugs supports a conserved and central role for dopamine in the effects 

of drugs of abuse across animal species. The data generated thus far using C. elegans models 

are promising. However, further model development/refinement may enhance the validity of 

such models, and additional applications of the powerful molecular genetic methodologies 

used in C. elegans may enhance the utility of the species to aid in the identification of new 

targets and the development of addiction treatments.
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