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Abstract

Studies on genomic privacy have traditionally focused on identifying individuals using DNA 

variants. In contrast, molecular phenotype data, such as gene expression levels, are generally 

assumed free of such identifying information. Although there is no explicit genotypic information 

in them, adversaries can statistically link phenotypes to genotypes using publicly available 

genotype-phenotype correlations, for instance, expression quantitative trait loci (eQTLs). This 

linking can be accurate when high-dimensional data (many expression levels) are used, and the 

resulting links can then reveal sensitive information, for example, an individual having cancer. 

Here, we develop frameworks for quantifying the leakage of individual characterizing information 

from phenotype datasets. These can be used for estimating the leakage from large datasets before 

release. We also present a general three-step procedure for practically instantiating linking attacks 

and a specific attack using outlier gene-expression levels that is simple yet accurate. Finally, we 

describe the effectiveness of this outlier attack under different scenarios.

1 INTRODUCTION

Genomic privacy has recently emerged as an important issue, particularly in light of a surge 

in biomedical data acquisition 1–3. Among these, molecular phenotype datasets, like 

functional genomics measurements, substantially grow the list of the quasi-identifiers4 

which may lead to re-identification and characterization of individuals4–6. In general, 

statistical analysis methods are used to discover genotype-phenotype correlations7,8, which 

can be utilized by an adversary for linking the entries in genotype and phenotype datasets, 

thereby revealing sensitive information. The availability of a large number of correlations 

increases the possibility of linking9,10.

Protecting the privacy of participating individuals has emerged as an important issue in 

genotype-phenotype association studies. Several studies addressed the problem of detecting 
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whether an individual, with known genotype, has participated in a study11 raising privacy 

concerns12–15. We refer to these systematic breaches as “detection of a genome in a 

mixture” attacks (Supplementary Fig. 1). However, as the number and size of phenotype and 

genotype datasets increase, the detection of individuals in them will be irrelevant since any 

individual will already have their genotype or phenotype information stored in a dataset, i.e., 

participation will already be known. This opens up a new route to breaching privacy: An 

adversary can now aim at cross-referencing multiple, seemingly independent, genotype and 

phenotype datasets and pinpointing an individual to characterize her sensitive phenotypes. It 

is most certain that as personal genomics gains more prominence, the attackers will aim at 

linking different datasets in order to reveal sensitive information. We will refer to these 

attacks as “linking attacks”4,5. One well-known example of these is the attack that matched 

the entries in Netflix Prize Database and the Internet Movie Database16. For research 

purposes, Netflix released an anonymized dataset of movie ratings of thousands of viewers. 

This dataset was assumed to be secure as the viewer’s names were removed. However, 

Narayanan et al used the Internet Movie Database, in which the identities of many users are 

public but only some of their movie choices are available, and linked it to the Netflix dataset. 

This revealed the identities and personal movie preference information of many users in the 

Netflix dataset. This attack is underpinned by the fact that both Netflix and the Internet 

Movie Database host millions of individuals and any individual who is in one dataset is very 

likely to be in the other dataset. As the size and number of the genotype and phenotype 

datasets increase, the number of potentially linkable datasets will increase (Supplementary 

Note).

2 RESULTS

2.1 Linking Attack Scenario

In the linking attacks, the attacker aims at characterizing sensitive information about a set of 

individuals in a stolen genotype dataset (Fig. 1). For each individual, she aims at querying 

the publicly available anonymized phenotype datasets in order to characterize, for example, 

their HIV status. For this, she utilizes a public quantitative trait loci (QTL) dataset that 

contains genotype-phenotype correlations. She statistically predicts genotypes using the 

phenotypes and QTLs. Then she compares the predicted genotypes to the genotype dataset 

and links the entries that have good genotype concordance. The sensitive information for the 

linked individuals is revealed to the attacker.

Among the QTL datasets, the abundance of expression QTL (eQTL) datasets makes them 

most suitable for linking attacks. In an eQTL dataset, each entry contains a gene, a variant, 

and correlation coefficient, denoted by ρ, between the expression levels and genotypes (Fig. 

2, Supplementary Fig. 2). For reporting results and for performing mock linking attacks, we 

use the eQTLs and gene expression levels from the GEUVADIS Project17, and the 

genotypes from the 1000 Genomes Project18 as representative datasets.

2.2 Genotype Predictability and Information Leakage

We assume that the attacker will behave in a way that maximizes her chances of correctly 

characterizing the greatest number of individuals. Thus, she will try and predict the 
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genotypes, using the phenotype measurements, for the largest set of variants that she 

believes she can predict correctly. The most obvious way is by first sorting the genotype-

phenotype pairs with respect to decreasing strength of correlation then predicting the 

genotypes for each variant (Supplementary Fig. 3). The attacker will encounter a tradeoff: 

As she goes down the list, more individuals can be characterized (more genotypes can 

characterize more individuals) but it also becomes more likely that she makes an error in the 

prediction since the genotype-phenotype correlations decrease. This tradeoff can also be 

viewed as the tradeoff between precision (fraction of the linkings that are correct) and recall 

(fraction of individuals that are correctly linked). We propose two measures, cumulative 

individual characterizing information (ICI) and genotype predictability (π), to study this 

tradeoff.

ICI can be interpreted as the total amount of information in a set of variant genotypes that 

can be used to pinpoint an individual in a linking attack. This quantity depends on the joint 

frequency of the variant genotypes. For example, if the set contains many common 

genotypes, they will not be very useful for pinpointing individuals. On the other hand, rare 

variant genotypes give more information. Thus, the information content of a set of genotypes 

is inversely proportional to the joint frequency of the genotypes. We utilize this property to 

quantify ICI in terms of genotype frequencies (Online Methods, Fig. 2, Supplementary Fig. 

4). In order to estimate the joint frequency of variant genotypes, we assume that the variant 

genotypes are distributed independently (Online Methods, Supplementary Note).

For a set of variants, π measures how predictable genotypes are given the gene expression 

levels. Since genotypes and expression levels are correlated, knowledge of the expression 

enables one to predict the genotype more accurately than predicting without such 

information. In order to quantify the predictability, we use an information theoretic measure 

for randomness left in genotypes, given gene expression levels (Online Methods, Fig. 2). 

This has several advantages over using reported correlation coefficients for quantifying 

predictability. Although the correlation coefficient is a measure of predictability, it is 

computed differently in different studies and there is no easy way to combine and interpret 

the correlation coefficients for joint predictability of multiple eQTL genotypes. On the other 

hand, joint predictability can be easily quantified using π as it fits naturally to the 

information theoretic formulations (Online Methods). Furthermore, the predictability 

estimated via π can accommodate the non-linear relationships between genotype and 

phenotype–unlike the correlation coefficient, which generally measures linear relationships.

We first considered each eQTL and evaluated the genotype predictability versus the 

characterizing information leakage. We computed, for each eQTL in the GEUVADIS 

dataset, average predictability and average ICI over all the individuals (Fig. 3a). Most of the 

data points are spread along the anti-diagonal: eQTL variants with high major allele 

frequencies have high predictability and low ICI; and vice versa for variants with lower 

frequencies (Fig. 3b). This is expected because the genotypes of the high frequency variants 

can be predicted, on average, easily (most individuals will harbor one dominant genotype) 

and consequently do not deliver much characterizing information and vice versa for the 

eQTLs with lower frequency alleles. In order to evaluate how much gene expression levels 

contribute to predictability of genotypes, we use a shuffled eQTL dataset. The predictability 
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versus ICI leakage for the eQTLs in the shuffled eQTL dataset (Online Methods) is 

dominantly on the anti-diagonal (Fig. 3c). This is also expected as the predictabilities for 

shuffled eQTL genotypes depend mainly on how frequently they occur in the population 

(major frequency genotypes bring low ICI). On the other hand, the real eQTLs (Fig. 3b) 

deviate from the anti-diagonal, compared to shuffled eQTLs, which shows that expression 

supplies much information for predicting eQTL genotypes (Fig. 3c). The eQTLs with high 

correlation have substantially higher ICI and greater predictability. These results illustrate 

the fact that π measures the total effect of genotype frequencies and expression levels on the 

predictability of genotypes.

When multiple genotypes are utilized, the information leakage is greatly increased. To study 

this, we computed ICI and predictability for increasing numbers of eQTLs (Supplementary 

Note, Fig. 3d). As expected, the predictability decreases with increasing ICI leakage. 

Inspection of mean predictability versus mean cumulative ICI enables us to estimate the 

number of vulnerable individuals at different predictability levels. For example, at 20% 

predictability, there is approximately 8 bits of cumulative ICI leakage. At this level of 

leakage, the adversary can pinpoint an individual, with 20% accuracy, within a sample of 28 

= 256 individuals. Thus, within any sample of 256 individuals, we expect the attacker to 

correctly link 51 (20% of 256) individuals. Although the attacker would not know which 

individuals are correctly linked, she can estimate reliability of linkings, as discussed later, 

and focus on the most reliable ones. At 5% predictability, the leakage is 11 bits and the 

attacker can pinpoint an individual in a sample of 211 = 2048 individuals. This corresponds 

to approximately 100 individuals getting correctly linked (5% of 2048). Auxiliary 

information can be easily added into ICI. For example, gender information, which can be 

predicted with high accuracy from many molecular phenotype datasets, brings 1 bit of 

additional auxiliary information to ICI (Supplementary Note).

2.3 Framework for Linking Attacks

We present a three-step framework for practical instantiation of linking attacks (Fig. 4a). 

This framework can be used to perform mock linking attacks on datasets to assess their 

privacy risks. We use this framework to simulate mock attacks in the following sections for 

assessing their accuracies. The input is the phenotype measurements for an individual, who 

is being queried for a match to individuals in the genotype dataset (Fig. 1). In the first step, 

the attacker selects the QTLs, which will be used in linking. The selection of QTLs can be 

based on different criteria. As discussed earlier, the genotype predictability (π) is the most 

suitable QTL selection criterion. Although the attacker cannot practically compute 

predictability using only the QTL list, any function of predictability would still be useful to 

the attacker for selecting QTLs. For example, the most accessible criterion is selection based 

on the absolute strength of association, |ρ|, between the phenotypes and genotypes. The 

second step is genotype prediction for the selected QTLs by modeling the genotype-

phenotype distribution (Fig 4b). The third and final step of a linking attack is comparison of 

the predicted genotypes to the genotypes of the individuals in genotype dataset to identify 

the individual that best matches to the predicted genotypes. In this step, the attacker links the 

predicted genotypes to the individual in the genotype dataset (Online Methods).
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2.4 Individual Characterization by Linking Attacks

Using the three-step approach, we first evaluated the accuracy of linking using a genotype 

prediction model where the attacker knows exact joint genotype-expression distribution 

(Supplementary Note). Although not very realistic, this scenario is useful as a baseline 

reference for comparison of linking accuracy. The attacker builds the posterior distribution 

of genotypes given expression levels from the joint distribution. Finally, she predicts each 

genotype by selecting the genotype with maximum a posteriori probability (Supplementary 

Note, Supplementary Fig. 5) and links the predicted genotypes to the individual whose 

genotypes match best. For several eQTL selections with changing correlation threshold, the 

linking accuracy is above 95% and approaches 100% when auxiliary information is available 

(Fig. 5a).

In general, knowledge or correct reconstruction of the exact joint genotype-expression 

distribution may not be possible because the genotype-phenotype correlation coefficient 

alone is not sufficient to reconstruct the genotype distribution given the expression levels. 

The attacker can, however, utilize a priori knowledge about the genotype-expression relation 

and build the joint distributions using models with varying complexities and parameters 

(Online Methods, Supplementary Note, Supplementary Fig. 6). We focus on a highly 

simplified model where the attacker exploits the knowledge that the extremes of the gene 

expression levels (highest and smallest expression levels) are observed with extremes of the 

genotypes (homozygous genotypes). We use a measure, termed extremity, to quantify the 

outlierness of expression levels (Online Methods, Supplementary Note, Supplementary Fig. 

7a, b and 8). Based on the extremity of expression level and the gradient of association, the 

attacker first builds an estimate of the joint genotype-expression distribution, then constructs 

the posterior distribution of genotypes and finally chooses the genotype with the maximum a 
posterior probability (Online Methods, Supplementary Note, Fig. 4b).

The extremity based prediction methodology assigns zero probability to the heterozygous 

genotype. Thus, it assigns only homozygous genotypes to variants, for which the associated 

gene’s expression level has absolute extremity higher than a threshold. With this approach, 

the genotype prediction accuracy increases with increasing absolute correlation threshold 

(Supplementary Fig. 7c). We performed linking attack using this prediction method (in 2nd 

step of linking). In the 1st step of the attack, we used absolute correlation (|ρ|) and extremity 

thresholds (|δ|) for eQTL selection. The linking accuracy is higher than 95% for most eQTL 

selections (Fig 4b, Supplementary Fig. 7d). We also observed that changing extremity 

threshold does not affect the linking accuracy substantially compared to changing absolute 

correlation threshold. We thus focus on attack scenarios where the absolute extremity 

threshold is set to zero. This also simplifies the attack scenario by removing one parameter 

from genotype prediction. We performed linking attack with this model where we used the 

correlation-based eQTL selection in step 1, then extremity-based genotype prediction in step 

2. In the step 3, we evaluated two distance measures for linking the predicted genotypes to 

the individuals in genotype dataset (Online Methods, Supplementary Fig. 9). More than 95% 

of the individuals (Fig. 5b,c) are vulnerable for most of the parameter selections, which is 

more accurate compared to the baseline linking attack (Fig 5a). When the auxiliary 

information is used, the fraction of vulnerable individuals is 100% for most of the eQTL 
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selections. We also observed that the extremity attack may link close relatives to each other, 

which can create potential privacy concerns for the family (Supplementary Note, 

Supplementary Fig. 10a). These results show that linking attack with extremity-based 

genotype prediction, although technically simple, can be extremely effective in 

characterizing individuals.

We evaluated whether the attacker can estimate the reliability of the linkings. We observed 

that the measure we termed, first distance gap, denoted by d1,2, serves as a good reliability 

estimate for each linking. We computed the positive predictive value (PPV) versus 

sensitivity of the linkings with varying d1,2 thresholds. For the eQTL selection where overall 

linking accuracy is 84%, the attacker can link a large fraction (79%) of the individuals at a 

PPV higher than 95% (Online Methods, Fig. 5d, Supplementary Fig. 10b).

We also studied several biases that can affect linking accuracy. First, when the eQTL 

discovery sample set is different from the samples set on which linking attack is performed, 

the accuracies are still very high (Supplementary Note, Supplementary Fig. 10c). Moreover, 

attacks are accurate when there is mismatch between the tissue or population of eQTL 

discovery sample set and those of linking attack sample set (Supplementary Note, 

Supplementary Table 1a, b). In addition, we observed that the extremity attack is still 

effective when genotype sample size is very large (Supplementary Note, Supplementary Fig. 

10d).

3 DISCUSSION

In genomic privacy, it is necessary to consider the basic premise of sharing any type of 

information: there is always an amount of sensitive information leakage in every released 

dataset19. It is therefore essential for the genomic data sharing and publishing mechanisms 

to incorporate statistical quantification methods to objectively quantify risk estimates before 

the datasets are released. The quantification methodology and the analysis framework 

presented here can be used for analysis of the information leakage when the correlative 

relations between datasets can be exploited for performing linking attacks (Supplementary 

Note, Supplementary Fig. 11).

In the context of linking attacks, an individual’s existence in two seemingly independent 

databases (e.g., phenotype and the genotype) can cause a privacy concern when an attacker 

statistically links the databases using the a priori information about correlation of entries in 

the databases. The methods that we propose can be integrated directly into the existing risk 

assessment and management strategies. One such strategy is k-anonymization and its 

extensions20–22. This technique performs anonymization of the datasets by ensuring that no 

combination of the features (e.g., predicted genotypes) can be used to pinpoint an individual 

to less than k individuals. This is done by censoring the entries or by noise addition into the 

dataset. The estimates of genotype predictability and ICI leakages can be used to select 

which entries in the phenotype dataset should be anonymized so as to achieve anonymity. 

This maximizes the utility of the anonymized dataset by focusing only on the data points 

that leak the most characterizing information. In addition, as the anonymization process can 

focus only on the sources of highest leakage, this cuts down compute requirements23 and 
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increase efficiency of anonymization. Another approach is to serve phenotypic data from a 

statistical database. In this context, differential privacy has been proposed as an optimal way 

for privacy-aware data serving24. In a differentially private database, release mechanisms are 

used to query the database and share statistics of the underlying data. The individual records 

in the database are not shared. To ensure the privacy of the database, the release mechanisms 

keep track of the leakage in the past queries and limit access to the database. For phenotype 

databases, the ICI leakage can be incorporated into the release mechanisms so that the total 

leakage can be tracked. It is also worth noting that anonymized data publishing and serving 

mechanisms may substantially decrease the biological utility of the data25. Thus, it is 

necessary to integrate measures of biological utility of the anonymized datasets as another 

quantity in the risk assessment.

8 ONLINE METHODS

8.1 Genotype, Expression, and eQTL Datasets

The eQTL, expression, and genotype datasets contain the information for linking attack 

(Supplementary Fig. 2). The eQTL dataset is composed of a list of gene-variant pairs such 

that the gene expression levels and variant genotypes are significantly correlated. We will 

denote the number of eQTL entries with q. The eQTL (gene) expression levels and eQTL 

(variant) genotypes are stored in q × ne and q × nv matrices e and v, respectively, where ne 

and nv denotes the number of individuals in gene expression dataset and individuals in 

genotype dataset. The kth row of e, ek, contains the gene expression values for kth eQTL 

entry and ek,j represents the expression of the kth gene for jth individual. Similarly, kth row 

of v, vk, contains the genotypes for kth eQTL variant and vk,j represents the genotype (vk,j ∈ 

{0,1,2}) of k variant for jth individual. The coding of the genotypes from homozygous or 

heterozygous genotype categories to the numeric values is done according to the correlation 

dataset (Online Methods). We assume that the variant genotypes and gene expression levels 

for the kth eQTL entry are distributed randomly over the samples in accordance with 

random variables (RVs) which we denote with Vk and Ek, respectively. We denote the 

correlation between the RVs with ρ(Ek, Vk). In most of the eQTL studies, the value of the 

correlation is reported in terms of a gradient (or the regression coefficient) in addition to the 

significance of association (p-value) between genotypes and expression levels.

8.2 Quantification of Characterizing Information and Predictability

The genotype RV Vk takes 3 different values, {0,1,2}, where the genotype coding is done by 

counting the number of alternate alleles in the genotype. Given that the genotype is gk,j, we 

quantify the individual characterizing information in terms of self-information26 of the event 

that RV takes the value gk,j:

(1)

where Vk is the RV that represents the kth eQTL genotype, p(Vk = gk,j) is the probability 

(frequency) of that Vk takes the value gk,j, and ICI denotes the individual characterizing 

information. Given multiple eQTL genotypes, assuming that they are independent, the total 

individual characterizing information is simply summation of those:
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(2)

The genotype probabilities are estimated by the frequency of genotypes in the genotype 

dataset. We measure the predictability of eQTL genotypes using an entropy-based measure. 

Finally, the base of the logarithm that is used determines the units in which ICI is reported. 

When the base two logarithm is used as above, the unit of ICI is bits.

Given the genotype RV, Vk, and the correlated gene expression RV, Ek,

(3)

where π denotes the predictability of Vk given the gene expression level e, and H denotes the 

entropy of Vk given gene expression level e for Ek. The extension to multiple eQTLs is 

straightforward. For the kth individual, given the expression levels ek,j for all the eQTLs, the 

total predictability is computed as

(4)

In addition, this measure is guaranteed to be between 0 and 1 such that 0 represents no 

predictability and 1 representing perfect predictability. The measure can be thought as 

mapping the prediction process to a uniform random guessing where the average correct 

prediction probability is measured by π.

8.3 Extremity-Based MAP Genotype Prediction

Using an estimate of the joint distribution, the attacker can compute the a posteriori 
distribution of genotypes given gene expression levels. To quantify the extremeness of 

expression levels, we use a statistic we termed extremity. For the gene expression levels for 

kth eQTL, ek, extremity of the jth individual’s expression level, ek,j, is defined as

(5)

Extremity can be interpreted as a normalized rank, which is bounded between −0.5 and 0.5. 

The average median extremity is uniformly distributed among individuals (Supplementary 

Fig. 7a). In addition, around half of the genes (10,000) in each individual have extremity 

value exceeding 0.3. Also, around 1000 genes have an absolute extremity exceeding 0.45 

(Supplementary Fig. 7b). In other words, each individual harbors a substantial number of 

genes whose expressions are at the extremes within the population. These can potentially 

serve as quasi-identifiers. It is worth noting, however, that not all of these extreme genes are 

associated with eQTLs.
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Following from the above discussion, the adversary builds the posterior distribution for kth 

eQTL genotypes as

(6)

(7)

(8)

From the a posteriori probabilities, when the sign of the extremity and the reported 

correlation are the same, the attacker assigns the genotype value 2, and otherwise, genotype 

value 0. Finally, the genotype value 1 is never assigned in this prediction method, i.e., the a 
posteriori probability is zero. As yet another way of interpretation, the genotype prediction 

can be interpreted as a rank correlation between the genotypes and expression levels and 

choosing the homozygous genotypes that maximize the absolute values of the rank 

correlation. Thus, this process can be generalized as a rank correlation based prediction. The 

posterior distribution of genotypes in equations (6–8) can be derived from a simplified 

model of the genotype-expression distribution that utilizes just one parameter (Online 

Methods). We used the posterior genotype probabilities in extremity-based predictions and 

assessed the genotype prediction accuracy. As expected, the accuracy of genotype 

predictions increases with increasing correlation thresholds (Supplementary Fig. 7c). The 

slight decrease of genotype accuracy at correlation thresholds higher than 0.7 is caused by 

the fact that the accuracy (fraction of correct genotype predictions within all genotypes) is 

not robust at very small number of SNPs. Although we expect very high accuracy, even one 

wrong prediction among a small number of total genotypes decreases the accuracy 

significantly.

8.4 First Distance Gap Statistic Computation

In the linking step, the attacker computes, for each individual, the distance to all the 

genotypes in the genotype dataset, and then identifies the individual with smallest distance. 

Let dj,(1) and dj,(2) denote the minimum and second minimum genotype distances (among 

dH(ṽ·,j,v·,a) for all a) for jth individual. We propose using the difference between these 

distances, termed first distance gap statistic, as a measure of the linking reliability. For this, 

the attacker computes the following difference:

(9)

First distance gap can be computed without the knowledge of the true genotypes, and is 

immediately accessible by the attacker with no need for auxiliary information 

(Supplementary Fig. 9). The basic motivation for this statistic comes from the observation 
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that the first distance gap for correctly linked individuals are much higher compared to the 

incorrectly linked individuals.

8.5 eQTL Identification with Matrix eQTL

To identify eQTLs, we used the Matrix eQTL27 method. We first generated the testing and 

training sample lists by randomly picking 210 and 211 individuals, respectively, for testing 

and training sets. We then separated the genotype and expression matrices into training and 

testing sets. Matrix eQTL is run to identify the eQTLs using the training dataset. In order to 

decrease the run time, Matrix eQTL is run in cis-eQTL identification mode. After the eQTLs 

are generated, we filtered out the eQTLs whose FDR (as reported by Matrix eQTL) was 

larger than 5%. We finally removed the redundancy by ensuring that each gene and each 

SNP is used only once in the final eQTL list. To accomplish this, we selected the eQTL that 

is correlated with highest association with each gene. The association statistic reported by 

Matrix eQTL was used as the measure of the strength of association between expression 

levels and genotypes. A similar procedure is applied when eQTLs for 30 trios are identified.

8.6 Modeling the Genotype-Phenotype Distribution

In the second step of the linking attack, the genotype predictions are performed. As 

intermediary information, the genotype predictions are used as input to the third step (Fig. 

4a), where linking is performed. The main aim of attacker is to maximize the linking 

accuracy (not the genotype prediction accuracy), which depends jointly on the genotype 

prediction accuracy and the accuracy of the genotype matching in the 3rd step. Other than 

the accuracy of linking, another important consideration, for risk management purposes, is 

the amount of auxiliary input data (like training data for prediction model) that the genotype 

prediction takes. The prediction methods that require high amount of auxiliary data would 

decrease the applicability of the linking attack as the attacker would need to gather extra 

information before performing the attack. On the other hand, the prediction methods that 

require little or no auxiliary data makes the linking attack much more realistic and prevalent. 

It is therefore useful, in the context of risk management strategies, to study complexities of 

genotype prediction methods and to evaluate how these translate into assessing the accuracy 

and applicability of the linking attack. We study different simplifications of genotype 

prediction, and illustrate different levels of complexity for genotype prediction.

The attacker estimates the posterior distribution of genotypes and utilizes the maximum a 
posteriori estimate of the genotype as the general prediction method. For this, she must first 

model the joint genotype-phenotype distribution and then build the posterior distribution of 

genotypes (Supplementary Fig. 6a). The first level of the model can be built by decomposing 

the conditional distribution of expression (given genotypes) with independent variances and 

means (Supplementary Fig. 6b). Assuming that the mean and variance are sufficient 

statistics for the conditional distributions (e.g., normally distributed), the joint distributions 

can be modeled when the 6 parameters (3 means and 3 variances) are trained. The training 

can be performed using unsupervised methods like expectation maximization, or it can be 

performed using training data. This would, however, increase the required auxiliary data and 

decrease the applicability of the linking attack. A simplification of the model can be 

introduced by assuming that the variances of the conditional expression distributions are the 
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same for each genotype (Supplementary Fig. 6c). This decreases the number of parameters 

to be trained to 4 (3 means and 1 variance). An equally complex model with 4 parameters 

can be built assuming that the conditional distributions are uniform at non-overlapping 

ranges of expression (Supplementary Fig. 6d). This model requires 4 parameters (e1,e2,e3,e4) 

to be trained. This model can be further simplified into a model which requires only one 

parameter (Supplementary Fig. 6e). In this model, uniform probability is assigned when 

homozygous genotypes is observed and expression level is higher (or lower) than emid. In 

addition, zero probability is assigned when heterozygous genotypes are observed. 

Depending on the direction of genotype-expression gradient, the expression levels higher 

than emid associate with one of the homozygous genotypes and expression levels lower than 

emid associate with the other homozygous genotype. This simplified model is exactly the 

distribution that is utilized in the extremity-based genotype prediction. In the extremity 

based prediction, we estimate emid simply as the mid-point of the range of gene expression 

levels within the expression dataset (Supplementary Note).

8.7 Datasets

The normalized gene expression levels for 462 individuals and the eQTL dataset are 

obtained from the GEUVADIS mRNA Sequencing Project17. The eQTL dataset contains all 

the significant (Identified with a false discovery rate of at most 5%) gene-variant pairs with 

high genotype-expression correlation. To ensure that there are no dependencies between the 

variant genotypes and expression levels, we used the eQTL entries where gene and variants 

are unique. In other words, each variant and gene are found exactly once in the final eQTL 

dataset. The shuffled (randomized) eQTL datasets in comparisons are generated by shuffling 

the gene names in the gene-variant pairs in eQTL dataset. This way the gene and variant 

matchings are randomized. The genotype, gender, and population information datasets for 

1092 individuals are obtained from 1000 Genomes Project18. For 421 individuals, both the 

genotype data and gene expression levels are available. For the tissue analysis, the publicly 

available significant eQTLs for 6 tissues that are computed by the GTex project are 

downloaded from the GTex Portal. The HAPMAP CEU trio expression and genotype 

datasets are obtained from the HAPMAP project web site.

8.8 Code Availability

Analysis code that is used to generate results can be obtained from http://

privaseq.gersteinlab.org

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Illustration of the linking attack. The publicly available anonymized phenotype dataset 

contains q phenotype measurements and the HIV Status for a list of n individuals. The 

genotype dataset contains the variant genotypes for m individuals whose identities are 

known. The genotype-phenotype correlation dataset contains q phenotypes, variants, and 

their correlations. The attacker predicts the variant genotypes for n individuals in phenotype 

dataset using the phenotype measurements. The attacker then links the phenotype dataset to 

the genotype dataset by matching the predicted genotypes to the genotype dataset. The 

linking potentially reveals the HIV status for the subjects in the genotype dataset. The IDs 

and HIV Status are colored to illustrate how the linking combines the entries in the two 

datasets. The grey-shaded columns are not used for linking.
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Figure 2. 
Illustration of computation of the individual characterizing information (ICI) and correct 

predictability of genotypes. Given an eQTL where genotype of variant V1 is correlated with 

expression of gene 1 (E1), joint distribution of genotype and expression illustrates the 

correlation (ρ) indicated by the line fit. Computation of marginal and conditional genotype 

distributions from the joint distribution are illustrated. ICI for the variant genotype g1 is 

computed as the logarithm of reciprocal of the genotype frequency. For n variant genotypes, 

each genotype contributes to ICI additively with the logarithm of reciprocal of the genotype 

frequency: −log(V1 = g1) − log(V2 = g2) − ··· −log(Vn = gn). The predictability of the 

genotype given expression level is e is computed in terms of the entropy of conditional 

genotype distribution, given expression level e. The conditional distribution is built by 

slicing the joint distribution at expression level e (Indicated by red colored illustrations).
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Figure 3. 
Estimates of ICI leakage versus predictability. The plots show, for each eQTL, the 

information leakage (x-axis) versus correct genotype predictability (y-axis). The dots are 

colored with respect to: (a) the major allele frequency (b) absolute correlation of the eQTL 

(c) real versus shuffled eQTL datasets. (d) The average cumulative ICI leakage versus joint 

genotype predictability is shown when multiple eQTLs are utilized with shuffled eQTL 

dataset. The arrows on the plot indicate the increasing numbers of eQTLs used in estimated 

joint predictability and cumulative ICI leakage.
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Figure 4. 
Illustration of genotype-expression associations and linking attacks (a) Illustration of the 

three step linking process: selecting phenotypes and genotypes to be used in linking (step 

one), predicting the genotypes (step two), linking predicted genotypes to the genotype 

dataset (step three). The attacker can also estimate the reliabilities of the linkings using the 

first distance gap metric. (b) Schematic representation of expression-genotype relationships 

and simplifications. The trimodal gene expression distribution and the joint genotype-

expression distribution are shown. The conditional distribution of expression given each 

genotype is illustrated with box plots in different colors corresponding to each genotype. 

The genotypes and expression levels are correlated (ρ) as indicated by the line fit. In the 

extremity-based joint distribution, when the genotype value is 0, a uniform probability is 

assigned for expression values where extremity is smaller than δ (Green rectangle). For a 

genotype value 1, no probability is assigned. When genotype value is 2, the probability is 

uniformly distributed over expression values for which extremity is greater than δ (Purple 

rectangle). Simplified extremity-based model utilizes the same distribution by setting δ to 0. 

In this case, when genotype is 0, joint probability is distributed uniformly over expression 

levels with negative extremity (Green rectangle). When genotype is 2, uniform probability is 

assigned to expression levels with positive extremity (Purple Rectangle).
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Figure 5. 
Accuracy of linking attacks. (a) Accuracy of linking with genotype predictions where exact 

genotype-expression distributions are known (baseline attack). The absolute correlation 

threshold (x-axis) versus the fraction of vulnerable individuals (y-axis) is plotted. Red, 

green, and cyan plots show linking accuracy with gender, population, and gender and 

population as auxiliary information, respectively. (b) Linking accuracy with extremity based 

linking with all genotypes. (c) Linking accuracy with extremity-based linking with 

homozygous genotypes. (d) Sensitivity versus positive predictive value of linkings chosen 

with changing d1,2, threshold, for the eQTL selection where overall linking accuracy is 84%, 

in comparison to the random selections of linkings.
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