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Abstract

Computational modeling and associated methods have greatly advanced our understanding of 

cognition and neurobiology underlying complex behaviors and psychiatric conditions. Yet, no 

computational methods have been successfully translated into clinical settings. This review 

discusses three major methodological and practical challenges (A. precise characterization of 

latent neurocognitive processes, B. developing optimal assays, C. developing large-scale 

longitudinal studies and generating predictions from multi-modal data) and potential promises and 

tools that have been developed in various fields including mathematical psychology, computational 

neuroscience, computer science, and statistics. We conclude by highlighting a strong need to 

communicate and collaborate across multiple disciplines.

Introduction

Computational modeling has greatly contributed to understanding cognitive processes 

underlying our decision-making. By providing a mechanistic account of the processes, 

computational modeling allows us to generate quantitative predictions and test them in a 

precise manner. Computational modeling also provides a framework for studying the neural 

mechanisms of complex behaviors. Ever since reinforcement learning models were shown to 

well describe phasic activity changes in midbrain dopamine neurons [1], computational 

modeling has been widely combined with electrophysiological data and human functional 

magnetic resonance imaging (fMRI) signals to identify brain regions implementing specific 

cognitive processes [2,3]. A systematic line of research based on the computational 

framework suggests that the brain has multiple systems for decision-making [4,5]: the 

Pavlovian system, which sets a strong prior on our actions when we are faced with rewards 

or punishments and the instrumental system, which is further divided into habitual (i.e., 

model-free; efficient but inflexible) and goal-directed (model-based; effortful but flexible) 

systems. While the Pavlovian system has been traditionally regarded as purely model-free, 
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new ample evidence suggests Pavlovian learning might also involve model-based evaluation 

[6].

There is a growing consensus that computational modeling can also be helpful to understand 

psychiatric disorders. Computational models can break maladaptive behaviors into distinct 

cognitive components, and the model parameters associated with the components can be 

used to understand the latent cognitive sources of their deficits. Therefore, computational 

modeling can provide a useful framework in understanding comorbidity among psychiatric 

disorders in a systematic way. Such a framework can specify psychiatric conditions with 

basic dimensions of neurocognitive functioning and offer a novel approach to assess and 

diagnose psychiatric patients [7–10].

Despite the growing enthusiasm, no computational assays or methods have influenced 

clinical practice yet. There remain several major methodological and practical challenges 

that need to be solved for translating computational modeling tools into clinical practice. In 

this article, among many others, we focus on the following challenges as summarized in 

Figure 1: (A) precise characterization of latent neurocognitive processes, (B) development of 

optimal assays for assessing psychiatric conditions, (C) development of large-scale 

longitudinal studies and generating predictions using multi-modal and multi-dimensional 

data. In the following sections, we provide a general overview of each challenge and discuss 

how we can potentially address them. Our review focuses on computational modeling of 

human decision-making and fMRI studies, which are most relevant to the challenges we 

consider. We also briefly review how mathematical psychologists and computational 

neuroscientists have independently attempted to understand psychiatric disorders using 

computational methods. We hope this article will help researchers in each field identify 

strengths of the other field and stimulate further communication and interaction between the 

fields. There are some important topics that are not addressed in this article including 

biophysically-based models and readers can refer to existing review papers on the topics 

[11–13]. Because of space limit, our review excludes a survey of model comparison methods 

and mathematical details of Bayesian data analysis, which are covered in other reviews [14–

16].

A. Precise characterization of latent neurocognitive processes

Early applications of computational modeling to psychiatric populations were initiated by 

mathematical psychologists. Traditionally they focused on identifying cognitive processes 

embedded in a cognitive or decision-making task. Mathematical psychologists including 

Batchelder, Townsend, Ratcliff, Neufeld, and Treat advocated as well as empirically 

demonstrated that computational modeling can be used to assess clinical populations [17]. 

The computational approach began to receive additional attention as Busemeyer and Stout 

[18] developed the Expectancy-Valence Learning (EVL) model for the Iowa Gambling Task 

(IGT) and apply the EVL to several clinical populations [19]. The model has been 

subsequently revised to improve its performance, which led to a newer version called the 

Prospect Valence Learning (PVL) model [20,21]. Despite criticism on the IGT for its 

complicated design and performance heterogeneity [22], the PVL model showed good 

model-fits and simulation performance [e.g., 23] and it has been applied to several 
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populations with substance dependence [for a review and detailed findings see, 24]. For 

example, modeling approaches on the IGT revealed reduced loss aversion among heroin 

users compared to healthy individuals, which was robust across all models we tested [23]. 

Computational models have also been used to decompose performance of clinical 

populations on the Balloon Analogue Risk Task (BART) [25], the Go/Nogo task [26], and 

speeded choice-response time tasks [27].

Independently, computational neuroscientists including Montague, Dayan, Dolan, Friston, 

and colleagues have put efforts to build computational accounts of (ab)normal cognition and 

its biological underpinnings (a.k.a. Computational Psychiatry) [8,28,29]. They built 

computational frameworks and used the method called model-based fMRI [3] or model-

based electroencephalography [30] (among other methods) in which internal states predicted 

by computational models are used to identify brain regions that presumably implement a 

particular cognitive/computational process. Many applications to psychiatric disorders [31–

34] have been built around the Bayesian decision framework that offers a Bayesian account 

of decision-making [35]. In addition, recent studies using model-based fMRI significantly 

enhanced our understanding of the neurobiological mechanisms underlying reinforcement 

learning and decision-making in the brain [for recent reviews see, 12,36].

Once we build a computational model, the next important step is parameter estimation. 

Getting accurate estimates of the key model parameters is critical for phenotyping 

computational processes precisely. Currently the state of the art for parameter estimation is 

hierarchical hierarchical Bayesian analysis (HBA) that pools information across individuals 

and captures similarities and differences among individuals in a hierarchical way [15,37]. 

Hierarchical methods are particularly useful when the amount of information is small or 

insufficient for precise parameter estimation at the individual level. Hierarchical methods, 

whether Bayesian or non-Bayesian [e.g., 38] often lead to very similar parameter estimates 

(personal communication). Because assumptions and priors for HBA and non-Bayesian 

hierarchical methods are different, the choice for a hierarchical method may depend on the 

computational model concerned. However, we believe HBA has several advantages over 

non-Bayesian methods such as its more flexible assumptions and finding full posterior 

distributions instead of point estimates (thus providing maximum information about 

parameter estimates). HBA also allows us to compare clinical and non-clinical groups by 

comparing their posterior distributions [15,23]. Recent development of tools [39] and 

tutorials [15,16] also facilitated its usage.

While HBA is already widely accepted and used in cognitive science and mathematical 

psychology, hierarchical methods including HBA have been only recently adopted in 

computational/cognitive neuroscience field and non-hierarchical maximum likelihood 

estimation (MLE) is still often used. Using simulated behavioral data and actual behavioral/

fMRI data, Ahn et al. [40] empirically showed how HBA is superior to non-hierarchical 

MLE methods. While individual MLE estimates, which are based only on each individual’s 

data, were often driven toward parameter bounds (e.g., learning rate = 0), HBA reliably 

recovered the true parameters of simulated data. Using HBA also improved the fMRI signal 

compared to using individual MLE (i.e., higher peak activation and larger regions of 
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activation), presumably because HBA improved the characterization of individual 

differences.

There still remain major challenges for HBA and associated hierarchical methods. Assuming 

a single hyper-group across a modest number of individuals (e.g., ~50) might be valid [c.f., 

41], but the assumption might be invalid when fitting large samples (e.g., ~1000) with a 

single hyper-group [42]. Non-parametric Bayesian methods [43] that let the data determine 

the number of hyper-groups as well as group assignment and estimate parameters 

simultaneously could be a great solution, but it is computationally very challenging. 

Alternatively, Bayesian hierarchical mixture approaches [e.g., 44], or HBA of each subgroup 

that is clustered by behavioral indices, might provide practical compromises. Another 

important direction is to integrate neural and behavioral measures into a single hierarchical 

Bayesian framework so that neural and behavioral data can mutually constrain each other 

and simultaneously inform the parameter estimates of a computational model [45].

B. Developing assays for improving the assessment of psychiatric conditions

Behavioral performance on a decision-making task entails multiple cognitive processes (e.g., 

valuation of reward/risk, outcome evaluation, action selection) and interaction of multiple 

decision-making systems including Pavlovian and instrumental (habitual and goal-directed) 

systems [46]. Thus, it is important to develop and employ assays (i.e., tasks) that will allow 

us to maximally decompose the underlying processes and reveal the interactions of the 

decision-making systems.

Historically, there have been mainly two approaches. Clinicians developed or adopted 

emotionally engaging tasks based on their clinical experience and intuitions to mimic 

naturalistic risk-taking behaviors. The tasks include the delay discounting task (DDT) [47], 

the IGT [48], the BART [49], and the Cambridge Gambling Task [50] that had widespread 

success in classifying clinical populations from healthy individuals (i.e., external validity). 

However, the complexity of the tasks makes it challenging to decompose its cognitive 

processes at the behavioral level. Behavioral economists and computational neuroscientists, 

on the other hand, typically start with difficult goals: Understanding specific constructs (e.g., 

valuation of reward) or the interactions among the decision-making systems [6] is a primary 

goal, and tasks are designed accordingly. Examples include decision problems between two 

monetary gambles [for a review see, 51], decision-making tasks [52–54] teasing apart the 

contribution of goal-directed and habitual systems, and the orthogonalized Go/Nogo task 

[55] examining the interactions between Pavlovian and instrumental systems. While early 

monetary decision-making tasks probing specific reward/risk constructs had limited success 

in distinguishing clinical populations from healthy controls [51], recent studies using theory-

guided decision-making tasks have revealed specific cognitive processes and neural 

correlates associated with psychiatric conditions [54,56,57].

While being excited about past success applying decision-making probes to psychiatric 

patients, we are still in need of improving the assays. Considering clinical patients having 

reduced cognitive capacity and attention span, some of the decision-making tasks are too 

long or cognitively too challenging to be used in clinical settings. Thus, it is possible that 

some of the decision-making deficits could be attributed to their general intelligence or 
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working memory capacity, rather than targeted neurocognitive processes. We believe both 

clinical experience and up-to-date knowledge of neuro-circuitry of specific psychiatric 

conditions can guide us to design tasks that are not only emotionally engaging [51] but also 

decomposable.

A promising computational approach to shorten the length of a task or improve the 

efficiency of information gain is the use of adaptive design optimization (ADO) [58]. In a 

typical experiment, when designing a task for probing specific processes, researchers make a 

priori decisions on experimental design (e.g., number of trials, amount of reward/punishment 

in gambling tasks, delays between stimuli). Then, we identify the best-fitting model and 

estimate its model parameters (see section B for more details on these issues). In contrast, 

ADO finds the optimal design “on the fly” that maximizes information gain based on data 

collected from preceding trials, presents the optimized stimuli on the current trial, observes 

outcomes, and updates the priors for experimental parameters into posteriors using a 

Bayesian framework. Recent advances in computer hardware and algorithms make it 

tractable to do Bayesian updating within a reasonable time scale (e.g., within 1sec). ADO 

has already been successfully applied to identifying best-fitting models in gambling 

paradigms [59] and DDT [60], as well as to optimally assess visual acuity using the contrast 

sensitivity function [61]: The studies demonstrated that ADO substantially reduced the 

number of trials required to do model comparisons or parameter estimation, or dramatically 

increased test-retest reliability compared to a non-ADO procedure [61]. These results 

suggest that implementation of ADO-based experiments might potentially benefit 

psychiatric research, especially those utilizing neuroimaging methods in saving time and 

scanning cost.

ADO methods are new and there remain several empirical issues to be addressed. ADO 

procedures naturally tend to make decisions maximally difficult over trials and change the 

statistics of the choice set (e.g., the range of gains and losses). Therefore, during ADO-based 

experiments, participants might be more likely to make random choices with difficult 

options, behave very differently [62], or experience more negative feelings compared to 

during non-ADO experiments. To address the concerns, several adjustments have been used: 

inserting easy trials between tough trials [61], stopping data collection when the same small 

subset of trials are presented repeatedly, and reducing the number of required trials for 

convergence by running simulations and identifying an optimal set of choices prior to 

experimentation [60]. However, additional future studies are needed to determine whether 

ADO produces systematic differences in choice patterns by examining the inter- and intra-

personal differences across ADO and non-ADO sessions.

C. Developing large-scale longitudinal studies and generating predictions using multi-
modal and multi-dimensional data

From a clinical perspective, the efforts and approaches listed above eventually boil down to a 

question: Can we predict clinical outcomes using these neuro-computational markers? To 

make predictions that generalize to new samples and identify predictors of a psychiatric 

condition, large sample sizes using longitudinal studies are needed. There already exist 

several consortia and working groups that provide imaging and genetic data from a large 
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number of individuals, including the Enhancing Neuroimaging Genetics through Meta-

Analysis (ENIGMA; http://enigma.ini.usc.edu), the IMAGEN (http://www.imagen-

europe.com), the Pediatric Imaging, Neurocognition, and Genetics (PING; http://

pingstudy.ucsd.edu) Study, and Brain Genomics Superstruct (https://dataverse.harvard.edu/

dataverse/GSP) projects. However, sample sizes or clinical phenotypes publicly available 

through the consortia are still limited, and there remains a critical need to develop large-

scale longitudinal studies in various psychiatric conditions. In drug addiction, the National 

Institute on Drug Abuse (NIDA) is launching the Adolescent Brain Cognitive Development 

(ABCD) Study (http://addictionresearch.nih.gov/adolescent-brain-cognitive-development-

study), which will longitudinally track 10,000 adolescents over 10 years, and the study will 

include substance use, neuroimaging, and genomic measures. The NIDA will share the 

database through their data repository and we anticipate it will allow researchers interested 

in drug addiction to evaluate the utility of their tools.

Such a large longitudinal dataset contains many millions of variables; thus consideration of 

multiple comparisons would be essential to minimize Type I and II errors in associated 

classical statistics. Recent reports suggest that cross-validated machine learning may well 

serve as a promising approach for effective analysis of such big datasets [63,64]. However, 

how to integrate neural (e.g., genomic variations and brain-based measures) and behavioral 

(e.g., model parameters and survey scores) measures in a principled way for generating 

predictions is still a topic of active research. For example, Whelan et al. [65] conducted a 

longitudinal study aiming to predict future alcohol misuse by using regression-based 

machine learning. The study incorporated a wide spectrum of measures including genetic 

variations, functional/structural MRI, gray matter volume, cognitive tasks, personality 

surveys, and family history. Although their machine learning method (penalized logistic 

regression) produced generalizable and relatively accurate predictions, the approach 

essentially treated all modalities and measures within each modality equally, whereas in 

reality there is a complex interplay among genetic, environmental, and other unidentified 

factors [66]. There is a strong need to identify multivariate methods that are suited for this 

type of multi-modal dataset.

Discussions/Conclusions

Although we have discussed three key aspects of future challenges, we acknowledge that the 

list is not exhaustive. Another important practical challenge is a search for cost-effective 

markers. While neuroimaging and genomic measures are promising biomarkers for 

psychiatric disorders, many practitioners might not be able to afford the cost. Thus, finding 

markers that are affordable yet predictive of clinical outcomes would have important 

practical implications [63]. Preliminary literature suggests that eye movements including 

spontaneous eye blinks [e.g., 67] and pupil diameter [68] could potentially serve as surrogate 
measures (also see [69]) but the field is still in its infancy.

A potential way to reduce the cost of imaging markers is the application of machine learning 

approaches to fMRI time-series data. A dominant way of analyzing fMRI data is the voxel-

wise general linear model (GLM) approach, which can lead to substantial loss of power in 

case of model mis-specification [e.g., 70]. Two recent studies demonstrated that the use of 
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unmodeled fMRI time-series data combined with machine learning can produce rapid fMRI 

classifiers for autism spectrum disorder [71] or political attitudes [72]. They used single-

stimulus measurements (approximately 20 seconds of time-series data) as regressors, which 

contained enough information to make reliable classifications.

Computationally inspired measures have yet to undergo large-scale validation and a lot of 

serious work remains to be done (e.g., test-retest reliability, validation of computational 

methods and findings using simulated and real data across diverse populations, 

understanding the regulatory environment critical for translating scientific tools into clinical 

practice). We strongly believe that solving these challenges requires close communication 

and collaboration between people in multiple areas. Clinicians, mathematical psychologists, 

computational neuroscientists, computer scientists, statisticians, and researchers in related 

fields have their own expertise and can provide their unique (or overlapping) contributions to 

tackle these technical and practical challenges. For example, clinical insights and experience 

can greatly inform the design of computational assays for clinical populations. Also, 

knowledge in neurobiological underpinnings of psychiatric conditions and decision 

neuroscience can be essential in every step of computational psychiatric research. 

Collaboration with people in computer science and statistics will be also critical to identify 

cutting-edge computational and statistical algorithms that are suited for multi-modal 

datasets. Also, workshops and meetings that can facilitate communication between multiple 

areas would mutually benefit each area.
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Highlights

• Computational approaches provide novel insights into psychiatric conditions

• There exist several challenges for translating the approaches into clinical tools

• This review discusses three major methodological and practical challenges

• Highlighting a need to communicate and collaborate across multiple disciplines
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Figure 1. 
Promising approaches to address three major changes for translating computational tools 

into clinical practice
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