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Abstract

Varying coefficient models are useful for modeling longitudinal data and have been extensively 

studied in the past decade. Motivated by commonly encountered dichotomous outcomes in 

medical and health cohort studies, we propose a two-step method to estimate the regression 

coefficient functions in a logistic varying coefficient model for a longitudinal binary outcome. The 

model depicts time-varying covariate effects without imposing stringent parametric assumptions. 

The proposed estimation is simple and can be conveniently implemented using existing statistical 

packages such as SAS and R. We study asymptotic properties of the proposed estimators which 

lead to asymptotic inference and also develop bootstrap inferential procedures to test whether the 

coefficient functions are indeed time-varying or are equal to zero. The proposed methodology is 

illustrated with the analysis of a smoking cessation data set. Simulations are used to evaluate the 

performance of the proposed method compared to an alternative estimation method based on local 

maximum likelihood.
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1 Introduction

Longitudinal data arise frequently from medical and health cohort studies where the subjects 

are measured repeatedly over time. Our working example is the smoking cessation data 

described in Shoptaw et al. (2002). Follow-up data was collected on 175 participants for 12 

weeks in a clinical trial to evaluate two behavioral methods for optimizing smoking 

cessation outcomes in methadone maintained cigarette smokers. At each visit, samples of 

breath were measured for carbon monoxide level and a binary outcome representing 

smoking status was recorded along with many covariates including age, gender and 

behavioral treatment. Hence, the data is of the form [{tij, Xi(tij), Yi(tij)}, i = 1, …, n, j = 1, 

…, Ti] for n subjects, where Ti denotes the total number of repeated measures, Xi(tij) = 
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{Xi1(tij), …, Xid(tij)}T and Yi(tij) denote the vector of d covariates and the binary response 

variable measured at time tij for subject i, respectively. Of interest is to assess the potentially 

time-varying effects of behavioral treatments on the outcomes adjusting for potential risk 

factors.

Many parametric models have been proposed to analyze longitudinal binary data 

(Pendergast et al., 1996) including generalized linear mixed models (GLMM) (McCullagh 

and Nelder, 1989; Breslow and Clayton, 1993). These approaches are typically limited by 

the stringent assumption of constant covariate effects over time which may not always hold 

in applications. Furthermore, even if the covariate effects do not change over time, 

parametric approaches involving a small number of parameters do not work well when there 

is a large number of repeated measurements, as the pattern of covariate effects over time 

may not be fully captured by only a few parameters. Logistic varying coefficient models for 

longitudinal binary data have been proposed to allow regression coefficient functions to 

change over time,

(1)

without assuming any parametric form (Cleveland, Grosse and Shyu, 1991; Hastie and 

Tibshirani, 1993; Cai, Fan and Li, 2000). In (1), corr{Yi(s), Yi′(t)} = γ(s, t)I(i=i′), where β(t) 
is a vector of d regression coefficient functions, πi(t) = Pr{Yi(t) = 1|Xi(t)}, and γ(s, t) is an 

unknown bivariate correlation function. In this model, the observations from different 

subjects are independent and the repeated measurements from the same subject are 

correlated. The use of this model is two-fold. First, it can be used to check whether or not 

the effect of a covariate changes over time by plotting the corresponding coefficient 

function. Second, it provides a useful alternative for analyzing longitudinal binary data when 

the constant covariate effects assumption is not valid.

Recently several works have been proposed for estimation in generalized varying coefficient 

models. Cai, Fan and Li (2000) proposed local maximum likelihood and Zhang and Peng 

(2010) developed simultaneous confidence bands and hypothesis testing for i.i.d data 

applications. For longitudinal generalized outcomes, Zhang (2004) extended the GLMM 

model by representing the covariate effects via smooth but otherwise arbitrary functions of 

time. They use random effects to model the correlation among and within subjects, and use 

the double penalized quasi-likelihood method for estimation. However as mentioned in the 

paper, this approach does not perform well for binary outcomes and may require an 

additional bias correction step. Qu and Li (2006) proposed an efficient estimation procedure 

for generalized varying coefficient models for longitudinal data via an integrated quadratic 

inference function and penalized splines approach. This approach can easily take into 

account correlation within subjects; however it is still parametric in nature although the 

dimension of the parameter space is high. Şentürk et al. (2013) and Estes et al. (2014) 

consider extensions of the local maximum likelihood approach of Cai, Fan and Li (2000) for 

estimation in generalized varying coefficient models for i.i.d. data to modeling longitudinal 

data. This extension is shown to be useful in applications where follow-up in longitudinal 
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studies are truncated by death. For estimation in a generalized varying coefficient model 

from unsynchronized longitudinal data where response and predictors may not be collected 

at the same time points, Şentürk et al. (2013) proposed a nonparametric moments approach, 

while Cao, Zeng, Fine (2014) proposed kernel weighted estimating equations.

As a novel departure from existing literature, we propose a two-step procedure to estimate 

the coefficient functions in a logistic varying coefficient model. The first step involves fitting 

a standard logistic regression at each of the observation time points tij. In the second step an 

estimate of each regression coefficient function is obtained by smoothing the raw estimates 

from the first step based on a nonparametric regression method. The proposed methodology 

is applicable when data is observed or can be grouped/binned across a set of common time 

points for patients, such that 1) there is enough data at each time point to fit a logistic 

regression model in the first step and 2) the set of observation times are dense in the 

considered time domain for the smoothing implemented in the second step. A major 

advantage of the proposal is that our estimators can be easily obtained using existing 

statistical softwares. We point out that our approach is similar to that used by Fan and Zhang 

(2000) for varying coefficient models with continuous response, referred to by the authors as 

the functional linear model. However, there is a fundamental difference between a functional 

linear model and a logistic varying coefficient model in that the raw estimates are unbiased 

for the linear model, but biased for the logistic regression model for finite samples. The bias 

for the latter model has to be handled with care when developing the large sample properties 

of the proposed two-step (TS) estimators. In addition to establishing the asymptotic 

properties of the TS estimators leading to asymptotic confidence intervals, we also develop 

bootstrap inferential procedures to test whether the coefficient functions are indeed time-

varying or are equal to zero. While the first hypothesis evaluates whether the logistic varying 

coefficient model reduces to a parametric form, the second can be used in identifying 

significant predictors.

This paper is organized as follows. The two-step estimation procedure is described in detail 

in Section 2. In Section 3, the asymptotic properties of the proposed estimators are studied, 

and statistical inference procedures are discussed. In Section 4, we apply the proposed 

method to the smoking cessation data described earlier. In Section 5, we present simulation 

studies to assess and compare the performance of the proposed TS estimation with the local 

maximum likelihood (LML) approach of Şentürk et al. (2013) and Estes et al. (2014). 

Similar to previously published results for continuous outcome (Fan and Zhang, 2000), our 

simulations show that the proposed TS estimators perform better than those obtained 

through LML also for longitudinal binary outcome when the varying coefficient functions 

admit varying degrees of smoothness. This is due to the flexibility of the TS approach in 

allowing the use of different bandwidths for each varying coefficient function, different from 

the single global bandwidth used in the LML approach. We conclude with a discussion 

section and collect technical proofs in an appendix, deferred to supplementary documents.

2 The Proposed Two-step Estimation Procedure

In this section, we derive the proposed two-step estimator for the coefficient function β(t). In 

the first step, a raw estimate of β(t) at each design time point is obtained by fitting a standard 
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logistic regression. In the second step, a final estimate of β(t) is obtained by smoothing the 

raw estimates using a nonparametric curve estimation method. Throughout this paper, we let 

 = [{tij, Xi(tij)}, i = 1, …, n, j = 1, …, Ti], which contains the design time points and the 

covariate information. The range of time is [0, D] for some specified D. Note that under 

model (1), we have Cov{Yi(t), Yi(t)| } = Var{Yi(t)| } = πi(t){1 − πi(t)} and Cov{Yi(s), 

Yi(t)| } = γ(s, t) [Var{Yi(s)| }Var{Yi(t)| }]1/2, where γ(t, t) = 1.

2.1 Step I: Obtaining the Raw Estimates

Let A = {tj, j = 1, …, T} be the collection of distinct time points among {tij, i = 1, …, n, j = 

1, …, Ti}. For any tj ∈ A, let Nj = {i1, …, inj} denote the collection of subject indices of all 

Yi(tij) observed at tj, where nj is the number of subjects observed at tj. Then, under model 

(1), we have at the time tj,

(2)

The raw estimate b(tj) = {b1(tj), …, bd(tj)}T is defined as the maximum likelihood estimate 

of β(tj) = {β1(tj), …, βd(tj)}T from the standard logistic regression model (2).

2.2 Step II: Refining the Raw Estimates

For the r-th component of the coefficient vector, we obtain a refined estimate by smoothing 

the raw estimates [{tj, br(tj)}, j = 1, …, T], r = 1, …, d. For example, the local polynomial 

smoothing method (Fan and Gijbels, 1996) yields the following linear estimator for the qth 

derivative of β(t), which is assumed to be (p + 1)-times continuously differentiable for some 

p ≥ q:

(3)

The weight functions ωq,p+1(tj, t) in (3) are induced by the local polynomial fitting and are 

defined in the assumptions section given at beginning of the Appendix. Note that the raw 

estimates of the coefficient functions are defined only at the design time points. However, 

the refined estimate  are defined for all t ∈ [0, D]. Furthermore, it aggregates the 

information around time t.

A big advantage of the component-wise smoothing in the second step is that the estimation 

can adapt to the different degrees of smoothness of the varying coefficient regression 

functions. The resulting favorable performance of the proposed TS with separate bandwidths 

for each varying coefficient function over the LML with a single bandwidth for all varying 

coefficient functions will be studied in the simulation studies. The bandwidths for smoothing 

in the second step of the proposed TS approach can be chosen by plotting the raw estimates 

from the first step or by automatic bandwidth selection algorithms. We utilize plots of the 

raw estimates in the analysis of the smoking cessation data in Section 4 and utilize the rule-
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of-thumb bandwidth selection criteria of Ruppert, Sheather and Wand (1995) in the 

simulation studies presented in Section 5. The rule-of-thumb estimator is a ‘plug-in’ 

bandwidth selection rule, which involves estimation of unknown functionals that appear in 

formulas for the asymptotically optimal bandwidth (balancing the bias and variance trade-

off). Rupert, Sheather and Wand (1995) extend the ‘plug-in’ bandwidth selectors of density 

estimation to local least squares kernel regression; traditional smoothing bandwidth section 

rules, such as those based on cross-validation, exhibit very inferior asymptotic and practical 

performance, on the other hand, plug-in bandwidth selection rules have been shown to 

perform more reliably, both theoretically and in practice. We refer the reader to Ruppert, 

Sheather and Wand (1995) for a more detailed discussion of the properties of the rule-of-

thumb bandwidth selector and other ‘plug-in’ bandwidths selectors that are equally easy to 

employ in local least squares kernel regression.

Remark 1—We note that the raw estimate b(tj) of β(tj) usually has a finite sample bias that 

may not be negligible when nj is small. This bias will be carried over to the refined estimate 

obtained in the second step and needs to be handled with care when studying the asymptotic 

properties of the two-step estimator. In practice, one may also run into situations where, for 

some time point tj, the sample size nj is smaller than the number of covariates d. In such a 

case, it is impossible to fit a logistic regression model at time tj. In fact, nj > 10d (10 

observation per parameter) may be needed typically in applications for stable regression fits 

and more observations may be needed when the conditional mean is close to 0 or 1. Similar 

to the approach by Fan and Zhang (2000) for functional linear models, one could leave b(tj) 
missing. This is equivalent to treating observations at these tj’s as if they were not in the data 

at all. This potentially reduces the bias compared to including them in the calculation. 

Another possible solution is to increase the sample size by including observations from the 

neighbors. For instance, one could include observations at tj−1 and tj+1 to fit the logistic 

regression at tj. We study the performance of these approaches via simulations. Results 

summarized in Section 5.1 show that both remedies perform reasonably well in practice for 

a moderate proportion (10–30%) of time points with smaller sample size (i.e. nj < 10d) as 

long as β(t) is smooth and changes slowly in time.

Remark 2—In step 2 we define our estimator (3) by smoothing each component separately 

without utilizing the covariance structure between different components. One could 

potentially improve our estimator by incorporating the covariance information that is 

determined by the correlation function γ(s, t). However, because the bivariate function γ(s, t) 
is unknown, the efficiency gain could be hard to realize if γ(s, t) is not accurately estimated. 

We choose to use (3) for its simplicity and computational convenience.

3 Asymptotic Properties and Inference

In this section, we investigate the asymptotic bias, variance and normality of the proposed 

TS estimators. A bootstrap method is also proposed to construct global confidence bands, 

which enables one to perform hypothesis testing about the coefficient functions. We assume 

the outcomes at each time point are missing completely at random hereafter.
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3.1 Asymptotic Properties

Denote the response vector and the design matrix for the logistic regression model (2) at tj 
by Ỹj = {Yi1(tj), Yi2(tj), ···, Yinj

(tj)}T, and X̃
j = {Xi1(tj), Xi2(tj), …, Xinj

(tj)}T respectively. 

The following lemma gives the asymptotic properties of the raw estimators.

Lemma 1—Assume that condition (A4) in the Appendix (Supplementary documents) 

holds. Assume further that given ,

(N1) The covariates are uniformly bounded, i.e., there exists an M0 such that |Xijr| ≤ 

M0, for all i, j, and r.

(N2) Let  be the Fisher information matrix where Wj = diag[πi1(tj){1 − 

πi1(tj)}, …, πinj
(tj){1 − πinj

(tj)}] is the covariance matrix of Ỹj. Further let λ1,nj 
and λℓ,nj be respectively the smallest and the largest eigenvalue of Ij. There 
exists a random variable M1 such that, with probability 1, λℓ,nj/λ1,nj< M1, for all 
nj, j and E(M1) < ∞.

Let b(tj) be the raw estimate of β(tj) defined in Section 2.1. Then

(4)

as nj → ∞ and nk → ∞, where . The nj ×nk matrix Mjk is 

defined as follows: If the ath entry of Ỹj and the bth entry of Ỹk come from the same subject, 

then the (a, b)th entry of Mjk is equal to 1, and is 0 otherwise.

Note that

(5)

The following theorem gives the asymptotic bias of .

Theorem 1—Assume that the conditions (A1)–(A6) in the Appendix and the conditions 

(N1) and (N2) of Lemma 1 hold. Then
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as T → ∞ and n∧ = min{n1, …, nT} → ∞, for r = 1, …, d and 0 ≤ q ≤ p + 1, where h is the 

bandwidth for local polynomial smoothing and Bp+1(Kq,p+1) is as defined in the Appendix 

before the proof of Lemma 1.

We note that the asymptotic bias comes from two sources. The first term is from the 

smoothing step, which goes to 0 when the bandwidth tends to 0. The second term is from the 

logistic regression in the first step, since the MLE in ordinary logistic regression is biased. It 

goes to 0 when the sample sizes go to ∞.

The variance of  in (5) can be further simplified under more assumptions on the 

model. First, assume condition (A4) holds and let Ωj = E[πi(tj){1 − πi(tj)}Xi(tj)Xi(tj)T], and 

. Then, for any given time tj 

and β(tj), , where πik(tj){1 − 

πik(tj)} = {eXik(tj)Tβ(tj)}/{1 + eXik(tj)Tβ(tj)}2, depends on Xik(tj) only. Therefore, Ij is a sum of 

i.i.d. random matrices with E(Ij)=njΩj. This fact, combined with Lemma 1, implies that

and , with probability 1, where njk is the number of 

subjects in Nj ∩ Nk. Plugging the above equations into (5) gives

(6)

where M(rr) denotes the (r, r)th element of a matrix M. In general, we can not simplify the 

formula in (6) without further assumptions. This is because Ωj depends on j through β(tj) and 

X̃
j, which makes the summation very hard to compute. If the covariates Xi(tj) and coefficient 

functions β(t) satisfy conditions (A7) and (A8), that is, they are time-invariant, then Ωj = Ωk 

= Ωjk = Ω1. In this case,  and 

Cov{br(tj), br(tk)| } = γ(tj, tk){njk/(njnk)}ω(rr){1+op(1)} where  denotes the (r, 

r)th element of .

We will derive the asymptotic variance for two specific situations: nij is either small or large, 

as in Fan and Zhang (2000). Let It = {j : |tj − t| ≤ h} be the indices of the local neighborhood. 

In some situations, njk may be much smaller than nj or nk for all j ≠ k, j, k ∈ It and nj, j ∈ It 

are about the same proportion as n. Results for this situation are summarized in the 

following theorem.

Theorem 2—Let conditions (A1)–(A8), (N1) and (N2) hold. Assume
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holds uniformly for all j, k ∈ It for some constant 0 < c < 1, then when h → 0 and nTh2q+1 

→ ∞ as n, T → ∞,

where V(·) is as defined in the Appendix before the proof of Lemma 1 and f(·) denotes the 

density of t.

The proof of Theorem 2 is similar to the proof of Theorem 2 of Fan and Zhang (2000) 

except that γ(t, t) is 1 and therefore is not included in the above result. Recall that they 

define γ(s, t) as the covariance function of the process, and we define it as the correlation 

function.

In some other situations, nj, nk and njk may be about the same as n. An extreme case is a 

dataset with no missing values, in which nj = n for all j = 1, …, T. Let γα,β(s, t) denote 

∂α+βγ(s, t)/∂sα∂tβ for any integers α, β = 0, 1, …, p + 1.

Theorem 3—Let conditions (A1)–(A8), (N1) and (N2) hold. Assume njk/(njnk) = 1/n + 

o(1/n) holds uniformly for all j = 1, …, T. Then when h → 0 and n, T → ∞,

where Bp+1(·) is as defined in the Appendix before the proof of Lemma 1.

The proof of Theorem 3 is straight forward by applying Lemma 3 in Fan and Zhang (2000), 

but with σ2(t) = 0. This lemma is applicable because our γ(s, t) satisfies the requirements of 

γ0(s, t) in their paper.

Furthermore, the next theorem gives asymptotic normality of . First, define 

 and , to be the vectors of the raw estimators and 

the true coefficients across time. For r ∈ {1, …, d}, define a T×dT matrix P(r), whose {k, (k
−1)d+r}th elements for k ∈ {1, …, T} are equal to 1, and all other elements are equal to 0. 

The operator P(r) extracts the rth row of b and β, i.e. P(r)b = {br(t1), …, br(tT)}T. Define dT × 

dT block diagonal matrix B̄ = Diag {I0(β1)−1, …, I0(βT)−1} where I0(βj) is the Fisher 

information matrix for βj unconditional on  for j = 1, …, T, i.e.
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(7)

Further let Σi be the matrix

and Σ = E(Σi) with respect to [Xij = {Xi1(tj), …, Xid(tj)}T, j = 1, …, T]. The matrix Σ is well 

defined because under condition (A4), E(Σi) = E(Σi′).

Theorem 4—Let conditions (A1)–(A4), (A6), (N1) and (N2) hold. Then conditional on , 

it holds that

as T is fixed and n → ∞. For fixed T, let ωT(t) be the vector of weight functions, ωT(t) = 

{ωq,p+1(t1, t), …, ωq,p+1(tT, t)}T where  by (3). Then it holds that

as T is fixed and n → ∞. Or equivalently,

as n → ∞ for fixed T where VT = ωT(t)P(r)B̄Σ{ωT(t)P(r)B̄}T.

Theorem 4 shows that for any fixed T, the distribution of our final estimate  for 

is approximately normal for sufficiently large n. However, to construct a confidence interval 

for , the difference between ωT(t)P(r)β and  must go to zero at a rate faster than 

(VT/n)1/2, since
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The following proposition gives conditions under which this requirement is satisfied. For 

simplicity, we only consider the case nj = n for j = 1, …, T.

Proposition 1—Assume that the conditions in Theorem 4 hold and , 

then

Remark 3—As an example, lets consider the case p = 1 and q = 0, the local linear 

smoothing. It is easy to verify that if h ∝ Tε−1 for ε ∈ (0, 1) and n ∝ Tδ for δ ∈ (0, 6 − 4ε), 

then n → ∞, h → 0, Th → ∞ and  as T → ∞, which are needed for 

Theorem 4 and Proposition 1 to hold. For instance, if ε = 4/5, then h = O(T−1/5). In addition, 

δ should be between 0 and 2.8, which could be easily satisfied in practice since n is usually 

much bigger than T.

3.2 Statistical Inference: The Proposed Asymptotic Confidence Intervals and the Bootstrap 
Confidence Bands

In practice, the variance of  can be estimated using equation (5). Cov{b(tj), b(tk)} is 

estimated by the first term in the second and the third equations of (1) by replacing Wj, Wk 

and γ(tj, tk) with their estimates accordingly. Here we estimate γ(tj, tk) by the Pearson’s 

sample correlation, denoted by γ̂(tj, tk), with data {Yi(tj), Yi(tk)} for all i ∈ Njk. We estimate 

Wj by Ŵj = diag[π̂
i1(tj){1 − π̂i1(tj)}, …, π̂inj

(tj){1 − π̂
inj

(tj)}], where π̂
ik(tj) = 

{eXik(tj)Tβ̂(tj)}/{1 + eXik(tj)Tβ̂(tj)}. Then  and . In (5), 

Var{br(tj)} is estimated by the (r, r)th element of , and Cov{br(tj), br(tk)} by the (r, r)th 

element of . Finally, the variance estimator for  is given by

(8)

The asymptotic results suggest that a 95% confidence interval of  be given by 

, where the variance estimator is from (8).

Next we propose a global confidence band for the estimated curve , t ∈ [t1, tT] via 

bootstrap. We want to find two curves L(t) and U(t), t ∈ [t1, tT], such that, in the nominal 

confidence level 0.95,

(9)
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We consider a confidence band that is symmetric about the estimated curve. Therefore, 

, where C0.95 is an unknown constant that 

satisfies equation (9). With the confidence band taking the form above, equation (9) is 

equivalent to

We can estimate C0.95 with a bootstrap 95th percentile of the distribution of the supremum in 

the equation above. The algorithm is as following:

1. Resample the subjects with replacement from the original data, say B times. For 

simplicity, the size of each resample is the same as the original data.

2. For the kth resample, k ∈ 1, …, B, calculate the value

where the superscript k indicates it is for the kth resample.

3. Estimate C0.95 by the sample 95th percentile of the B values C(k), k = 1, …, B, 

denoted by .

Therefore, our bootstrap confidence band for , t ∈ [t1, tT] is given by 

.

Finally, the bootstrap confidence band can be used to test hypotheses about βr(t). A typical 

null hypothesis is , for all t ∈ [t1, tT], where f(t) is a known function defined 

in the specific interval. When f(t) ≡ 0, we can test whether the rth covariate is insignificant 

throughout this interval, which in turn provides a way of variable selection in modeling. We 

reject the null hypothesis if the curve f(t) is not completely inside the confidence band.

Another null hypothesis of interest is , for all t ∈ [t1, tT], where C* is an 

unknown constant. With this null hypothesis, we can test whether the correlation of the rth 

covariate with the response variable is time-invariant, which in turn provides a way to 

simplify a fully nonparametric model into a semiparametric model, or even a fully 

parametric model. We reject the null hypothesis if there does not exist a horizontal line 

completely inside the confidence band. Note that this test is expected to be conservative 

because the significance level is usually less than α. The reason is clear from the testing 

procedure. When the null hypothesis is true, confidence bands at nominal confidence level 
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95% for the line f(t) ≡ C*, for all t ∈ [t1, tT], has a probability of 0.95 to cover f(t). For those 

that do not cover f(t), they may cover another constant line such as f(t) + 0.01. In this case, 

the test will still accept H0. This results in an acceptance rate that is higher than 0.95 for H0, 

which implies that the significance level is less than 0.05.

4 Application to Smoking Cessation Data

In this section, we illustrate the proposed method using the smoking cessation data described 

in the Introduction. The main objective of this clinical trial is to evaluate and compare two 

behavioral methods, relapse prevention (RP) and contingency management (CM), alone and 

in combination, for optimizing smoking cessation outcomes using nicotine replacement 

therapy in methadone maintained cigarette smokers. All 175 participants received nicotine 

transdermal therapy and were randomly assigned to receive one of the four behavioral 

treatments (none, RP, CM, RP+CM) for a period of 12 weeks. The participants were 

scheduled to visit back on every Monday, Wednesday and Friday. At every visit, measures 

were taken, including samples of breath (analyzed for carbon monoxide - CO reading) and 

urine, and weekly self-reported number of cigarettes smoked. Some participants didn’t 

complete all the 36 visits, nevertheless many covariates were measured for each participant.

The dichotomous response variable of interest is smoking status determined from the CO 

reading, where smokers are coded as 1 (smoking status=1) and non-smokers as 0 (smoking 

status=0). The following subset of covariates are considered in our analysis: gender (2 

categories), ethnicity (3 categories), treatment group assignments (4 categories), baseline CO 

reading, baseline urine opiate result (2 categories dirty or clean), baseline urine cocaine 

result (2 categories dirty or clean), baseline cotinine reading, age, number of cigarettes 

smoked per day, number of years smoked, depth of inhalation (3 categories), and number of 

times making serious attempt to quit. These covariates are all baseline measures, which 

means they are time-invariant. We treat categorical variables as class variables. That is, each 

category (except the reference level) has its own coefficient function. Among the 175 

participants, only one subject is found to have a 0 (not at all) for the variable INHALE. It is 

modified to value 1 to reduce the categories to 3 for INHALE. The only two Asian subjects 

are dropped from the data to reduce the variable ETHNICITY to 3 categories. The rationale 

for these reductions in categories is that if a category has too few observations, the 

coefficient function corresponding to this category will have a sample size that is too small 

for a logistic regression model. This may result in an unstable raw estimator in the first step, 

and make the final estimator questionable. Hence, there are 17 coefficient functions to be 

estimated, including the intercept and all non-reference levels of the categorical variables. 

Using the notation of our model, we have T = 36, n = 173, d = 17 for this example. We 

utilize local linear regression as the smoothing method in step two where the bandwidths are 

selected visually by plotting the raw estimates from step one separately for each varying 

coefficient function. The selected 17 bandwidths were between 12 and 17.

Figure 1 shows the percentage of nonmissing outcomes during each visit of the study. In the 

first 3 weeks, most individuals (over 90%) are observed at the scheduled visits. In the last 

several weeks, this percentage drops to about 70%. The main reason for missing data in our 

data example is patient drop-out. For estimation of the time varying effects at follow-up time 
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point t, the proposed TS algorithm utilizes data on those subjects whose drop-out times 

(denoted now by Ri for subject i) are greater than t. In other words, in the presence of drop-

out, the proposed modeling has a conditional target of inference E{Yi(t)|Xi(t), Ri > t}, where 

the model characterizations of the relationship between the response and predictors at time t 
only pertain to those subjects that have not dropped out of the study at time t. It is important 

that the interpretation of the model fits be made according to this conditional target of 

inference. Also note that for the missing data encountered on observations of a subject 

before their dropout time, the proposed TS estimation algorithm is valid under missing 

completely at random (MCAR) structures. Please see the Discussion section for further 

comments on extensions of the proposed methodology to missing at random (MAR) data 

structures and alternative approaches to handling informative drop-out.

Figure 1 also descriptively illustrates the effect of behavioral treatments. It plots the 

percentage of smokers (smoking status=1) by the 4 treatment groups along the 36 time 

points. The CM-only and RP+CM groups are significantly below the reference group 

(“none”), by having almost no overlap. The RP-only group is also below the reference 

group, but they overlap during the middle of the 12 week period. RP+CM group is also 

slightly below CM-only group with some overlap. It can be seen that both treatments are 

helping, but CM is much more effective.

The refined estimators of the coefficient functions, along with their 95% bootstrap 

confidence bands and 95% point-wise confidence bands for all the covariates are presented 

in Figures 2–4. Note that the estimated γ(s; t) with correlation values ranging between zero 

and 0.2 was used in targeting the asymptotic variance of the varying coefficient function 

estimators leading to the proposed point-wise and bootstrap simultaneous CI’s. It is 

observed that the treatment effects of CM-only and CM+RP are significantly different from 

0. In particular, the 95% bootstrap confidence band of the CM+RP treatment is almost 

completely below the zero line. This indicates a strong negative effect of the CM+RP 

treatment on the probability of being a smoker. The estimated curve for RP-only treatment is 

generally below the zero line, except in the middle. But the 95% bootstrap confidence band 

covers the entire zero line, indicating that it is not significant. These results are consistent 

with the findings of Shoptaw et al. (2002) and visual findings from Figure 1.

The effect of the baseline CO reading is significant in the first 5 weeks of the study. This is 

likely because it is more difficult for heavier smokers entering the study to quit smoking, and 

this effect became weaker and weaker along time until there was no effect. All other 

covariates are non-significant since the 95% bootstrap confidence bands cover the entire 

zero line. Similar to the baseline CO reading, the baseline cotinine reading also has a 

consistently positive effect, although it is not significant. Men have higher probability of 

being smokers than women, as the estimated curve is mostly above the zero line. There is no 

difference among the different ethnicities. Age has a slight negative effect. It may reflect a 

stronger mind to quit smoking among older participants. As expected, cigarettes per day 

reported at baseline positively predicts smoking. The effect has become stronger at the end 

of the study, which may indicate a relapse. Number of years smoked has a positive effect 

only for the second half of the study, also reflecting a relapse. It reflects the fact that it is 

harder to change long standing behavior patterns. The number of attempts to quit smoking 
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has a negative effect on smoking status. People who are more committed to quit smoking by 

themselves are less likely to be smokers in the study. Inhaling deeply when smoking has a 

constant positive relationship on smoking status, compared to inhaling somewhat. Inhaling 

very deeply has no obvious relationship, possibly because of the small sample size in the 

group that inhales very deeply (24) compared to those inhaling deeply (110). The 

relationship between smoking status and clean urine opiate is positive, while the relationship 

to clean urine cocaine is negative. Intuitively, both should be negative. This result may be 

due to the collinearity between the two. The Pearson’s sample correlation is 0.266 with p-

value 0.0004.

Overall for the smoking cessation data, the proposed two-step method and the logistic 

varying coefficient modeling were very effective in describing the results. They not only 

confirm the finding of Shoptaw et al. (2002) in a more general model, but also evaluate the 

effects of many other covariates and lead to intuitive interpretations. We are also able to 

study the change of effect along time, which distinguishes varying coefficient models from 

many others.

5 Simulation Studies

We conduct simulation studies to evaluate the finite sample performance of the proposed 

methodology including the TS estimation, asymptotic pointwise confidence intervals and the 

bootstrap confidence bands. We also include comparisons with LML, and time-invariant 

GLMM of Wolfinger and O’Connell (1993) with a random y-intercept. Smoothing in the TS 

is carried out via local linear regression. For component-wise bandwidth selection of the 

proposed TS method, we utilize the automatic rule-of-thumb bandwidth selector of Ruppert, 

Sheather and Wand (1995), separately for each varying coefficient function. LML 

maximizes the local likelihood and selects a single global bandwidth for all varying 

coefficient functions. We utilize leave-one-subject out cross-validation for selection of the 

global bandwidth similar to Cai, Fan and Li (2000). For more details on the LML method, 

we refer the readers to Şentürk et al. (2013) and Estes et al. (2014). While all three methods 

are used for comparisons via integrated mean squared error (IMSE), coverage of the point-

wise asymptotic confidence intervals and bootstrap confidence bands and power of the 

proposed hypothesis testing are also studied.

5.1 Finite Sample Performance Comparisons

Our simulation model contains 3 coefficient functions for the two covariates X1, X2, and the 

y-intercept. The covariate X1 is a time-invariant discrete uniform variable taking on values in 

{0.5, 1, 1.5}. The covariate X2 is generated from a Uniform(0, 0.5) distribution. The sample 

size is 175 as in the smoking cessation data and results are reported based on 500 Monte 

Carlo runs. The times {tj, j = 1, …, 36} are also from the smoking cessation data. We 

assume the correlation structure among repeated measurements to be AR-1(0.5), that is 

corr{Yi(tj1), Yi(tj2)} = 0.5|j1−j2|. The algorithm described in Park, Park and Shin (1996) is 

adopted to generate correlated binary data. The varying coefficient functions are β0(t) = 2 

sin{2π(t − 1)/81}, β1(t) = {log10(t) − 1}/4, and β2(t) = 1/(20t) − 2.
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The median of the selected bandwidths across the 500 Monte Carlo runs are (8.5, 15.0, 17.2) 

for {β0(t), β1(t), β2(t)} for the TS method. The median of the selected global bandwidths for 

LML is 9. The results are reported in Tables 1 – 3 and in Figure 5. Figure 5 displays the true 

coefficient functions (solid gray) and their TS estimates (solid black) together with the 

proposed 95% bootstrap confidence bands (dashed black) from the sample with the median 

IMSE value among 500 Monte Carlo runs. Note that the true coefficient functions fall inside 

the bootstrap confidence bands, and that the automatic bandwidth selection may lead to 

under smoothing at times, as displayed for the estimation of β1(t). Nevertheless, the TS 

method, selecting different bandwidths for each coefficient function separately, is more 

effective in targeting varying coefficient functions of varying degrees of smoothness 

compared to the LML method with a global bandwidth. This can be observed in the 

estimated integrated mean square errors (IMSE) reported in Table 1. Since the median global 

bandwidth selected by LML is 9, LML performs better in estimation of β0(t) which requires 

a lower bandwidth, but undersmooths β1(t) and β2(t), leading to higher mean IMSE values, 

compared to the TS method. Note also that when the covariate effects change over time, the 

time-invariant models such as GLMM have a much larger mean IMSE, compared to TS and 

LML, due to modeling bias. It can be 26 times as big as the IMSE from TS.

We also conducted a simulation study to assess the performance of the two remedies 

outlined in the first remark of Section 2.2 for sparse longitudinal designs, namely leaving 

b(tj) missing (TSmissing) and increasing the sample size at tj by including observations from 

neighboring time points tj−1 and tj+1 (TSmerge) for cases with inadequate sample size (nj) at 

some of the time points to obtain stable logistic regression fits. Under the current simulation 

set-up where the conditional mean response ranges between .11 and .9, we need even larger 

sample sizes than the common rule of thumb of 10d. Preliminary studies yielded that a 

minimum sample size of nj = 60 was needed at each time point for stable logistic regression 

fits in our set-up. Hence we generated data under three scenarios of (11, 20, 30)% or (4, 7, 

11) of the time points having small sample sizes ranging between 20 and 30, where the 

sample size for the rest of the time points ranged between 60 and 80. Time points with 

smaller sample sizes, sample size at each time point as well as subject id’s observed at each 

time point were generated randomly in each Monte Carlo run. The estimated mean IMSE 

values from 500 Monte Carlo runs for LML, and two versions of the TS method, namely 

TSmissing and TSmerge are given in Table 2. Note that the mean IMSE values are higher in 

general in Table 2 compared to Table 1 since the simulation involves smaller sample sizes at 

each time point. Under the sparse longitudinal design set-up where TS is unable to produce 

stable logistic regression fits in the first step of the algorithm, both remedies are shown to fix 

this problem in practice reasonably well with TSmerge performing better, for a moderate 

proportion (10–30%) of time points with smaller sample size (i.e. nj < 10d). Note that under 

sparse designs LML is able to merge information from neighboring time points more 

efficiently than the TS method, through its local weighing scheme via the kernel function. 

While results from the small sample size at 11% time points case resemble the patterns in 

the estimated IMSE from Table 1 (namely that LML performs better in estimation of β0(t) 
but leads to higher IMSE values for β1(t) and β2(t), compared to TS), for larger proportion of 

time points with smaller sample sizes, LML leads to lower IMSE values. Hence the 
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advantage of TS over LML in effectively targeting varying coefficient functions of varying 

degrees of smoothness does not extend to sparse longitudinal designs.

5.2 Performance of the Proposed Inference Tools

We conduct further simulations to study the performance of the proposed point-wise 

confidence intervals, bootstrap confidence bands and hypothesis testing described in Section 

3.2. Table 3 provides the coverage probabilities of point-wise confidence intervals at 

nominal levels 95% and 90% at eight time points from the total 36 points. It is observed that 

the coverage probability of the proposed TS method is reasonably close to the nominal level. 

In addition Table 4 reports on coverage rates of the proposed bootstrap confidence bands and 

Tables 5 reports results from a hypotheses testing setup, utilizing the relationship between 

hypotheses testing and confidence bands (or confidence interval in non-functional 

situations). Results are reported from 200 Monte Carlo runs where each run is based on 500 

bootstrap samples at sample size n = 175. Component-wise bandwidths are selected based 

on the automatic rule-of-thumb bandwidth selection of Ruppert, Sheather and Wand (1995) 

in each Monte Carlo run and fits to bootstrap samples utilize the same bandwidths as those 

selected for the Monte Carlo runs. We use two settings where the first setting is the same as 

the simulation setup described above and the second setting differs by utilizing time-

invariant coefficient functions, β0(t) = −1, β1(t) = 0 and β2(t) = 2.

The coverage rates reported in Table 4 are pretty close to the nominal levels in both settings, 

where β2(t) is less covered than β0(t) and β1(t). This may be due to the fact that β2(t), being 

the most smooth function of the three, may be under smoothed in some runs because of the 

under smoothing tendency of the automatic bandwidth selectors. Table 5 gives the estimated 

rejection proportions (in %) for two hypotheses tests: 1. H0(a) : βr(t) does not change over 

time; 2. H0(b) : βr(t) = 0, for all t ∈ [t0, tT]. The testing procedure is based on the proposed 

bootstrap confidence bands. In the first setting, the powers for rejecting H0(a) and H0(b) are 

satisfying for β0(t) and β2(t) where they are all at 100%. The powers for β1(t) are much 

smaller than those for the other two coefficient functions. This is because β1(t) is much more 

similar to a constant function, more specifically a constant function at 0. Note also that the 

powers for rejecting H0(a) are consistently smaller than those for rejecting H0(b), since 

H0(b) is a special case for H0(a). For the second setting, reported proportions for H0(a) at all 

varying coefficient functions and for H0(b) at β1(t) are estimated significance levels since the 

null hypotheses are true in these cases. For H0(b), while the significance levels for β1(t) are 

close to the nominal levels, the reported values for the other two coefficient functions show 

that the powers are 1 for rejecting H0(b) when the constants are other than 0. For H0(a), the 

estimated significance levels are consistently less than the nominal level as discussed in 

Section 3.2. These findings imply that the proposed bootstrap confidence bands are very 

effective in identifying whether H0(a) is true and the unknown constant.

6 Discussion

In this paper, we proposed a TS estimation procedure for logistic varying coefficient 

modeling of longitudinal binary data. The basic idea behind the proposal as well as its 

implementation are simple. We also evaluated the asymptotic properties of the proposed 
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estimators and found them to be asymptotically unbiased. We established the asymptotic 

variance under two specific situations and proved that the estimators are asymptotically 

normal, leading to the proposed asymptotic and finite sample inference procedures. We 

applied the proposed methodology to smoking cessation data. The main results are 

consistent with findings from previous studies. Moreover, we evaluated many other 

covariates and have provided reasonable interpretations of the results. The estimators give 

intuitively consistent inferences and the bootstrap confidence intervals are effective in 

identifying significant predictors.

Simulation studies included comparisons of the TS and LML methods. Unlike the LML 

approach, the proposed TS method is able to target coefficient functions with varying 

degrees of smoothness, via component-wise bandwidth selections. In addition, the TS 

method also allows for visual selection of component-wise bandwidths via plotting of the 

raw varying coefficient function estimates. The efficacy of the proposed bootstrap 

confidence bands are shown via simulation studies where the implied tests have very high 

power in many cases. While the first hypothesis of constant coefficient functions tests 

whether the logistic varying coefficient model reduces to a semi-parametric or a parametric 

model, the second hypothesis of coefficient functions being equal to zero, allows us to 

perform model selection.

The proposed methodology can easily be extended to be applicable to other forms of 

longitudinal data. For example longitudinal categorical data can be modeled in a similar 

way, as long as an appropriate marginal model (e.g. the proportional odds model of Agresti 

(2002)) is selected for cross-sectional modeling in the first step. A second extension can be 

to spatial correlated longitudinal data, such as that encountered in progression detection of 

glaucoma in the visual field (Gardiner and Crabb, 2002). Spatial correlation can be taken 

into account in the proposed TS method by applying a higher dimensional smoothing 

procedure in the second step. We noted that the proposed methodology involves a 

conditional target of inference in presence of informative drop-out, where inference is 

restricted to those subjects who have not yet dropped out of the study at a fixed time t. When 

the interest may be in modeling both drop-out time and a longitudinal outcome, an 

alternative modeling approach would be the joint modeling of drop-out time and the 

longitudinal binary outcome. While in our application the main reason for missing data is 

patient drop-out, in other applications there may be missing data in subjects’ observations 

before they drop out of the study. The proposed methodology can handle missing completely 

at random (MCAR) data structures and extensions to missing at random (MAR) data need 

further research.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Proposed a two-step estimation procedure for a logistic varying coefficient 

model.

• The method is simple and can be conveniently implemented.

• We provide tools for finite sample and asymptotic inference.

• Methods are illustrated with the analysis of a smoking cessation data set.
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Figure 1. 
The Smoking Cessation data. Percentage of nonmissing outcomes during each visit of the 

study (top plot). Percentage of smokers (determined by CO readings) by 4 treatment groups 

(bottom plot). Index of time is plotted in days.
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Figure 2. 
The Smoking Cessation data (part 1). Curve estimate (solid line in center), 95% bootstrap 

confidence band (solid lines) and 95% point-wise confidence intervals (dash lines).

Dong et al. Page 21

J Stat Plan Inference. Author manuscript; available in PMC 2017 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
The Smoking Cessation data (part 2). Curve estimate (solid line in center), 95% bootstrap 

confidence band (solid lines) and 95% point-wise confidence intervals (dash lines).
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Figure 4. 
The Smoking Cessation data (part 3). Curve estimate (solid line in center), 95% bootstrap 

confidence band (solid lines) and 95% point-wise confidence intervals (dash lines).
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Figure 5. 
The true varying coefficient functions (solid gray), their estimates (solid black) based on the 

proposed TS method and 95% bootstrap confidence bands (black dashed) from the run with 

median IMSE among 500 Monte Carlo runs.
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