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Abstract

Antibody responses to the HIV-1 envelope glycoproteins can be classified into three groups. 

Binding but non-neutralizing responses are directed to epitopes that are expressed on isolated 

envelope glycoproteins but not on the native envelope trimer found on the surface of virions and 

responsible for mediating the entry of virus into target cells. Strain-specific responses and broadly 

neutralizing responses, in contrast, target epitopes that are expressed on the native trimer, as 

revealed by recently resolved structures. The past few years have seen the isolation of many 

broadly neutralizing antibodies of remarkable potency that have shown prophylactic and 

therapeutic activities in animal models. These antibodies are helping to guide rational vaccine 

design and therapeutic strategies for HIV-1.

The humoral immune response to HIV-1 has been the focus of intense interest since the first 

identification of the virus in 1983 and the development of antibody (Ab)-based diagnostics 

of infection. Detailed studies during acute and chronic HIV-1 infection have revealed that 

Ab responses to HIV-1 infection are complex and evolve over time. The latter characteristic 

is due to the changing nature of B cell epitopes through mutation during an ongoing viral 

infection, but it probably also reflects changes in CD4+ T cell help, either because of 

changes in T cell epitopes through mutation or the elimination of CD4+ T cells through 

infection. Complexity and change are particularly apparent in Ab responses to the viral 

surface envelope (Env) glycoproteins, which are by far the most studied and important 

functional responses and the only ones considered here.
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Ab responses to Env proteins fall into three groups. The first group encompasses responses 

to Env proteins that do not neutralize viruses, even those bearing an Env protein sequence 

identical to that of the immunizing antigen. Such Abs typically bind to Env epitopes that are 

not presented on the native Env trimer spike (known as a ‘functional spike’) that mediates 

entry into target cells (Fig. 1). An inability of an Ab to bind to functional spikes precludes 

neutralizing activity. ‘Neutralization’ is defined as the loss of infectivity that occurs when an 

Ab molecule binds a virion and usually does not require the involvement of any other Ab 

activity. Nevertheless, non-neutralizing Abs to HIV-1 may have antiviral activity because of 

the relatively unstable nature of the functional spike. Thus, there is evidence that over time, 

the spike structure decays to reveal epitopes that can be recognized by this class of Abs (Fig. 

1). The presence of decayed Env proteins on virions that still possess a sufficient 

complement of functional spikes to permit infection provides an opportunity for the non-

neutralizing Abs to act antivirally—for example, through Fc fragment–mediated 

phagocytosis of infectious virions or sequestration of virions on Fc receptor (FcR)-bearing 

cells. A common example of this type of Ab is directed against the immunodominant 

domain of glycoprotein 41 (gp41) that interacts with the HIV-1 envelope protein gp120 and 

is hidden from Ab recognition on the Env trimer. If gp120 is shed from the trimer, gp41 is 

left in the viral membrane as six-helical bundles (known as ‘stumps’), which can be 

recognized by Abs. Such non-neutralizing Abs can also act antivirally by targeting 

nonfunctional forms of Env on infected cells (Fig. 1).

The second group encompasses the responses to Env proteins that neutralize virus in a 

highly strain-specific manner. These responses typically target regions on the variable (V) 

loops or other regions of gp120 (Figs. 1 and 2) with relatively high sequence variation (such 

as the C3 region targeted during infection with clade C HIV-1), bind to Env trimers of the 

immunizing or infecting (‘autologous’) strain of HIV-1 and neutralize that strain but not 

most other (‘heterologous’) strains. These responses emerge relatively early in infection, 

tend to be immunodominant and are the mechanism by which HIV-1 continually avoids Ab 

control, as changes in these variable epitopes readily lead to neutralization escape.

The third group is represented by responses to Env proteins that neutralize a broad spectrum 

of global HIV-1 strains. Here we are referring to Abs that can neutralize the majority of 

diverse HIV-1 strains (i.e., that have breadth of coverage) with in vitro neutralization 

potencies often well below 1 μg per milliliter (i.e., an IC50 (the Ab concentration needed to 

achieve 50% neutralization in standard assays) of less than 1 μg/ml). These responses target 

regions of the Env spike that show relative conservation either in sequence or amino acid 

character. Such Abs usually have evolved mechanisms to deal with the variability that 

surrounds the small oases of accessible conservation on the Env trimer. The Abs typically 

take years to evolve a high level of neutralization breadth and potency and have an array of 

features not found in most Ab responses. Induction of these types of Ab response—those 

that attain both neutralization potency and breadth—would be the goal of vaccination to 

protect against the diversity of global strains. Here we discuss these three types of Ab 

response in detail.
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HIV-1 Env antigens

Env proteins are believed to be presented to the human humoral immune system in many 

forms during natural HIV-1 infection, including as functional Env trimers on the surface of 

virions and infected cells, disassembled or conformationally altered Env trimers, shed 

monomeric gp120, gp41 stumps left in membranes after gp120 is shed, and aggregated 

gp160 from the cytoplasm of infected cells1,2. In addition, gp120 can bind to the monomeric 

coreceptor CD4 on the cell surface, which leads to the enhanced exposure of additional 

epitopes, such as the CD4-induced epitope, a phenomenon that has been observed in HIV-1 

infection3 and in gp120-immunization experiments4. Given these different forms of Env 

protein and the instability of the native trimer, it may be difficult to be dogmatic about the 

conformation of the immunogen that has triggered or contributed to a given anti-Env 

response. That said, there is a subset of Abs that are Env-trimer specific (i.e., bind to 

conformationally intact trimers but not to gp120) (refs. 5–11), and elicitation of these Abs 

would probably require immunization with trimers at some point. Furthermore, Abs to 

epitopes hidden within the trimer would not be induced by immunization with a stable 

trimer. However, many epitopes are presented on multiple forms of Env protein (for 

example, both gp120 and trimer), which complicates understanding of the genesis of such 

responses.

Much structural work has been done on various forms of gp120 and gp41, often in complex 

with Abs, and these studies, together with Ab mapping by both binding and neutralization, 

have defined many Env epitopes12–14. More recently, structures of a recombinant stabilized 

form of the Env trimer (Fig. 2) thought to closely mimic the functional trimer15–17 have been 

determined18–20, and these have revealed much about the nature of Env epitopes and the 

corresponding Ab responses. In brief, the hidden or obstructed nature of many epitopes on 

the trimer that are available on monomeric gp120 is apparent. This observation is 

undoubtedly associated with the prevalence of many non-neutralizing Abs in Env responses. 

On the fully functional viral spike, neighboring protomers (for example, gp120s) and 

glycans obstruct access to many gp120 epitopes. gp41 is largely buried in the interior of the 

trimer. The relative accessibility of the variable loops targeted by strain-specific neutralizing 

Ab responses is clear on the structures and contrasts, for example, with the limited access of 

the CD4-binding site, which is targeted by a subset of broadly neutralizing Ab responses.

Env protein–binding but non-neutralizing Ab responses

Serological assessment of Ab responses to HIV-1 has focused on Abs that target the 

glycoproteins gp120 and gp41, which noncovalently associate and trimerize to form the Env 

viral spike14. Early binding assays most often used monomeric gp120 or soluble forms of 

uncleaved (non-native) trimeric gp140, typically in an enzyme-linked immunosorbent assay 

format. Use of these antigens enables the detection of anti-Env immunocomplexes as early 

as 1 week after HIV-1 infection21. Subsequently, Abs to gp41 are detected first, followed by 

Abs to variable regions of gp120, such as the V3 loop. These binding Abs do not seem to 

produce selection pressure on the virus or affect plasma viral load22,23. Because functional 

trimeric Env proteins are prone to disassembly, as described above, it is likely that a large 

fraction of the gp120 and gp41 response is directed to dissociated gp120 and gp41 proteins 
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and does not react with native Env trimers24. This might partially explain the apparent lack 

of in vivo activity of these early Ab responses.

However, it is likely that some non-neutralizing Abs can act antivirally through Fc-mediated 

effector activities, so these are of functional interest. Immunoglobulin G (IgG) can interact 

with transmembrane adaptors (FcγRs), the neonatal Fc receptor (FcRn) and the initiator of 

the classical complement cascade C1q. The interaction of Abs bound to Env proteins on 

cells with FcγRs can trigger Ab-dependent cellular cytoxicity (ADCC) and Ab-mediated 

cellular phagocytosis (ADCP). In early assay formats, ADCC was often assessed by coating 

CD4+ target cells with monomeric gp120, which measures only a subset of Abs reactive 

with gp120. Subsequent ADCC assays have used HIV-1-infected target cells that express 

native Env proteins on their surface and thus provide a more physiological assessment of 

possible antiviral effects in vivo25–28. A further assay used in vitro is Ab-dependent cell-

mediated virus inhibition, which provides a measure of the combined antiviral effect of 

ADCC, neutralization and other possible inhibitory mechanisms of Ab in vitro29. ADCC and 

ADCP are initiated by interactions between Ab Fc regions with FcγRs on cells of the innate 

immune system. ADCC occurs via natural killer effector cells, whereas ADCP is mediated 

by monocytes, macrophages or dendritic cells that can internalize Ab-coated virus or cells. 

FcγR-mediated effector functions are dependent on IgG subclass and Fc glycosylation. As 

an example, IgGs lacking Fc glycan fucose residues mediate ADCC more effectively than do 

those containing fucose. Additionally, FcγRs are subclassified as activating (FcγRI, FcRγIIa, 

FcγRIIc, FcγRIIIa and FcγRIIIb) or inhibitory FcγR (FcγRIIb), and these are activated 

differentially by different Ab glycoforms30. For example, the addition of terminal galactose 

or sialic acid residues to the IgG glycans can promote anti-inflammatory activity by 

enhancing the interaction with the inhibitory FcγRIIb. Thus, in addition to the conventional 

measurements of Ab binding, biochemical and binding analyses now include glycan analysis 

by mass spectrometry, measurements of the affinity of the binding of Ab Fc to FcγRs and 

Fc-mediated effector functions such as ADCC. An analysis of the Ab-glycosylation profile 

during HIV-1 infection has suggested that HIV-1-infected subjects who control viremia and 

show strong Fc-mediated antiviral activity have an HIV-1-specific Ab-glycosylation profile 

shifted toward agalactosylated glycoforms that are better able to recruit antiviral activity of 

the innate immune system31.

It is worth emphasizing that Fc-mediated effector functions and virus neutralization are not 

mutually exclusive; thus, neutralizing Abs may similarly trigger Fc-mediated effector 

functions32,33. Interest in non-neutralizing Abs has been driven in part by the results of the 

RV144 vaccine study, which showed a 31% reduction in infection rate despite the absence of 

detectable HIV-1-neutralizing Abs elicited by the vaccine34. An immune-correlates analysis 

has associated non-neutralizing Abs to the V1V2 region of gp120 with a lower risk of 

infection35, and these Abs mediate ADCC under certain experimental conditions36. 

Additionally, Abs of the IgG3 isotype, which are potent mediators of ADCC, are associated 

with lower infection risk37. In addition to their potential role in clearance of virally infected 

cells, Abs generated by immunization can be present at mucosal surfaces, as IgG or IgA, and 

could interact with a virus to impair its ability to breach the mucosal barrier. Such Abs could 

act via aggregation of virions and, potentially, by interacting with mucosal secretions (e.g., 

mucins) to trap and clear virions away from the mucosal surface38–40. IgA can also prevent 
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transcytosis across epithelial cells and Abs at subepithelial or submucosal layers could 

recruit cells of the innate immune system to mediate phagocytosis, viral inhibition or 

ADCC41.

Although some data have associated strong Ab-dependent cell-mediated virus inhibition 

responses with slower disease progression in long-term nonprogressors42,43, one of the 

major concerns with Env protein–binding but non-neutralizing Abs from a physiological 

standpoint is the lack of convincing evidence of protection44 or therapeutic activity in animal 

models under conditions for which neutralizing Abs provide solid antiviral activity, 

including complete protection against infection and complete suppression of virus in 

infected animals45–52. It has been suggested that non-neutralizing Abs may show effects 

only in an appropriate polyclonal composition, but no such composition has yet been 

identified44.

Strain-specific neutralizing Ab responses

For analysis of neutralizing Ab responses to functional native Env proteins, cell-entry-

competent Env-pseudoviruses are often used. Here an Env protein–deficient HIV-1 

molecular clone is pseudo-typed with a full gp160 Env protein to express a single round of 

replication Env-pseudovirus that can enter host cells expressing CD4 and the coreceptor 

CCR5. This allows accurate measurement of the neutralization of viruses incorporating 

autologous Env proteins from the same donor as the serum sample, or diverse heterologous 

HIV-1 strains53,54. With these assays, autologous virus-neutralizing Abs are generally 

detected weeks or months after Abs that bind gp120 or gp41 and are generally not detected 

until 12 or more weeks of HIV-1 infection14,21,55,56. The reasons for the slow development 

of autologous or strain-specific neutralizing Ab responses are unclear. It is possible that 

impaired CD4+ T cell help may have a role or that Abs to non-neutralizing epitopes are 

dominant and thus delay the response to neutralizing epitopes found on the native trimer. As 

their name implies, such responses neutralize very narrowly—typically only the autologous 

virus of those tested.

The escape of HIV-1 from neutralization by strain-specific neutralizing Ab responses was 

first documented more than 15 years ago57,58 and has been described in detail with Env 

proteins cloned from plasma to express autologous Env-pseudoviruses55,56. Hence, at any 

given time point during the course of HIV-1 infection, most circulating viruses are resistant 

to neutralizing Abs in serum from the same time point. Subsequently, neutralizing Abs in 

serum that can neutralize the escaped virus arise, and an ongoing process of viral escape and 

Ab evolution is believed to drive, in some individuals, the development of cross-reactive 

neutralizing Abs59–62. Strain specificity was initially thought to be explained mainly by 

neutralizing Abs that target highly variable regions of Env proteins, such as V1V2 or V3, 

and this is the case in some donors (Fig. 2). In clade C infection, the moderately variable α2 

helix region that is C-terminal to V3 is a target of the early autologous neutralizing Ab 

response60,61. Likewise, several studies have shown that the V1V2 region is also targeted 

early60–62. Common themes among these descriptions are that the early Ab response is 

highly restricted (to the autologous virus and perhaps a few others) but is able to drive viral 

escape mediated by mutation of one amino acid or a few amino acids. Thus, one prevailing 
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hypothesis for the development of serological neutralization breadth is that the accumulation 

of a large number of strain-specific neutralizing Abs results in a polyclonal response that can 

neutralize many diverse HIV-1 strains. Although the polyclonality of sera certainly has some 

role in neutralization breadth, many published studies have suggested that effective broad 

neutralization by sera from infected donors results from the activity of potent broadly 

neutralizing Abs of a small number of neutralizing Ab specificities, rather than a 

combination of many strain-specific Abs5,6,63–67.

Broadly neutralizing Ab responses

Over the past 10 years, major efforts have been made to delineate the polyclonal serum 

response to HIV-1 to understand particularly the epitopes on Env proteins targeted by 

broadly neutralizing Abs that develop during natural infection68. Initially, this was done by 

adsorbing sera with specific antigens such as gp120 and gp140, or mutant variants of these 

proteins, or by using Env-pseudoviruses that contain mutations or chimeric sequence 

exchanges in specific regions of Env proteins63–65,69. These approaches have provided key 

insights into the neutralization epitopes recognized by HIV-1-positive sera, but more 

definitive information would come from the isolation of neutralizing monoclonal Abs 

(mAbs) from infected donors whose sera has demonstrated potent cross-reactive HIV-1 

neutralization. Two principal factors have facilitated the isolation of large numbers of potent 

broadly neutralizing Abs. First, large cohorts have been examined for the breadth of serum 

neutralization to give the best chance of recovery of broadly neutralizing Abs10,70,71. 

Second, effective methods for the reliable isolation of broadly neutralizing Abs from HIV-1-

infected donors have been adopted, including the ability to culture and activate individual 

memory B cells and directly screen supernatants for neutralization5–7,9,10,72 and to isolate 

single B cells directly by antigen-specific cell sorting73–75. The ability to then recover genes 

encoding Ab heavy or light chains from individual B cells allows the reconstruction of the 

functional Ab. Before 2009, only a handful of broadly neutralizing Abs had been isolated, 

and these defined three major Env antigenic sites: the membrane-proximal external region 

(MPER) of gp41, the CD4-binding site of gp120 and an exclusively glycan epitope on the 

outer domain of gp120. mAb-isolation methods have enabled the isolation of hundreds of 

broadly neutralizing Abs over the past 5 years, many of which have demonstrated 

remarkable potency and breadth of reactivity against diverse HIV-1 strains. Newly identified 

antigenic sites include a gp120 V2-glycan site at the apex of the Env trimer, a gp120 V3-

glycan site centered on the glycan at Asn332 and an extended region including residues from 

both gp120 and gp41 between the MPER and gp120 protomers (Fig. 3).

A great deal of effort in the past few years has gone into studying the broadly neutralizing 

Abs23,59,76–83. Characteristics of note include higher levels of somatic hypermutation than 

those typically observed for Abs to many other pathogens (particularly the VRC01 class of 

broadly neutralizing Abs directed to the CD4-binding site), the frequent use of insertions 

and deletions, long heavy-chain complementarity-determining region 3 regions (particularly 

the broadly neutralizing Abs that recognize protein-glycan epitopes requiring penetration of 

the glycan shield, such as the V2 apex and high-mannose patch epitopes) and restricted 

germline use (particularly the VRC01 class of broadly neutralizing Abs directed to the CD4-

binding site)84–86. One important question about broadly neutralizing mAbs is whether a 
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high degree of somatic hypermutation and frequent insertions and deletions are necessary for 

broad neutralization or whether they simply reflect long-term infection and an extended 

period of Ab mutation and selection. A number of studies suggest that considerably lower 

levels of somatic hypermutation than typically observed in broadly neutralizing Abs can 

indeed yield relatively broad and potent neutralization9,87,88. Some insertions and deletions 

seem to be required for broad neutralization; others do not85,86. Another important question 

is the origin of long heavy-chain complementarity-determining region 3 regions. Data 

suggest that these features are generated mainly during variable-diversity-joining 

recombination before antigen contact rather than via insertions after antigen contact9,89.

A range of broadly neutralizing mAbs has been shown to provide sterilizing immunity 

against challenge with chimeric simian-human immunodeficiency viruses (SHIVs) in 

macaque monkeys and against HIV-1 in humanized mice45–48,83,90. Early studies showed a 

strong correlation between in vitro neutralization and in vivo protection45, and titration 

studies have indicated that sterilizing immunity is achieved at serum Ab concentrations in 

the approximate range of tenfold to a few hundred-fold in vitro serum neutralizing 

titers48,90–93. Evidence in macaques32,94 and in humanized mice33,90 has accumulated 

showing that Fc receptor–mediated activities are important in the protective activity of 

broadly neutralizing Abs against HIV-1 challenge. Notably, potent broadly neutralizing 

mAbs have dramatic effects on the control of virus in established infection in humanized 

mice and macaques50,52,95. Escape from neutralization has been described in a number of 

instances, typically less frequently in combination therapies than in monotherapy47,95. 

Remarkably, the single mAb PGT121 has produced sustained suppression in some macaques 

and led to an absence of escape from neutralization50. The presence of pre- existing Ab 

responses in infected animals may help to block escape pathways96. The sustained nature of 

control in some animals may reflect enhanced T cell responses after Ab therapy50.

Several groups of investigators have studied the lineages of broadly neutralizing Abs by first 

isolating a broadly neutralizing mAb from memory B cells after several years of HIV-1 

infection. Through the use of knowledge of the Ab sequence and next-generation sequencing 

to identify related gene transcripts, the maturation of the Ab lineage can be followed over 

time in longitudinal B cell samples starting early after infection. In one example, the mAb 

CH103 targeted the CD4-binding site of gp120 and neutralized 55% of diverse HIV-1 

strains88. However, the unmutated ancestor of this Ab lineage bound only to the gp120 of 

the autologous founder virus, and early intermediates showed strain-specific autologous 

virus neutralization. During the process of coevolution of virus and Ab, the maturing CH103 

Ab lineage gained neutralization breadth, presumably through focusing on conserved 

features of the CD4-binding-site epitope that are common to most viruses97. A similar 

phenomenon was observed with the lineage of an Ab to the quaternary V1V2 region of the 

Env trimer9. The mature Ab CAP256 that was isolated 2 years after HIV-1 infection was 

both highly potent and relatively broadly neutralizing. However, its unmutated ancestor 

showed only weak neutralization of the founder virus, with both potency and breadth of 

neutralization increasing over time.
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Conclusions

We began with the statement that Ab responses to HIV-1 are complex. Study of that 

complexity has yielded a wealth of information on the viral Env protein and on Abs that can 

recognize it. Researchers now appreciate the full range of defensive features that the HIV-1 

Env trimer incorporates to minimize recognition by Abs, as seen in the elegant published 

structures. Investigators also appreciate the power of evolutionary forces to yield Abs 

capable of penetrating the defenses of Env protein and are beginning to understand how 

these Abs arise in natural infection. Some of the broadly neutralizing mAbs that have been 

generated are so potent, and their activity against diverse global isolates is so extensive, that 

they are now being considered as prophylactic and therapeutic agents, including being part 

of strategies to attempt to target the latent reservoir of HIV-1. Finally, the broadly 

neutralizing Abs suggest that a vaccine against HIV-1 should be possible, if researchers can 

meet the challenge of designing immunogens to elicit such Abs.
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Figure 1. 
Schematic of some of the forms of Env protein that may be present on infectious HIV-1 and 

available to elicit Ab responses. Only neutralizing Abs (nAbs) will bind to functional Env 

trimer spikes, although neutralizing Abs could, in principle, be elicited by other forms of 

Env protein. A range of non-neutralizing Abs (non-nAbs) and some neutralizing Abs will 

bind to nonfunctional Env proteins. Non-neutralizing Abs could be elicited by the types of 

nonfunctional Env protein shown, but also by, for example, monomeric gp120 or Env debris 

from infected cells. The molecules shown on virions could also be expressed on infected 

cells. Other forms of Env protein may be expressed on HIV-1 (refs. 1,2,98).
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Figure 2. 
Structure of the HIV-1 Env trimer. Ribbon representation of the viral spike trimer structure 

(without bound Abs) with three identical gp120 (red) and gp41 (blue) molecules and 

variable loop regions (V1–V4). Dotted lines indicate loop regions not fully resolved within 

the crystal structures. The structure of the native cleaved trimeric Env, BG505 SOSIP.664, 

bound to several neutralizing Abs, has been solved by both cryo-electron microscopy19 and 

X-ray crystallography18,20. Image adapted from ref. 20, Nature Publishing Group.
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Figure 3. 
Broadly neutralizing Abs (antigen-binding (Fab) fragments) bound to the HIV-1 Env trimer. 

Shown are binding locations for prototype Abs to gp41 and gp120 (35O22 (ref. 10), 

8ANC195 (ref. 99), PGT151 (refs. 7,8)); to the CD4-binding site (VRC01 (ref. 74)); to high-

mannose-patch (PGT122, PGT128, PGT135 (refs. 6,18,100–102)); and to V2 apex (PG9 

(refs. 5,103)). The Abs to MPER72,104,105 bind very close to the viral membrane; the MPER 

is not included in the recombinant trimer structure18. Other much-studied broadly 

neutralizing Abs include b12 (ref. 106) and 3BNC117 (Abs to the CD4-binding site)107; 
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10-1074 (Ab to the high-mannose patch)108; CAP256 (ref. 9), PGT145 (ref. 6) and 

PGDM1400 (ref. 73) (Abs to the V2 apex). Image courtesy of A. Ward and C. Corbaci.
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