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SUMMARY

This paper is motivated by a phase I–II clinical trial of a targeted agent for advanced solid tumors. We
study a stylized version of this trial with the goal to determine optimal actions in each of two cycles of
therapy. A design is presented that generalizes the decision-theoretic two-cycle design of Lee and others
(2015. Bayesian dose-finding in two treatment cycles based on the joint utility of efficacy and toxicity.
Journal of the American Statistical Association, to appear) to accommodate ordinal outcomes. Backward
induction is used to jointly optimize the actions taken for each patient in each of the two cycles, with
the second action accounting for the patient’s cycle 1 dose and outcomes. A simulation study shows that
simpler designs obtained by dichotomizing the ordinal outcomes either perform very similarly to the
proposed design, or have much worse performance in some scenarios. We also compare the proposed
design with the simpler approaches of optimizing the doses in each cycle separately, or ignoring the
distinction between cycles 1 and 2.

Keywords: Adaptive design; Bayesian design; Decision theory; Dynamic treatment regime; Latent probit model;
Ordinal outcomes; Phase I–II clinical trial.

1. INTRODUCTION AND MOTIVATION

This paper is motivated by the problem of designing a dose-finding trial of a new agent for cancer patients
with advanced solid tumors. The agent aims to inhibit a kinase, which regulates cell metabolism and
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proliferation, in the cancer cells to reduce or eradicate the disease. The agent is given orally each day of a
28-day cycle at one of five doses, 2, 4, 6, 8, or 10 mg, combined with a fixed dose of standard chemother-
apy. Because both efficacy and toxicity are used for dose-finding, it is a phase I–II trial (Thall and Cook,
2004; Yin and others, 2006; Zhang and others, 2006; Thall and Nguyen, 2012). Both outcomes are 3-level
ordinal variables, with toxicity defined as None/Mild (grade 0,1), Moderate (grade 2), or Severe (grade 3,4)
and efficacy defined in terms of disease status compared with baseline, with possible values progressive
disease (PD), stable disease (SD), or partial or complete response (PR/CR).

We study a stylized version of this trial with the more ambitious goal to determine optimal doses or
actions for each patient in each of two cycles of therapy. This is a major departure from conventional
dose-finding designs, which focus on choosing a dose for only the first cycle. While virtually all clinical
protocols for dose-finding trials include rules for making within-patient dose adjustments in cycles after
the first, this aspect usually is ignored in the trial design. In practice, each patient’s doses in cycle 2, or
later cycles, are chosen subjectively by the attending physician. To choose a patient’s cycle 2 dose using
a formal rule, it is desirable to use the patient’s dose-outcome data from cycle 1, as well as data from
other patients treated previously in the trial. Thus, ideally, a decision rule that is adaptive both within and
between patients is needed.

Recent papers on designs accounting for multiple treatment cycles include Cheung and others (2014)
and Lee and others (2015). In this paper, we build on the latter, who use a decision-theoretic approach for
dose-finding in two cycles based on joint utilities of binary outcomes in each cycle. We extend the model
to accommodate ordinal outcomes, and use a decision criterion that accounts for the many possible (effi-
cacy,toxicity) outcomes in each of the two treatment cycles, including the risk-benefit trade-offs between
the levels of efficacy and toxicity. In the stylized version of the trial described above, since there are 3-level
ordinal toxicity and efficacy outcomes in each cycle, accounting for two cycles there are 81 possible ele-
mentary outcomes for each patient. Consequently, dose-finding is a much more complex problem than in
a conventional phase I–II trial with two binary outcomes that chooses a dose for cycle 1 only.

Aside from the issue of accounting for two cycles, an important question is whether the additional com-
plexity required to account for ordinal outcomes provides practical benefits compared with the common
approach of dichotomizing efficacy and toxicity, which would allow the two-cycle design of Lee and others
(2015) to be applied. Simulations, described in Section 4.4 of the main text, Figure 2, and Section 3 of
Supplementary Material (available at Biostatistics online), show that reducing ordinal outcomes to binary
variables produces a design that either performs very similarly to the proposed design, or has much worse
performance in certain scenarios. Moreover, the behavior of the simplified design depends heavily on how
one chooses to reduce the two ordinal outcomes to two binary variables.

A naive design might aim to optimize the doses given in the two cycles separately. This may be not
optimal. To see this, denote a patient’s toxicity outcome by Yc and efficacy outcome by Zc for c = 1, 2, and
denote the current data from n patients by Xn. We include NT = “Donottreat” as a possible action in either
cycle for cases where it has been determined that no dose is acceptable, so the action dc in each of cycles
c = 1, 2 may be either to choose a dose or NT, that is, dc ∈D = {NT, 1, . . . , m} with 1 and m denoting
the minimum dose and the maximum dose levels, respectively. Suppose that some optimality criterion has
been defined. If one derives optimal adaptive actions d�

1 for cycle 1 and d�
2 for cycle 2 separately, each

based on the current data Xn, an inherent flaw is that in choosing one d�
2 for all patients it ignores each

patient’s cycle 1 data. As in Lee and others (2015), we derive optimal decision rules d� = (d�
1 , d�

2) with the
important property that d�

2 = d�
2(d1, Y1, Z1,Xn) is a function of the first cycle decision d1 and response

Y1, Z1. This is implemented by applying backward induction (Bellman, 1957, etc.). The method accounts
for the patient’s cycle 1 dose and outcomes, as well as other patient’s data, in making an optimal decision
for cycle 2.

Iasonos and others (2011) and Van Meter and others (2012) studied the use of ordinal toxicity out-
comes for a generalized continual reassessment method and reported that gains in performance of their
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ordinal toxicity designs are not substantial in comparison to binary toxicity designs. However, the com-
parison looks quite different for the model-based two-cycle design for bivariate ordinal (efficacy, toxicity)
outcomes that we propose in this paper. In simulations described in Section 4.4, we compare the proposed
design with designs that do not properly model association between cycles. In simulations reported in
Section 4.5, we show that the use of ordinal rather than binary outcomes can substantially improve design
performance in our setting.

Section 2 describes the proposed decision-theoretic method for ordinal outcomes in two cycles (DTD-
O2). Sections 3 and 4 include decision criteria using utilities and a simulation study. The last section
concludes with a final discussion.

2. A DECISION-THEORETIC DESIGN

2.1 Actions and optimal sequential decisions

For notational convenience, we denote the possible levels of toxicity by 0, 1, . . . , J − 1 and efficacy by
0, 1, . . . , K − 1. For the motivating trial, these are Y = 0 for None/Mild, 1 for Moderate, and 2 for Severe,
and Z = 0 for PD, 1 for SD, and 2 for CR/PR, so K = J = 3. If the adaptively chosen cycle 1 action d1 = NT
for any patient, then the trial is stopped and no more patients are enrolled. Otherwise, the patient receives
a dose d1 of the agent in cycle 1. A cycle 2 action is a function mapping the cycle 1 dose and outcomes,
(d1, Y1, Z1), to an action in D. For example, if the cycle 1 action d1 produced None/Mild toxicity (Y1 = 0),
one possible cycle 2 action is d2(d1, 0, Z1,X ) = d1 + 1 if Z1 = 0, and d1 if Z1 = 1 or 2. That is, if there
was little or no toxicity but PD in cycle 1, then the action d2 increases the dose in cycle 2, but if the patient
had SD or better then it repeats the cycle 1 dose. The design thus involves an alternating sequence of
decisions and observed outcomes, d1, (Y1, Z1), d2(d1, Y1, Z1), and (Y2, Z2).

We apply a Bayesian decision-theoretic paradigm to determine an optimal decision rule. First, focus on
cycle 1, and temporarily ignore cycle 2. The general setup of a Bayesian decision problem involves actions
d1, observable data y = (Y1, Z1), parameters θ that index a sampling model p(y | θ, d1) for the data, and
a prior probability model p(θ) for the parameters. We discuss specification of D in more detail below.
A utility function u(d1, θ, y) formalizes relative preferences for alternative actions under hypothetical out-
comes y and assumed truth θ . Starting from first principles, one can then argue (Robert, 2007, Chapter 2)
that a rational decision-maker chooses the action d�

1 that maximizes utility in expectation, that is

d�
1 = arg max

d1

∫
u(d1, θ, y) dp(y, θ | d1,Xn) = arg max

d1

U1(d1). (2.1)

The integral is the expected utility U1(d1) = Ey,θ {u(d1, θ, y)}, with the expectation taken with respect
to p(y, θ | d1,Xn) = p(θ |Xn)p(y | θ, d1). To simplify notation, we will henceforth suppress conditioning
on Xn in the notation.

In the two-cycle dose-finding problem, the sequential nature of the within-patient decisions complicates
the solution. In the second cycle, the utility u(d1, θ, y) is replaced by the expected utility under optimal
continuation. Denote y1 = (Y1, Z1) and y2 = (Y2, Z2). We get an alternating sequence of optimization and
expectation

d�
1 = arg max

d1

∫ {
max

d2

∫
u(d1, d2, θ, y1, y2) dp(y2, θ | d1, d2, y1)

}
dp(y1 | d1)

= arg max
d1

∫
U2(d1, d2 = d�

2(d1, y1), y1) dp(y1 | d1) (2.2)
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Table 1. An example of elicited utilities, ucycle(y)

Toxicity severity level

Efficacy scores Mild Moderate Severe

PD 25 10 0
SD 70 50 25
PR/CR 100 80 50

with the second cycle expected total utility as a function of y1 = (Y1, Z1), U2(d1, d2, y1) =
Ey2,θ u(d1, d2, θ, y1, y2) and the optimal second cycle decision d�

2(d1, y1) = arg maxd2 U2(d1, d2, y1). When
we substitute d�

2(d1, y1) and take the expectation with respect to y1 we obtain

U1(d1) = Ey1
{U2(d1, d�

2(d1, y1), y1)}, (2.3)

which is maximized to determine the optimal decision for cycle 1, d�
1 = arg maxd1 U1(d1). This alternat-

ing sequence of maximization and expectation, called dynamic programming, is characteristic of sequen-
tial decision problems. While it often leads to intractable computational problems (Parmigiani and Inoue,
2009, Chapter 12), in the present setting with ordinal outcomes the problem is solvable. Dynamic program-
ming recently has been applied in other clinical trial design settings (Murphy, 2003; Zhao and others, 2011;
Lee and others, 2015; Cheung and others, 2014).

2.2 Utility function

We construct a utility function

u(d1, d2, y1, y2, θ) =
∑

c=1,2

λc−1ucycle(Yc, Zc) (2.4)

as a sum over cycle-specific utilities ucycle(Yc, Zc), c = 1, 2, where 0 � λ � 1 is a scale parameter. If λ = 0,

then the cycle 2 utility is ignored in selecting d1, while λ = 1 corresponds to treating utilities in the two
cycles equally. Optimal decisions may change under different values of λ. Even with λ = 0, however, the
importance of jointly modeling the two cycles remains in that inference on θ can be enhanced through
borrowing information across cycles. For the simulations in Section 4, we used λ = 0.8. A sensitivity
analysis in λ is reported in the Supplementary Materials (available at Biostatistics online). The utility
function (2.4) focuses on the clinical outcomes and is a function of (y1, y2) = (Y1, Z1, Y2, Z2) only. That
is, the inference on θ does not affect utility, and we do not initially consider preferences across doses dc.
We thus drop θ and dc from the arguments of ucycle(·) hereafter.

In practice, numerical utilities of the J × K elementary must be elicited from the clinical collaborators,
with specific numerical values reflecting physicians’ relative preferences (cf. Thall and Nguyen, 2012).
In our stylized illustrative trial, we fix the utilities of the best and worst possible outcomes to be ucycle

(0, K − 1) = 100 and ucycle(J − 1, 0) = 0. In general, any convenient function with ucycle( j, k − 1) <

ucycle( j, k) and ucycle( j, k) > ucycle( j + 1, k) that gives higher utilities to more desirable outcomes may
be used. For future reference, we note that ucycle(0, 0) is the expected utility corresponding to NT, i.e. do
not treat the patient. Table 1 shows the utilities that will be used for our simulation studies.

To reduce notation, we denote the utility u(y1, y2) as a function of hypothetical outcomes (y1, y2) =
(Y1, Z1, Y2, Z2), and drop the arguments θ and dc. Upper case Uc(·) denotes expected utility, with data
yc′ , c′ � c removed by marginalization and decisions dc′ , c′ > c substituted by maximization, as in (2.2).
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In addition to the cycle index c, the arguments of Uc(·) clarify the level of marginalization and maximiza-
tion. Maximizing U1 in (2.1) and U2 inside the integral in (2.2) yields the optimal action pair d� = (d�

1 , d�
2),

where d�
1 is either a dose or NT, d�

2 is applicable only when d1 �= NT is a dose, and d�
2(d1, Y1, Z1) is a func-

tion of d1 and the patient’s cycle 1 outcomes, (Y1, Z1). Assuming that the utility function takes the additive
form (2.4), we define cycle-specific expected utilities, with the expected utility for cycle 2 given by

Ũ2(d2 | d1, y1) = Ey2,θ
{ucycle(Y2, Z2) | d1, y1} =

∫
ucycle(Y2, Z2) dp(y2, θ | d1, d2, y1). (2.5)

Figure 1(a)–(c) illustrates Ũ2(d2 | d1, y1) under the assumed simulation truth of Scenario 3 (discussed
in Section 4.2), and shows how Ũ2(d2 | d1, y1) changes with (d2, y1), given d1 = 3. Figure 1(d) illustrates
the assumed true U1(d1) over d1 for the simulation scenarios discussed in Section 4.2.

Some practical guidelines of using utility functions for a design with ordinal outcomes in the two-cycle
setting are provided in Section 1 of the Supplementary Material (available at Biostatistics online).

2.3 Action set

Equation (2.2) includes two maximizations to determine d�
1 and d�

2 . In the discussion thus far, we have not
used the particular elements of D, and they might have been any actions. In actual dose-finding, ethical
and practical constraints are motivated by the knowledge that, in general, higher doses carry a higher risk
of more severe toxicity. We thus require a more restrictive action set, with additional conditions for the
acceptability of a dose assignment.

The first additional criterion is that we do not skip untried dose levels when escalating. This rule is
imposed almost invariably in actual trials with adaptive dose-finding methods. Let d M

1 denote the highest
dose level among the dose levels that have been tried in cycle 1 and d M

2 the highest dose level among those
that have been tried in either cycle 1 or cycle 2. The search for the optimal actions is constrained such that
1 � d1 � d M

1 + 1 and 1 � d2 � d M
2 + 1. In addition, we do not escalate a patient’s dose level in cycle 2 if

severe toxicity was observed in cycle 1 (Y1 = (J − 1)). Both restrictions are due to safety concerns.
A third safety restriction is defined implicitly in terms of the cycle-specific utility ucycle(·, ·). A patient

is not treated (dc = NT) if there is no dose with expected utility � ucycle(0, 0). For d1, the expected
utility U1(d1) is compared with the expected utility of not receiving any treatment in both cycles,
(1 + λ)ucycle(0, 0) (horizontal dotted line in Figure 1(d)). Any d1 with U1(d1) below the line is not
considered acceptable treatment. For d2, the expected utility U2(d1, d2, y1) is similarly compared with
the expected utility of d2 = NT, ucycle(0, 0) (horizontal dotted line in Figure 1(a)–(c)), and any d2 with
U2(d1, d2, y1) below the line is not acceptable.

At any interim point in the trial, letX denote the current data, including dose assignments for previously
enrolled patients. The three conditions together make the action sets for d1 and d2 dependent on X , d1,

and y1 = (Y1, Z1). We let D1(X ) and D2(d1, y1,X ) denote the action sets for d1 and d2, respectively, that
are implied by these three restrictions.

2.4 Inference model

Thus far, our discussion of optimal decisions has not included a particular probability model. We will
assume a 4D ordinal probit model for (Y1, Z1, Y2, Z2) with a regression on doses d1 and d2, standardized
to the domain [0, 1], with d1 = 0 and dm = 1. Let (ui,1, vi,1, ui,2, vi,2) denote a vector of latent probit scores
for the i th patient and let {γy, j } and {γz,k} denote fixed cutoffs that define Yi,c = j if γy, j−1 < ui,c � γy, j

and Zi,c = k if γz,k−1 < vi,c � γz,k, c = 1, 2. While varying the mean of distributions of ui,c and vi,c across
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(a) (b) (c)

(d)

Fig. 1. (a)–(c) The true expected cycle 2 utilities of taking d2 given y1 = (Y1, Z1), U2(d2, d1, y1) with d1 = 3 for sce-
nario 3. Each panel corresponds to one of the three possible outcomes of Y1. d2 is acceptable only when its expected
utility is greater than that of NT, ucycle(0, 0). d�

2 is marked with a bold circle for each y1 given d1 = 3 if the corre-
sponding expected utility is greater than ucycle(0, 0). If none of d2 has an expected utility greater than ucycle(0, 0) for
y1, d�

2 = NT and none of d2 is marked with a bold circle. (d) Illustrates total expected utilities of d1, U1(d1) for the
simulation scenarios assuming that the true d�

2 will be taken in cycle 2. d1 is acceptable only when its utility is greater
than that of NT in the two cycles, (1 + λ)ucycle(0, 0) (red dashed horizontal line at 45). (a) Y1 = 0 (mild toxicity).
(b) Y1 = 1 (moderate toxicity). (c) Y1 = 2 (severe toxicity). (d) U1(d1).

cycles, the same cutoffs are used for all cycles. The ui,c and vi,c are multivariate normal probit scores,

(ui,1, vi,1, ui,2, vi,2)
′ ∼ N(μd , �) with � =

⎡
⎢⎢⎢⎢⎣

σ 2
Y + τ 2 ρτ 2 τ 2 ρτ 2

ρτ 2 σ 2
Z + τ 2 ρτ 2 τ 2

τ 2 ρτ 2 σ 2
Y + τ 2 ρτ 2

ρτ 2 τ 2 ρτ 2 σ 2
Z + τ 2

⎤
⎥⎥⎥⎥⎦ , (2.6)

and μd = (μu,1,d1 , μv,1,d1 , μu,2,d2 , μv,2,d2)
′. The covariance matrix implies associations across cycles and

across outcomes through ρ and τ 2. Given that the ordinality of the outcomes is accounted for by the latent
probit scores and fixed cutoff parameters {γy, j } and {γz,k}, a simple yet flexible model for regression
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on dose is obtained by assuming μxcd = βxc0 + βxc1dβxc2
c with x = u for toxicity and x = v for efficacy.

A discussion of nonlinear dose–response models is given by Bretz and others (2005). We assume that
the toxicity and efficacy probabilities increase monotonic in dose by requiring βxc1 > 0 and βxc2 > 0.
Denote βxc = (βxc0, log βxc1, log βxc2), x = u, v and c = 1, 2. We complete the model with a normal prior
βxc ∼ N (β̄x,c,�x,c), x = u, v.

3. TRIAL DESIGN

3.1 Adaptive randomization

Denote d = (d1, d2). Although, in terms of the utility-based objective function, d� yields the best clinical
outcomes for the next patient, the performance of the design, in terms of frequentist operating charac-
teristics, can be improved by including adaptive randomization (AR) among actions giving values of the
objective function near the maximum at d�. Using AR decreases the probability of getting stuck at a sub-
optimal d, and also has the effect of treating more patients at doses having larger utilities, on average. The
problem that a “greedy” search algorithm may get stuck at suboptimal actions, and the simple solution of
introducing additional randomness into the search process, are well known in the optimization literature
(cf. Tokic, 2010). This has been dealt with only very recently in dose-finding (Bartroff and Lai, 2010;
Azriel and others, 2011; Braun and others, 2012; Thall and Nguyen, 2012).

To implement AR, we first define εi to be a function decreasing in patient index i, and denote εεε =
(ε1, . . . , εn). We define the set of εi -optimal doses for cycle 1 to be

Di,1 = {d1 : |U1(d
�
1,i ) − U1(d1)| < εi , d1 ∈D1(X )}. (3.1)

The set, Di,1 contains doses d1 in D1(X ) whose U1(d1) is within εi of the maximum posterior mean
utility. Similarly, we define the set of (εi/2)-optimal doses for cycle 2 given (di,1, yi,1) to be

Di,2 = {d2 : |Ũ2(d
�
i,2(di,1, yi,1)|yi,1, di,1) − Ũ2(d2 | di,1, yi,1) |< εi/2, d2 ∈D2(di,1, yi,1,X )}. (3.2)

Di,2 in (3.1) is based on (2.5). Our design randomizes patients uniformly among doses in Di,1 for c = 1
and Di,2 for c = 2, which we call AR(εεε). Numerical values of εi depend on the range of ucycle(y, z), and
are determined by preliminary trial simulations in which εεε is varied.

3.2 Illustrative trial

Our illustrative trial studied in the simulations is a stylized version of the phase I–II chemotherapy trial
with five dose levels described in Section 1, but here accounting for two cycles of therapy. The maximum
sample size is 60 patients with a cohort size of 2. Based on preliminary simulations, we set εi = 20 for the
first 10 patients, εi = 15 for the next 10 patients, and εi = 10 for the remaining 40 patients. An initial cohort
of 2 patients is treated at the lowest dose level in cycle 1, their cycle 1 toxicity and efficacy outcomes are
observed, the posterior of βxc, x = u, v and c = 1, 2 is computed, and actions are taken for cycle 2 of the
initial cohort. If Di,2 = {NT}, then patient i does not receive a second cycle of treatment. If Di,2 |={NT},
then AR(εεε) is used to choose an action for cycle 2 from Di,2 \ {NT}. When the toxicity and efficacy
outcomes are observed from cycle 2, the posterior of βxc is updated. The second cohort is not enrolled
until the first cohort has been evaluated for cycle 1. For all cohorts after the first, after the outcomes of all
previous cohorts are observed, the posterior is updated, the posterior expected utility, U1(d1) is computed
using λ = 0.8, andD1(X ) is determined. UsingD1(X ) and εi , we findDi,1 and search for d1 ∈Di,1 \ {NT}.
If Di,1 = {NT} for any interim X , then di,1 = NT, and the trial is terminated. If Di,1 |={NT}, we then choose
a cycle 1 dose from Di,1 \ {NT} using AR(εεε). Once the outcomes in cycle 1 are observed, the posterior
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is updated. Using (di,1, yi,1,X ) and εi , Di,2 is searched. If Di,2 contains NT only, then di,2 = NT and no
cycle 2 dose is given to patient i. Otherwise, di,2 is selected from Di,2 \ {NT} using AR(εεε). The toxicity
and efficacy outcomes are observed from cycle 2 and the posterior of βxc is updated. The above steps are
repeated until either the trial has been stopped early or N = 60 has been reached. At the end of the trial,
we record d�

1 as recommended first cycle dose d1,sel and d�
2(d1, y1) as optimal policy d2,sel(d1, y1). If the

trial is early terminated, let d1,sel = NT and d2,sel = NT for all y1.

4. SIMULATION STUDY

4.1 Designs for comparison

Let DTD-O2 denote the proposed decision-theoretic two-cycle design. We compare DTD-O2 with three
other designs. The first is obtained by reducing each 3-level efficacy and toxicity outcome to a 2-category
(binary) variable by combining categories, but using the same probability model to ensure a fair com-
parison. The next two comparators are single cycle designs. The first, called Single Cycle Comparator 1
(SCC1), assumes no association between cycles and optimizes d1 and d2 separately. The second, called Sin-
gle Cycle Comparator 2 (SCC2), does not distinguish between cycles and treats the two cycles identically.

For SCC1, we assume patient-specific random probit scores, independent over cycles, (ui,c, vi,c)
indep∼

N(μdc, �11), where μdc = (μu,c,dc , μv,c,dc ) and �11 is the 2 × 2 covariance matrix. We let �11 be the upper-
left partition of � in (2.6). Owing to the independence of probit scores over cycles within a patient, SCC1
models the association between Yc and Zc within the same cycle only and does not assume any association
between outcomes in different cycles, for example, Y1 and Y2. The other model specification including the
regression of μdc on the dose in Section 2.4 stays the same. For SCC2, in addition to having patient- and
cycle-specific random probit scores as in SCC1, we assume that the mean dose effects are identical in the
two cycles by dropping the cycle index from β in Section 2.4, i.e. setting μx,1,d = μx,2,d , x = u, v for all
d. For these two methods, we apply the acceptability rules in Section 2.3 and the AR rules in Section 3.1
for each cycle separately. For example, a trial is terminated if

∫
u(d1, y1) dp(y1 | d1) < ucycle(0, 0) for all

d1 and Di,c is defined with
∫

u(dc, yc) dp(yc | dc) only. Also, the no-escalation rule after Y1 = (J − 1),
no-skipping rule and AR similar to those implemented in the proposed method are implemented to SCC1
and SCC2.

4.2 Simulation setup

We simulated trials under each of 8 scenarios using each of the designs. A total of N = 1000 trials were
simulated for each design under each scenario. The simulation scenarios were determined by fixing a set
of marginal probabilities and regression coefficients on probit scores, given in Table 2 and Supplementary
Material Table S1 (available at Biostatistics online). Each simulation scenario is specified by the marginal
distributions of Y and Z . Table 2 gives the true pd, j = P(Y � j | d) and qd,k = P(Z � k | d) under each
scenario. The corresponding probit scores are ξ̄ j (d) = �−1(pd, j ) and η̄k(d) = �−1(qd,k), where � is the
cumulative distribution function of the standard normal distribution. To ensure a fair comparison, we inten-
tionally define a simulation truth that is different from the assumed model used by the design methodol-
ogy. The simulation model is best described as a generative model, first for Y1, then Z1 given Y1, and then
(Y2, Z2) given Y1, Z1.
Generating Y1: We first generate Y1 from the distribution specified by P(Y1 � j1 | d1) = �(ξ̃1, j1(d1)),

where ξ̃1, j1(d1) = ξ̄ j1(d1). For later reference, we define a rescaled variable Y as Ỹ = (2Y − J − 1)/

(J − 1), which is evenly spaced in [−1, 1].
Generating Z1 | Y1: Conditional on Y1, we specify a distribution of Z1 by letting

φ−1{Pr(Z1 � k1 | d1, Y1)} = η̄k1(d1) + w1,1Ỹ1
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Table 2. Assumed probabilities, P(Y = y | d) and P(Z = z | d). These marginal probabilities
are used to determine probit scores, ξ̄ j (d) and η̄k(d)

Toxicity outcome Efficacy outcome

Scenarios Dose Mild Moderate Severe PD SD PR/CR

1, 2 1 0.23 0.52 0.25 0.44 0.44 0.12
2 0.225 0.515 0.26 0.35 0.42 0.23

3, 4 3 0.20 0.530 0.27 0.18 0.40 0.42
4 0.18 0.40 0.42 0.10 0.445 0.455
5 0.06 0.20 0.74 0.08 0.45 0.47

5 1 0.53 0.39 0.08 0.35 0.515 0.135
2 0.38 0.47 0.15 0.325 0.52 0.155
3 0.33 0.46 0.21 0.31 0.528 0.162
4 0.315 0.455 0.23 0.225 0.505 0.27
5 0.375 0.375 0.25 0.05 0.39 0.56

6 1 0.55 0.30 0.15 0.51 0.31 0.18
2 0.475 0.31 0.215 0.45 0.275 0.275
3 0.45 0.31 0.24 0.18 0.39 0.43
4 0.44 0.31 0.25 0.15 0.40 0.45
5 0.43 0.30 0.27 0.03 0.27 0.70

7 1 0.65 0.20 0.15 0.18 0.33 0.49
2 0.52 0.20 0.28 0.175 0.325 0.50
3 0.46 0.21 0.33 0.15 0.30 0.55
4 0.37 0.27 0.36 0.125 0.25 0.625
5 0.28 0.28 0.44 0.11 0.24 0.65

8 1 0.19 0.43 0.38 0.85 0.12 0.03
2 0.13 0.22 0.65 0.78 0.14 0.08
3 0.09 0.22 0.69 0.54 0.31 0.15
4 0.03 0.23 0.74 0.43 0.39 0.18
5 0.01 0.13 0.86 0.38 0.41 0.21

with coefficient w1,1. Here, w1,1 induces association between the cycle 1 outcomes, Y1 and Z1. A negative
value of w1,1 leads to a negative association between Y1 and Z1, that is, P(Z1 = K − 1 | d1, Y1 = j1) �
P(Z1 = K − 1 | d1, Y1 = j ′

1), j1 < j ′
1. For later use, we define Z̃ by rescaling Z to be evenly spaced in

[−1, 1], similarly to Ỹ .

Generating Y2 | Y1, Z1: We generate Y2 using

φ−1{Pr(Y2 � j2 | d1, y1, d2)} = ξ̄ j2(d2) + w2,1d̃1 + w2,2r T (d1, Y1) + w2,3 Z̃1

Here, d̃ is a standardized dose in [−1, 1]. We restrict w2,1, w2,2 � 0 and w2,3 � 0 to induce a positive
association of Y2 with d1 and Y1, and negative association with Z1. Here, r T (d, j) determines how d1

and Y1 jointly affect Y2. A large negative value of r T (d1 = 1, J − 1) implies that given that Y1 = J − 1
(severe toxicity) is observed at d1 = 1, the probability of observing Y2 = j , j �= 0 greatly increases for
all d2. Similarly, observing Y1 = 0 (mild toxicity) at d1 = 5 greatly increases the probability of observing
Y2 = 0 for all d2, implying a large positive value of r T (d1 = 5, 0).
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Table 3. True optimal actions, d�
1 and d�

2(d
�
1 , y1)

d�
2(d�

1 , y1)

Z1

Scenarios d�
1 Y1 0 1 2

1 3 0 3 3 3
1 3 3 3
2 NT NT NT

2 3 0 3 3 3
1 NT 3 3
2 NT NT 3

3 3 0 3 3 2
1 NT 3 3
2 NT NT 3

4 3 0 NT 3 3
1 NT 3 3
2 NT 3 3

5 3 0 5 5 5
1 5 5 5
2 5 5 5

6 1 0 5 5 5
1 5 5 5
2 5 5 5

7 5 0 1 1 1
1 1 1 1
2 1 1 1

8 NT 0 NT NT NT
1 NT NT NT
2 NT NT NT

Generating Z2 | Y1, Z1, Y2: We use

φ−1{Pr(Z2 � k2 | d1, Y1, Z1, d2, Y2)} = η̄�
k2

(d2) + w3,1d̃1 + w3,2Ỹ1 + w3,3r E (d1, Z1) + w3,4Ỹ2,

where w3,1, w3,3 � 0 and w3,2, w3,4 � 0. Similar to r T , r E determines a joint effect of d1 and Z1 on Z2.
The detailed specification of the coefficients, r T and r E for each simulation scenario is described in the
Supplementary Materials (available at Biostatistics online). Table 3 shows the optimal actions, d�

1 and
d�

2(d
�
1 , Y1, Z1), over two cycles under each of the 8 simulation scenarios under the simulation truth. For

example, in Scenario 3, the optimal cycle 1 action is to give dose level 3, and the optimal cycle 2 action is
to treat patients with Y1 = 0 at d2 = 4, and at d2 = 2 if Y1 = 1.

We calibrate the fixed hyperparameters, θ̃ = (σ 2
Y , σ 2

Z , τ 2, ρ, β̄x,c,�x,c), for x = u, v and c = 1, 2 and
the cutoff points, (γ y, γ z), using effective sample size (ESS), described in the Supplementary Materials

(available at Biostatistics online). We set θ̃ and the cutoffs, γx and γy , and simulate 1000 pseudo-samples

of β̄x,c, �x,c, x = u, v and c = 1, 2. We then compute probabilities of interest based on the pseudo-samples,

such as P(Yc = j | dc) and P(Zc = k | dc), c = 1, 2. For all simulations, we determined θ̃ to give each prior
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ESS between 0.5 and 2, using the approximation obtained by matching moments with a Dirichlet distribu-
tion. We used the same θ̃ for SCC1 and SCC2.

4.3 Evaluation criteria

We evaluate design performance for the patients treated in the trial using three different summary statis-
tics, ū, Ūtrt, and Ūsel. Recall that in a trial we record the clinical outcomes of the n patients with
their assigned doses and recommended doses for future patients, yi,c = (Yi,c, Zi,c), dic, i = 1, . . . , n and
c = 1, 2, and (d1,sel, d2,sel(d1,sel, Y1, Z1)), respectively. We index the N simulated replications of the trial
by � = 1, . . . , N . We define average utility for the n patients in the �th simulated trial in two different
ways; u(�) = ∑n

i=1{ucycle(yi,1) + ucycle(yi,2)}/n and U (�)
trt = ∑n

i=1{E true(ucycle(y) | di,1) + λE true(ucycle(y) |
di,1, di,2, yi,1)}/n. Note that u(�) is a function only of occurred outcomes, (yi,1, yi,2), whereas U (�)

trt depends

on the true utilities of assigned doses (di,1, di,2). For u(�) and U (�)
trt , ucycle(0, 0) is used as the utility for

patients with di,c = NT. The empirical mean total payoffs taken over all simulated trials are

ū = 1

N

N∑
�=1

u(�) and Ūtrt = 1

N

N∑
�=1

U (�)
trt .

One may regard ū and Ūtrt as indexes of the ethical desirability of the method, given ucycle(y, z).
The proposed method gives an optimal action d1,sel for cycle 1, and policy d2,sel for cycle 2. We let

d2,sel = NT for all (Y1, Z1) if d1,sel = NT, so the trial is terminated early. We use d1,sel and d2,sel to evaluate
performance in terms of future patient benefit. Under SCC1 and SCC2, d2,sel is not a function of (Y1, Z1).
For SCC2, d1,sel and d2,sel are identical. Assuming that the simulation truth is known, we define the expected
payoff in cycle 1 of giving action d1,sel to a future patient as U1,sel(d1,sel) = E true{ucycle(y1) | d1,sel} for
d1,sel �= NT. That is the expected utility with respect to the assumed distribution of y1 when d1,sel is given.
For d1,sel = NT, let U1,sel(d1,sel) = ucycle(0, 0). This expectation is computed under the distribution of y1
given d1,sel. If the rule d2,sel is used, the expected cycle 2 payoff is

U2,sel(d2,sel) =
∑

y1∈{0,...,J−1}
×{0,...,K−1}

E true{ucycle(y2) | d1,sel, d2,sel(y1)}ptrue(y1 | d1,sel),

where E true{ucycle(y2) | d1,sel, d2,sel(y1)} becomes ucycle(0, 0) if d2,sel(y1) = NT. The total expected pay-
off to a future patient treated using the optimal regime dsel = (d1,sel, d2,sel) is defined to be Usel(dsel) =
U1,sel(d1,sel) + λU2,sel(d2,sel).

4.4 Comparison to designs with binary outcomes

We first compare DTD-O2 with designs obtained by collapsing each trinary toxicity and efficacy outcome
to a binary variable. This mimics what often is done in practice in order to apply a phase I–II design based
on binary efficacy and toxicity. We use an appropriately reduced version of our assumed underlying model
to ensure a fair comparison. Since this reduction is not unique, we exhaustively define binary outcomes
in four different ways, binary cases 1–4, given in Section 4 of the Supplementary Material (available at
Biostatistics online). The utilities associated with the binary outcomes are defined accordingly based on
the utilities in Table 1. The results, in terms of ū, Ūtrt, and Usel, are summarized graphically in Figure 2.
Scenario 8 is not included in Figure 2 because the optimal action is NT in both cycles, and in this case
all designs stop the trial early with high probability, The figure shows that reducing to binary outcomes
can produce designs with much worse performance than DTD-O2, while for some cases the performance
may be comparable. The binary outcome design’s performance also varies substantially with the particular



Decision-theoretic phase I–II design 315

(a) (b)

(c)

Fig. 2. Plots of (ū, Ūtrt, Usel) for a comparison of DTD-O2 vs. a design with binary outcomes. Here, ū, Ūtrt, and Usel
represent empirical mean utilities of patients treated in the trial, true mean utilities of treatments given to patients in
the trial, and true expected utilities chosen for future patients, respectively. (a) ū. (b) Ūtrt. (c) Ūsel.

dichotomization used. Since different physicians may combine ordinal categories in different ways, the
practical implication is that the additional complexity of the ordinal outcome design is worthwhile, in
terms of benefit to both the patients treated in the trial and future patients.

4.5 Comparison to single cycle designs

The simulation results for DTD-O2, SCC1, and SCC2 are summarized in Figure 3. Scenarios 1–4 have the
same marginal toxicity and efficacy probabilities, but different values of coefficients (w), yielding different
probit scores and different association structures of d1, y1, d2, and y2. Scenario 1 has large w2,2 and w3,2,
so that the cycle 1 toxicity outcome greatly affects cycle 2 expected utilities in the simulation truth. As
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(a) (b)

(c)

Fig. 3. Plot of (ū, Ūtrt, Usel) for a comparison with SCC1 and SCC2. Here, ū, Ūtrt, and Usel represent empirical mean
utilities of patients treated in the trial, true mean utilities of treatments given to patients in the trial, and true expected
utilities chosen for future patients, respectively. (a) ū. (b) Ūtrt. (c) Ūsel.

shown in Table 3, the optimal action in cycle 2 after observing severe toxicity in cycle 1 is NT regardless of
the cycle 1 efficacy outcome. Scenario 4 is similar to Scenario 1 but the cycle 1 efficacy outcome heavily
affects the cycle 2 treatment in that all cycle 2 treatments are less desirable than NT when PD is observed in
cycle 1. In Scenarios 2 and 3, the two cycle 1 outcomes jointly determine the cycle 2 treatment as shown in
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the tables. Scenario 3 has larger association between Yc and Zc within each cycle. In Scenarios 1–4, model-
ing dependence across cycles improves the performance, as shown in Figure 3, where DTD-O2 is superior
to SCC1 and SCC2 in terms of all the three criteria, ū, Ūtrt, and Usel. Since the only difference between
DTD-O2 and SCC1 is whether the two cycles are modeled jointly or separately, the results show that the
joint modeling significantly improves the performance. Differences in the performance are smaller for Sce-
narios 1 and 4. This may be because the true structure that one cycle 1 outcome dominates cycle 2 decisions
in the scenarios is not easily accommodated under the assumed covariance structure in (2.6) and each trial
gets only a small number of patients. In such a case, separate estimation for the two cycles may not be a very
poor approach. In addition, the three methods are compared using ū and Ūtrt based on the last 20 patients
in each trial for the three designs (not shown). This comparison shows that the improvement by DTD-O2
over the other two methods becomes greater, especially for Scenarios 1 and 4. It may imply that learning
takes more patients for DTD-O2 when there is a discrepancy between the truth and the model assumption.

Scenarios 5–7 have different shapes for U1(d1) as a function of d1. The cycle 1 utilities are U-shaped
in Scenario 5, monotone increasing in Scenario 6, and monotone decreasing in Scenario 7. Very mild
associations between outcomes and between cycles are assumed for these scenarios. For Scenarios 5 and 6,
DTD-O2 achieves notably better performance (see Figure 3), with ū and Usel similar to each other for DTD-
O2. This implies that DTD-O2 identifies desirable actions early in the trial, treats many of the patients with
the desirable actions, and has a high probability of selecting truly optimal actions at the end of a trial. In
Scenario 7, DTD-O2 shows slightly worse performance (see the rightmost of Figure 3). In the simulation
truth of Scenario 7, the cycle 1 expected utility does not change much with d1, but the cycle 2 expected
utility is very sensitive to d1, Y1, and Z1. This is a very challenging case for DTD-O2, and not modeling
dependence between the cycles leads to better performance than incorrectly modeling in this particular
scenario. Scenario 8 has no acceptable dose in either cycle. All the three methods terminate the trials with
probability 1 in this case, with mean sample sizes 9.11, 8.33, and 8.29.

In all 8 scenarios, SCC2 yields better results than SCC1. This may be because d�
2 and d�

1 happen to be
identical in many cases, so combining outcomes from the two cycles works well. However, the results for
Scenarios 1–4 show that using each patient’s cycle 1 dose and outcomes to select d2 gives significantly
superior performance in cases where there is significant dependence between the two cycles. More results
are summarized using empirical toxicity and efficacy probabilities in Section 3 of Supplementary Material
(available at Biostatistics online).

We carried out a sensitivity analysis in λ, under Scenarios 2 and 5, including the four binary outcome
designs, SCC1, SCC2, and DTD-O2, for λ = 0.0, 0.4, 0.8, and 1.0. The results, given in Section 5 of
Supplementary Material (available at Biostatistics online), show that changes in design performance with
λ are very small, but λ = 0, corresponding to no use of cycle 2 utility in making a decision at cycle 1,
yields higher early termination probabilities for binary outcome cases 1 and 3.

5. DISCUSSION

We have extended the decision-theoretic two-cycle phase I–II dose-finding method in Lee and others
(2015) to accommodate ordinal outcomes. Our simulations show that incorporating cycle 1 information
into the cycle 2 treatment decision yields good performance for both patients treated in a trial and future
patients. The simulations in Figure 2 show that this extension may greatly improve design performance,
quantified by ū, Ūtrt, and Usel, compared with using binary toxicity and efficacy indicators. The proposed
model and method also compared quite favorably with either assuming the two cycles are independent or
ignoring the distinction between cycles 1 and 2.

In theory, DTD-O2 could be extended to more than two cycles. For this to be tractable, additional
modeling assumptions may required to control the number of parameters, since decisions must be made
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based on small sample sizes. Two possible approaches are to model dependence among cycles as a function
of distance between cycles, or to make a Markovian assumption.

SUPPLEMENTARY MATERIAL

Supplementary material is available at http://biostatistics.oxfordjournals.org.

ACKNOWLEDGEMENTS

We specifically acknowledge the assistance of Lorenzo Pesce (University of Chicago). Conflict of Interest:
None declared.

FUNDING

Y.J. research is supported in part by NIH R01 CA132897. P.F.T. research was supported in part by NIH R01
CA 83932. P.M. research was supported in part by NIH 1-R01-CA157458-01A1. This research was sup-
ported in part by NIH through resources provided by the Computation Institute and the Biological Sciences
Division of the University of Chicago and Argonne National Laboratory, under grant S10 RR029030-01.

REFERENCES

AZRIEL, D., MANDEL, M. AND RINOTT, Y. (2011). The treatment versus experimentation dilemma in dose finding
studies. Journal of Statistical Planning and Inference 141(8), 2759–2768.

BARTROFF, J. AND LAI, T. L. (2010). Approximate dynamic programming and its applications to the design of phase I
cancer trials. Statistical Science 25(5), 245–257.

BELLMAN, R. (1957) Dynamic Programming, 1 edition. Princeton, NJ, USA: Princeton University Press.

BRAUN, T. M., KANG, S. AND TAYLOR, J. M. G. (2012). A phase I/II trial design when response is unobserved in
subjects with dose-limiting toxicity. Statistical Methods in Medical Research. 0962280212464541.

BRETZ, F., PINHEIRO, J. C. AND BRANSON, M. (2005). Combining multiple comparisons and modeling techniques in
dose–response studies. Biometrics 61(3), 738–748.

CHEUNG, Y. K., CHAKRABORTY, B. AND DAVIDSON, K. W. (2014). Sequential multiple assignment randomized trial
(smart) with adaptive randomization for quality improvement in depression treatment program. Biometrics 71(2),
450–459.

IASONOS, A., ZOHAR, S. AND O’QUIGLEY, J. (2011). Incorporating lower grade toxicity information into dose finding
designs. Clinical Trials 8(4), 370–379.
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