Skip to main content
. Author manuscript; available in PMC: 2016 Apr 18.
Published in final edited form as: Comput Stat Data Anal. 2010 Dec 7;56(5):1103–1114. doi: 10.1016/j.csda.2010.11.023

Table 3.

Coverage probabilities of the 95% confidence interval for the Youden index J under the mixture model.

n1 n2 J
σ12

0.5 1 3 5
10 10 0.2 0.9665 0.9640 0.9640 0.9640
0.4 0.9660 0.9615 0.9620 0.9615
0.6 0.9605 0.9600 0.9560 0.9535
0.8 0.9530 0.9550 0.9580 0.9540
0.9 0.9475 0.9505 0.9520 0.9470
20 20 0.2 0.9500 0.9430 0.9480 0.9435
0.4 0.9430 0.9420 0.9455 0.9470
0.6 0.9350 0.9330 0.9365 0.9380
0.8 0.9240 0.9240 0.9330 0.9320
0.9 0.9170 0.9180 0.9265 0.9235
10 30 0.2 0.9510 0.9455 0.9525 0.9535
0.4 0.9500 0.9500 0.9520 0.9485
0.6 0.9475 0.9415 0.9430 0.9455
0.8 0.9425 0.9440 0.9440 0.9420
0.9 0.9385 0.9420 0.9410 0.9435
50 50 0.2 0.9525 0.9520 0.9370 0.9310
0.4 0.9485 0.9510 0.9375 0.9380
0.6 0.9420 0.9395 0.9390 0.9385
0.8 0.9155 0.9165 0.9170 0.9200
0.9 0.9000 0.8995 0.9035 0.9095
100 100 0.2 0.9410 0.9480 0.9350 0.9300
0.4 0.9370 0.9420 0.9390 0.9385
0.6 0.9165 0.9190 0.9255 0.9285
0.8 0.8905 0.8910 0.8940 0.8975
0.9 0.8765 0.8740 0.8805 0.8830

The mixture model is defined as Yi~(1-Bi)N(μi,11.1σi2)+BiN(μi,21.1σi2) where Bi ~ Bernoulli(0.1) for i = 1, 2.