Skip to main content
. Author manuscript; available in PMC: 2016 Apr 18.
Published in final edited form as: Comput Stat Data Anal. 2010 Dec 7;56(5):1103–1114. doi: 10.1016/j.csda.2010.11.023

Table 4.

Coverage probabilities of the 95% confidence interval for the optimal cut-point c under the mixture model.

n1 n2 J
σ12

0.5 1 3 5
10 10 0.2 0.9510 0.9355 0.9640 0.9695
0.4 0.9535 0.9540 0.9590 0.9575
0.6 0.9670 0.9655 0.9510 0.9515
0.8 0.9580 0.9615 0.9585 0.9565
0.9 0.9415 0.9470 0.9450 0.9465
20 20 0.2 0.9420 0.9125 0.9410 0.9455
0.4 0.9455 0.9340 0.9355 0.9315
0.6 0.9535 0.9550 0.9415 0.9335
0.8 0.9530 0.9535 0.9470 0.9405
0.9 0.9345 0.9330 0.9320 0.9290
10 30 0.2 0.9410 0.9200 0.9435 0.9500
0.4 0.9455 0.9400 0.9295 0.9335
0.6 0.9570 0.9575 0.9485 0.9415
0.8 0.9475 0.9495 0.9430 0.9415
0.9 0.9420 0.9385 0.9350 0.9290
50 50 0.2 0.9255 0.8870 0.9465 0.9460
0.4 0.9170 0.9135 0.9365 0.9350
0.6 0.9395 0.9515 0.9505 0.9350
0.8 0.9445 0.9455 0.9415 0.9360
0.9 0.9260 0.9280 0.9265 0.9245
100 100 0.2 0.9150 0.8855 0.9250 0.9250
0.4 0.9150 0.9120 0.9145 0.9185
0.6 0.9400 0.9440 0.9385 0.9250
0.8 0.9335 0.9425 0.9330 0.9275
0.9 0.9270 0.9345 0.9275 0.9220

The mixture model is defined as Yi~(1-Bi)N(μi,11.1σi2)+BiN(μi,21.1σi2) where Bi ~ Bernoulli(0.1) for i = 1, 2.