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Summary

Continuous-time birth-death-shift (BDS) processes are frequently used in stochastic modeling, 

with many applications in ecology and epidemiology. In particular, such processes can model 

evolutionary dynamics of transposable elements — important genetic markers in molecular 

epidemiology. Estimation of the effects of individual covariates on the birth, death, and shift rates 

of the process can be accomplished by analyzing patient data, but inferring these rates in a 

discretely and unevenly observed setting presents computational challenges. We propose a multi-

type branching process approximation to BDS processes and develop a corresponding expectation 

maximization algorithm, where we use spectral techniques to reduce calculation of expected 

sufficient statistics to low dimensional integration. These techniques yield an efficient and robust 

optimization routine for inferring the rates of the BDS process, and apply broadly to multi-type 

branching processes whose rates can depend on many covariates. After rigorously testing our 

methodology in simulation studies, we apply our method to study intrapatient time evolution of 

IS6110 transposable element, a genetic marker frequently used during estimation of 

epidemiological clusters of Mycobacterium tuberculosis infections.
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1. Introduction

Continuous-time branching processes are widely used in stochastic modeling of population 

dynamics, with applications in biology, genetics, epidemiology, quantum optics, and nuclear 

fission (Renshaw, 2011). One of the most widely used classes of branching processes are 

birth-death (BD) processes, a simple yet flexible model for single-species population 

dynamics. The popularity of BD processes is in part attributable to their well-understood 
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mathematical properties. To accurately model behavior in many applications, however, it is 

often necessary to consider systems with more than one species — bivariate or other multi-

type processes are commonly used to model phenomena such as competition, predation, or 

infection (Renshaw, 2011). Multi-type branching processes form one class of models that 

can accommodate populations with multiple types, but these models pose considerable 

computational challenges for statistical inference. Our work introduces new methods to 

overcome these challenges, enabling likelihood-based inference in partially observed, multi-

type branching processes.

Many statistically relevant quantities are available in closed form for birth-death processes 

and several of its variants, including transition probabilities, stationary distributions, and 

moments (Bailey, 1964; Keiding, 1975; Crawford and Suchard, 2012). The ability to 

compute finite-time transition probabilities enables likelihood-based inference for discretely 

observed or partially observed BD processes, since the observed likelihood is a function of 

these transition probabilities. Evaluating this likelihood is necessary in maximum likelihood 

estimation as well as in many Bayesian inferential procedures. Recent work by Doss et al. 

(2013) and Crawford et al. (2014) introduces techniques to additionally compute conditional 

moments of BD sufficient statistics for linear and general birth-death-immigration processes, 

enabling calculation of the expected complete-data likelihood necessary in an expectation-

maximization (EM) algorithm (Dempster et al., 1977).

Unfortunately, methods to evaluate finite-time transition probabilities and conditional 

moments are not known in the multi-type setting, and generalizing the techniques available 

in the single-species case is nontrivial. Without these quantities, likelihood-based estimation 

is limited to simulation-based inference via Monte Carlo EM or MCMC (Golinelli et al., 

2006) and asymptotic approximations, such as moment-based estimating equations (Catlin et 

al., 2001). However, these approaches have shortcomings. MCMC approaches require 

augmenting the state space by high-dimensional latent variables and become 

computationally prohibitive when the state space is large. Moment-based methods are 

statistically less efficient than likelihood-based approaches and thus often inappropriate for 

smaller datasets, requiring a large number of observations to produce meaningful standard 

errors and confidence intervals.

In this paper, we extend the analysis of Doss et al. (2013), deriving previously unavailable 

numerical solutions to transition probabilities and conditional moments for discretely 

observed, multi-type branching processes. This enables us to evaluate the observed 

likelihood, as well as to reduce the challenging computation of expected complete-data log-

likelihood necessary in an EM algorithm to efficient evaluation of expected sufficient 

statistics by low-dimensional integration. Our EM algorithm can be applied in settings 

where the data are assumed to be generated from independent, continuous-time multi-type 

branching processes, observed at discrete and possibly irregularly spaced time points, whose 

rates can be a function of many process-specific covariates.

Though our methodology applies broadly, we focus attention to estimating the rates of a 

birth-death-shift (BDS) process which allows a simultaneous birth and death, or shift event, 

to occur. The BDS process adds the possibility of shift events to the standard BD framework, 
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and is useful for modeling systems that allow for elements to switch locations or types. For 

example, in epidemiological applications, interaction between infected and susceptible 

populations can be captured as a shift event, involving a simultaneous increase and decrease 

in the respective populations. Spatial BDS processes have also been studied to improve 

Metropolis-Hastings algorithms for perfect sampling (Huber, 2012) relevant to a range of 

spatial statistical applications; see Illian et al. (2008) for an overview. Our motivation stems 

from the BDS process proposed by Rosenberg et al. (2003) to model evolution of 

transposons — mobile genetic elements that can replicate, die, or shift locations along the 

genome. While previous methods have inferred rates of this process from data under 

restrictive model assumptions, our method is the first to enable inference without 

compromising the model. In particular, previous analyses either did not allow multiple 

events to occur per observation interval or could not model shift events, while our work 

successfully addresses both issues. We derive an EM algorithm for discretely observed 

multi-type branching processes, and assess its performance in several simulation studies. 

Finally, we apply our algorithm to estimate rates of the IS6110 transposon in the 

Mycobacterium tuberculosis genome as a function of relevant covariates.

2. Methodology

Our motivation stems from a birth-death-shift process proposed by Rosenberg et al. (2003) 

to model evolutionary dynamics of transposable elements or transposons — genomic mobile 

sequence elements. Each transposon can (1) duplicate, with the new copy moving to a new 

genomic location; (2) shift to a different genomic position; or (3) be removed and lost from 

the genome, independently of all other transposons. These events occur at instantaneous 

rates proportional to the total transposon copy number at that time. Thus, transposons evolve 

according to a linear birth-death-shift (BDS) process in continuous time.

The process of transposon evolution within a host is observable by serially genotyping the 

organism of interest, e.g., Mycobacterium tuberculosis as in Rosenberg et al. (2003). The 

number and chromosomal position of the IS6110 element in the M. tuberculosis genome can 

be visualized using restriction fragment length polymorphism (RFLP). This technique 

entails restriction endonuclease digestion of the M. tuberculosis DNA which is run in an 

agarose gel, southern blotting and probing with a peroxidase labeled IS6110 probe. Birth, 

death, and shift events are thus detectable via changes in the number and size of the bands 

where the IS6110 elements are located.

Estimating the rates based on observed changes at genotyping times in this experimental 

setup corresponds to inference in a discretely observed linear BDS process. That is, we 

assume each element behaves independently, and that overall rates of each event are 

proportional to total copy number k. Together with the time-homogeneity assumption, 

waiting times until occurrence of an event are distributed exponentially with rate kη, where 

η = λ+μ+ν. When an event occurs, the probability that it is birth, death, or shift is given by 

λ/η, ν/η, and μ/η respectively. The BDS process is therefore a continuous-time Markov chain 

(CTMC).
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The states in our process  can be represented as binary vectors, where S is 

the number of possible locations transposons may occupy along the genome, 0's denote 

unoccupied sites, and 1's correspond to sites occupied by a transposon. Now, denote the 2S × 

2S infinitesimal generator of this CTMC as , where  denotes the 

instantaneous rate of jumping to  beginning from , with , . To write the entries 

of Q, first define  as the set of all configurations with one additional site occupied 

relative to . Thus,  contains states corresponding to one birth event beginning with . 

Similarly  contains states where one additional site is occupied and one originally 

occupied site is no longer occupied, and  contains states where one originally 

occupied site in  is no longer occupied. Then , , and 

, and finally the entries of the generator Q are given by

(1)

2.1 BDS process with covariates

We are interested in inference when the data consist of m independent processes , p 
= 1, …, m, each discretely observed at times 0 = tp,0 < tp,1 < … < tp,n(p). We assume each 

 process evolves according to a linear BDS model with per-particle instantaneous 

birth rate λp ⩾ 0, shift rate νp ⩾ 0, and death rate μp ⩾ 0. The data, observations from each 

process, are points in the previously defined state space, with  for any fixed p and 

t. For example, in transposon evolution, each patient p is genotyped at n(p)+1 observation 

times, and at each given time, the 1's present in the data vector correspond to locations in the 

gel currently occupied by transposons. The observed data corresponding to a given process 

 can thus be collected in a S × {n(p) + 1} matrix with columns corresponding to 

observation times, and the full observed dataset can be collected into a 

 matrix: 

.

The rates of each process are determined by a vector of c covariates 

 through a log-linear model log(λp) = βλ · zp, log(νp) = βν · zp, 

log(μp) = βμ · zp, where β ≔ (βλ, βν, βμ) are the regression coefficients and · represents a 

vector product. For instance, in an epidemiological study, these covariates may contain 

patient-specific disease process and demographic information. The observed data log-

likelihood is obtained by summing over transitions in each process and summing over all 

processes:

(2)
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where θp = (λp, νp, μp) and  denotes a transition 

probability of the BDS process. We are interested in computing the maximum likelihood 

estimates (MLEs) of parameters β of the BDS process. Notice that if the transition 

probabilities were available for given λ, ν, μ, and t values, one could maximize the 

likelihood in (2) using standard off-the-shelf optimization procedures. However, due to the 

large state space of all possible configurations of occupied sites, analysis of these transition 

probabilities is intractable. To approximate the BDS model likelihood above, we introduce a 

two-type branching process with computationally tractable transition probabilities that are 

numerically close to the transition probabilities of the BDS model over any time interval. 

The following sections detail the correspondence between the BDS model and the two-type 

branching process.

2.2 State space reduction

The size of the original state space  quickly becomes unmanageable as S grows so 

that analysis using the rate matrix defined in (1) becomes unwieldy for all but small values 

of S. Previous work by Doss et al. (2013) addresses this issue by collapsing the state space 

to one dimension, distilling the data to copy number counts at each observation time. In this 

simplified setting, they develop tools for inference in a discretely observed birth-death-

immigration framework. However, this approximate model ignores particle shifts which do 

not affect the total copy number, rendering the shift rate unidentifiable. Further, collapsing 

the state space in this way violates the Markov assumption in the BDS model. In particular, 

waiting times between birth and death events are exponentially distributed under the model 

in Doss et al. (2013), but under the BDS model with shift events, the waiting time between a 

birth and death no longer follows an exponential distribution.

Instead of ignoring shifts, we propose a reduction of the state space into a two-dimensional 

representation . Elements of this reduced space are pairs X(t) = (xold, xnew) ∈ Ω 

tracking the number of originally occupied and newly occupied sites at the end of each 

observation interval. As an example, assume six particles are present initially at time t0, and 

a shift and a birth occur before the first observation t1, and a death occurs before a second 

observation at t2. When considering the first interval [t0, t1), we have {X(t0) = (6, 0),X(t1) = 

(5, 2)}, but over [t1, t2), we now have {X(t1) = (7, 0),X(t2) = (6, 0)}, since all seven particles 

at t1 comprise the initial population in the second interval. This seemingly inconsistent 

definition of the state at X(t1) is not a problem: we will see that all necessary computations 

occur across disjoint intervals, so that our reduced representation of the original process 

needs only to be defined consistently for any given pair of consecutive observations.

Formally, this state space transformation is a mapping  on consecutive 

pairs of observations in  to the reduced state space that can be computed 

, where  is the 

total number of initially occupied sites in ,  is the 

number of initially occupied sites that remain occupied, and  is 
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the number of newly occupied sites in  not present in . Note that while ψ 

significantly reduces the size of the state space, the mapping discards information about 

specific particle locations, which is uninformative to inferring birth, death, and shift rates 

due to symmetry induced by particle independence. The number of changes in locations 

between observations — the data relevant to our estimation task — is preserved in the image 

of ψ.

2.3 A two-type branching process model

Working now in the space Ω, we can treat xold and xnew as particle types in a two-type 

branching process. Let aj(k, l) be the rate of producing k type 1 particles and l type 2 

particles, beginning with one type j particle, j = 1, 2. Then the nonzero rates defining the 

two-type branching process corresponding to the birth-death-shift model are given by a1(1, 

1) = λ, a1(0, 1) = ν, a1(0, 0) = μ, a1(1, 0) = −(λ + ν + μ), a2(0, 2) = λ, a2(0, 1) = −(λ + μ), 

a2(0, 0) = μ. This characterization enables us to apply a generating function approach to 

obtain transition probabilities of the process. Defining Xj(t) as the number of type j particles 

at time t, we consider the generating function

(3)

Using the Kolmogorov backward equations, we derive equations and a closed form solution 

for ϕjk (see Appendix A). With ϕjk available, we see from (3) that the transition probabilities 

p(j,k),(l,m)(t) can then be obtained by differentiating and setting s1, s2 = 0, but without an 

analytical expression for these derivatives, repeated numerical differentiation is inefficient 

and numerically unstable. Instead, we map our domain [0, 1] × [0, 1] to the boundary of the 

complex unit circle by setting s1 = e2πiw1, s2 = e2πiw2 so that the generating function 

becomes a Fourier series . 

Applying a Riemann sum approximation to the integral corresponding to coefficients given 

by the Fourier inversion formula, we can compute the transition probabilities using

(4)

Choice of a larger N leads to a finer and thus more accurate Riemann sum approximation of 

the integral, and also allows us to compute transition probabilities to and from a larger total 

particle population of either type. The Fast Fourier transform (FFT) enables efficient 

computation of these coefficients (Henrici, 1979), and in our application and simulation 

studies, we find that a grid size as small as N = 16 yields accurate results. With transition 

probabilities available, we may closely approximate  by the branching process 

likelihood
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(5)

so that maximizing (5) also maximizes the observed likelihood in (2) by proxy.

3. EM algorithm for the BDS process

With transition probabilities of the process available, it is already possible to produce MLEs 

of the covariate effects associated with birth, death, and shift rates by numerical 

maximization of the observed likelihood. However, an EM algorithm approach often 

outperforms off-the-shelf optimization procedures in missing data problems, offering a 

significantly faster and more robust solution. Let ℓc(X, β) denote the complete data log-

likelihood, X the complete data, and Y the available observations. The EM algorithm begins 

with an initial parameter estimate β0, and then at each jth iteration, updates the estimate by 

setting βj = argmaxβ Eβj−1 {ℓc(X, β) | Y}. Each iteration involves a computation of the 

expectation term called the E-step, followed by a maximization of the expectation called the 

M-step.

3.1 E-step

The fully observed BDS process is a continuous-time Markov chain, so its complete-data 

log-likelihood can be written as

(6)

where τp(k) is the total time process Xp(t) spends with total copy number 

, bp is the total number of births, fp the number of shifts, and dp the 

number of deaths for each patient p = 1, …, m — these quantities are the complete data 

sufficient statistics (Guttorp, 1995). Notice the final term in (6) is constant with respect to 

the parameters. We see that in order to obtain the expected complete-data log-likelihood, we 

need to calculate only expected births — Eβ {bp | Y}, shifts — Eβ {fp | Y}, deaths — Eβ {dp 

| Y}, and particle time — Eβ {Rp | Y}, where the last quantity is defined

By independence of the p processes and linearity of expectations, each expectation breaks 

into sums of expectations over the observation intervals. Further, by homogeneity it suffices 

that for all non-negative integers j, k, l, m, we can calculate the quantities
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Dependence of these quantities on rates λp, νp, μp is suppressed for simplicity. As noticed by 

Minin and Suchard (2008) and Doss et al. (2013), it is easier to work via restricted moments

where

and q→, q− are defined analogously. The conditional expectations can then be recovered 

after dividing by transition probabilities, i.e. .

These restricted moments can be computed with a similar approach used to obtain transition 

probabilities. We begin by defining the pseudo-generating functions: for expected births, let 

. Ignoring notational dependence on individual patients 

for simplicity, we define the joint generating function
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Pseudo-generating functions for shifts and deaths are defined analogously, and the pseudo-

generating function for particle time is defined as

where  is the Laplace-Stieltjes transform of . In 

each case we can define series whose coefficients are our quantities of interest by partial 

differentiation:

(7)

 and  are defined analogously, and the expression for particle time is instead 

differentiated at r = 0:

(8)

We see that given expressions for , , , and , the coefficients corresponding to 

moments , , ,  can then be numerically computed using FFT 

analogously to (4). For notational simplicity, we use Gjk when referring collectively to , 

, , and , and similarly define Hjk.

Having reduced our task to computing Hjk, we define H1 ≔ H10(r, s1, s2, t) and H2 ≔ H01(r, 

s1, s2, t). Particle independence then yields . In all cases, H2 is analytically 

available, and we derive an ordinary differential equation for H1, summarized in the theorem 

below. We present the result for a branching process with rates corresponding to the birth-

death-shift model, but such systems of equations are available for an arbitrary time-

homogeneous multi-type branching process.

THEOREM 1: Let {Xt} be a two-type branching defined by the rates in Section 2.3. Denote 

particle time and the number of births, shifts, and deaths over the interval [0, t) by Rt, bt, fp, 

and dt respectively. Define the generating functions corresponding to births as
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Then 

where , and  satisfies

(9)

subject to initial condition H1(r, s1, s2, 0) = s1.

Analogous equations for shifts, deaths, and particle time along with detailed derivations are 

included in Appendix B.

This theorem shows that for each of the sufficient statistics, necessary computations for Hjk 

reduce to solving a single ordinary differential equation, and because we can evaluate Hjk, 

we can also easily differentiate Hjk numerically, yielding solutions Gjk.

To summarize, with , , ,  now available, we may obtain the restricted 

moments by computing the coefficients in the power series , , , . These 

coefficients are recovered using a Riemann approximation to the Fourier inversion formula 

analogous to formula (4). We are thus able to compute all necessary quantities appearing in 

the expected complete-data log-likelihood . Recall that sufficient statistics 

for each patient bp, fp, dp, and Rp break up over intervals: i.e. the total number of births bp is 

equal to the sum of the number of births over each disjoint interval [tp,j−1, tp,j), with j = 1, 

…, n(p). Further, by the Markov property, the conditional expectation of the number births 

over an interval [t1, t2) given Y depends only on the states of the process at the endpoints of 

the interval:

(10)

and the same is true for the other sufficient statistics. Therefore, for each process p,

(11)
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with , , , and we obtain , 

 analogously. Finally, combining (11), (10), (6) and denoting , the 

expected complete-data log likelihood up to a constant is equal to

(12)

(13)

3.2 M-step

To complete an M-step, we use an efficient Newton-Raphson (N-R) algorithm to maximize 

the expectation . Each N-R step recursively updates parameters 

using the following equation:

(14)

where ▽g denotes the gradient vector and Hg denotes the Hessian matrix of g(β). 

Fortunately, compact analytical forms for these quantities are available. First, we collect 

complete data sufficient statistics across processes into the following vectors:

If we aggregate covariate vectors for each process in a c × p matrix Z = (z1, …, zm) and 

process-specific rates into vectors λ = (λ1, …, λm), ν = (ν1, …, νm),μ = (μ1, …, μm), then the 

gradient and Hessian can be expressed as
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(15)

(16)

In our experience the M-step generally converges in fewer than ten N-R steps. Availability of 

closed form solutions (15) and (16) yields very fast execution of each N-R step — the 

computational cost of the M-step is negligible compared to the E-step.

3.3 Accelerating E-step calculations for intervals with no change

In our birth-death-shift application, we may avoid the relatively costly E-step calculations 

for some intervals by approximating the probability of observing no changes with the 

probability that no event occurs in the underlying complete process. This leads to 

computational efficiency gains in settings such as our application where many intervals 

feature no observed changes.

It is very unlikely that events occur in a time interval [t1, t2) yet no change is observed so 

that X(t1) = X(t2). For instance, if 12 elements are present initially and a death followed by a 

birth occur, then we almost always observe X(t1) = (12, 0),X(t2) = (11, 1) unless the element 

added by the birth occupies the exact location that was previously occupied by the element 

that dies. This scenario would leave the observed state unchanged, X(t1) = X(t2) = (12, 0), 

but has exceedingly low probability: the already small but non-negligible probability that 

more than one event occurs is then multiplied by 1/(S – 11), the probability of the birth 

occurring in a specific location (recall S is very large). Therefore, it is numerically accurate 

to treat intervals with no observed changes as if no changes in the latent continuous-time 

process occur. In this case, the transition probability is easily calculated, given by the tail of 

an exponential distribution p(12,0),(12,0) (t2 −t1) = e−12(λ+μ+ν)(t2−t1). In addition to efficient 

closed-form transition probability calculation, the expected sufficient statistics necessary for 

the E-step are known in this setting. If no events occur, we know that 

, and that the expected particle time is 

. This is not only faster computationally but also more numerically stable, 

avoiding the division of numerically calculated restricted moments by numerically 

calculated transition probabilities. We verify this efficient implementation in our simulation 

studies as illustrated in Figure 4.

3.4 Implementation

Our algorithms are implemented in R package bdsem, available at https://github.com/

jasonxu90/bdsem. The EM algorithm implementation accommodates panel data settings 

with unevenly spaced discrete observations and includes functions for MLE inference using 

other methods, as well as code for simulating from the BDS process. The software is 

Xu et al. Page 12

Biometrics. Author manuscript; available in PMC 2016 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://https://github.com/jasonxu90/bdsem
http://https://github.com/jasonxu90/bdsem


accompanied by a vignette that steps through simplified versions of all simulation studies 

included in this paper.

4. Results

We begin with a simulation study to check that transition probabilities for the two-type 

branching process described in Section 2.3 coincide with those of the BDS model. We 

compare our generating function computations to Monte Carlo estimates of transition 

probabilities obtained by simulating from the BDSmodel, and also include a comparison to 

the FM method presented in (Rosenberg et al., 2003).

4.1 Comparison with frequent monitoring

The FM model allows at most one event to occur per interval. Thus, over an observation 

interval [ti, ti+1) beginning with k particles, the probabilities of a birth, death, and shift have 

closed forms (λ/η)e−kη(ti+1−ti), (μ/η)e−kη(ti+1−ti), and (ν/η)e−kη(ti+1−ti) respectively, where η = 

λ + ν + μ. The probability of no event occurring is given by e−kη(ti+1−ti), and all other 

transition probabilities are zero under the FM assumption.

We compute Monte Carlo approximations of transition probabilities from 2000 realizations 

of a BDS process without covariates, with rates λ = 0.0188, μ = 0.0147, ν = 0.00268 equal to 

estimates of transposable element birth, death, and shift rates obtained by Rosenberg et al. 

(2003) using FM. We begin each simulation with an initial population size of 10, and record 

the state of the process after simulating for dt units of time, varying dt from 0.5 to 10.

In Figure 2, we see that as the length of an observation interval increases, FM 

approximations become inaccurate, while those obtained using our method remain within 

the narrow Monte Carlo confidence intervals. However, notice that the probability that no 

event occurs remains accurate even under the FM approximation, supporting the efficient 

implementation of our EM algorithm described in Section 3.3. Figure C-1 in the Appendix C 

demonstrates that our method also reliably calculates other transition probabilities that are 

set to 0 by the FM method, and these computations remain accurate when we vary the rates 

of the process.

Further, these discrepancies in numerical transition probabilities between methods indeed 

translate to differences in estimated rates. To see this, we generate a partially observed 

dataset and infer rates using both methods. We simulate from the BDS process with λ = 

0.07, μ = 0.12, ν = 0.02 to resemble the dynamics of the real dataset we will analyze in the 

next section, and record 200 discretely observed states of the process evenly spaced dt time 

units apart. Each simulated interval begins with an initial population size drawn uniformly 

between 1 and 15, and this data generating process is repeated to produce three datasets 

corresponding to inter-observation intervals of lengths dt = (0.2, 0.4, 0.6). We infer the MLE 

rates for each of the three discretely observed datasets using the generating function method 

and under the frequent modeling assumption, and repeat the entire procedure for 200 trials.

In the top row of Figure 3, we see that our generating function approach successfully 

recovers the MLE estimates, and coverage of 95% confidence intervals remains close to 0.95 
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as we increase the length of time intervals between observations. The FM method performs 

somewhat reasonably for shorter observation intervals, but the bias in these approximate 

MLEs becomes stark as dt increases, with 95% confidence interval coverage probability 

dropping as low as 0.24.

We can also check the accuracy of restricted moment computations via simulation by 

verifying the equality  for expected 

births, and analogous expressions for other expected sufficient statistics. The left hand side 

is empirically approximated by a Monte Carlo average of the number of births over many 

realizations of the process, while the restricted moments on the right hand side are computed 

via our generating function approach (see Appendix C, Figure C-2).

4.2 Estimation of parameters in BDS model with covariates

With accurate transition probabilities and restricted moments available, we are ready to infer 

coefficients in the BDS model with covariate-dependent rates using the EM algorithm. We 

begin by generating a simulated dataset resembling the real data consisting of observations 

corresponding to 100 “patients,” each with three covariates zp,1, zp,2, zp,3 ~ Unif{(0, 2) × (6, 

10) × (4, 6)}. An illustration of the format of these data, which reflects the format of the real 

dataset we later analyze, is provided in Table 1. We then simulate patient-specific BDS 

processes, beginning with rates λp, νp, μp log-linearly related to a true vector of coefficients 

β. We collect between 2 and 7 observations per patient, each spaced dt = 0.4 apart. Each 

simulated observation interval begins with an initial population uniformly drawn between 2 

and 14. Finally, we choose true values of the effect sizes so that averaging over patients, the 

overall birth, shift, and death rates of the process are similar to previous studies (Rosenberg 

et al., 2003; Doss et al., 2013).

The algorithm is initialized with β0 ~ N {β, diag(0.5β)}, and the entire procedure of 

generating the dataset and inferring rates via EM is repeated 150 times. In the bottom row of 

Figure 3, we see that the MLEs are again unbiased estimates of the true values, with 

corresponding confidence interval coverage staying close to 95%. Our EM algorithm not 

only successfully recovers the true parameters, but also outperforms generic optimization. 

We choose to compare against the Nelder-Mead (NM) algorithm, as it proved to be the most 

robust among the methods available via the optim function in R; a similar choice of NM for 

comparison to EM implementations is motivated in (Lange and Minin, 2013). In this 

experiment, we generate one fixed dataset as described in the procedure above from the BDS 

model with covariates and initialize each method with identical initial parameter values and 

convergence criteria, using a relative tolerance of ϵ = 1 × 10−6. We repeat this procedure 

over 100 sets of initial parameters.

Figure 4 displays the log-likelihood values achieved by each algorithm at convergence, as 

well as values in which Nelder-Mead terminated at an iteration limit set at 2000 steps. We 

see that in every case, the EM algorithm is significantly faster and finds a better optimum 

than NM. Further, the wide range of converged log-likelihood values suggests that NM is 

sensitive to initial conditions — an undesirable feature in this fixed data setting. We also 

verify that EM and accelerated EM arrive at the same parameter estimates and log-likelihood 
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values at convergence up to specified relative tolerance. The increase in efficiency is not 

seen here: in these simulated examples, generating function computations are always 

performed and cached at each iteration, rather than bypassed for candidate intervals 

described in Section 3.3. In our application in the following section, we find that 

accelerating EM runs approximately six times as fast as its nonaccelerated counterpart.

Our EM approach is not only more stable in terms of the maximized log-likelihood, but also 

in terms of parameter estimates. The right panel of Figure 4 shows that estimates for each 

coefficient differ by no more than 0.01 across disparate initial conditions under both EM 

implementations, while a range of estimates are produced by the Nelder-Mead algorithm.

Note that for some coefficients, estimates produced by NM appear to lie closer to the “true” 

parameters used to generate the data. We believe this to be an artifact of centering initial 

parameter values for both algorithms around the true parameters. Indeed, MLEs 

corresponding to the likelihood surface of a given synthetic dataset generally do not coincide 

exactly with the inputs used to simulate the data. The fact that EM consistently finds a better 

optimum in terms of log-likelihood suggests that this is the case.

4.3 Mycobacterium tuberculosis transposable element evolution

We apply our EM algorithm to infer covariate-dependent birth, death, and shift rates of the 

M. tuberculosis transposon IS6110, a frequently used marker to track M. tuberculosis in the 

community (McEvoy et al., 2007). The marker serves as a DNA fingerprint, and in 

community-based studies patients that share the same or similar M. tuberculosis genotypes 

are considered as part of the same transmission chain (Van Embden et al., 1993; Kato-

Maeda et al., 2011). However, such inference relies on a fairly precise understanding of 

within-host evolutionary dynamics: for instance, if a DNA marker changes very rapidly, 

isolates from the same source will be strongly differentiated, and the severity of outbreaks 

would be underestimated without accounting for the high change rate. Understanding the 

rates of change of IS6110 -based genotypes is thus critical toward the interpretation and 

design of such studies (Tanaka and Rosenberg, 2001), which in turn provide important 

information toward designing policy decisions such as control and intervention programs.

We analyze data from an ongoing study of the transmission and pathogenesis of M. 
tuberculosis patients in a community study in San Francisco (Cattamanchi et al., 2006). The 

database includes all culture positive tuberculosis cases reported to the San Francisco 

Department of Public Health. We included patients with more than one M. tuberculosis 
isolate from specimens sampled more than 10 days apart, genotyped with IS6110 restriction 

fragment length polymorphism (RFLP) analysis. Our dataset contains 252 observation 

intervals corresponding to 196 unique patients observed at 452 time points. Average time 

between sampling times is 0.35 years, with the longest interval being 2.35 years. Of the 252 

intervals, 29 feature endpoints with distinct genotypes. Additional summary statistics are 

included in Appendix D.

This dataset was analyzed by Rosenberg et al. (2003) under the FM assumption, but these 

authors necessarily discarded all intervals with more than one change in RFLP bands, as 

these intervals with “complex changes” are not possible under their restricted model. A later 
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investigation by Doss et al. (2013) relaxes this assumption, allowing for multiple births or 

deaths to occur, but ignores RFLP band locations entirely, working instead only with total 

copy numbers evolving under a linear birth-death process. Under this birth-death model, the 

shift rate becomes unidentifiable, and the study instead infers covariate effects of birth and 

death rates. Our new method allows for a more principled and complete analysis, utilizing 

the full dataset without compromising any original modeling assumptions.

We begin by applying our EM algorithm to the simple BDS model with a single birth, death, 

and shift rate of IS6110 for all patients. We estimate the MLE rates , , 

, with associated 95% confidence intervals (0.00929, 0.0251), (0.00145, 0.0125), 

and (0.0177, 0.0301) respectively; results were not sensitive to parameter initializations. 

These estimates are interpretable as the change rate of IS6110 per copy, per year, and our 

results are consistent with previous estimates in the literature: for all rates, confidence 

intervals overlap those obtained in the frequent monitoring approach in (Rosenberg et al., 

2003) as well as those obtained in the BD model (Doss et al., 2013). Similarly to Doss et al. 

(2013) which estimates μ = 0.0207, our estimate of death rate  allowing for multiple events 

between observations is higher than μ = 0.0147 obtained under the FM assumption. This is 

to be expected, as there are multiple intervals in which IS6110 count drops by more than 1 in 

the dataset. Although confidence intervals overlap, our estimate  is noticeably higher than 

the previous result ν = 0.00268, with the upper end of our confidence interval almost twice 

as large as the upper end of the 95% FM confidence interval [0, 0.00654). Again, our 

analysis allows consideration of intervals that can be explained by at least two genotype 

changes that were either omitted in earlier studies or interpreted as a single birth event.

In addition to estimating the BDS rates globally, Doss et al. (2013) investigated rates as 

functions of several covariates in a panel data setting, and their findings in the birth-death 

framework suggest that M. tuberculosis lineage (Gagneux et al., 2006) may have a 

statistically significant effect on the rates of the process. We reexamine the effect of lineage 

on the rates in the full BDS model, considering 109 patients infected with Euro-American 

(EU) lineage strains, 54 patients with East-Asian (EA) strains, and 25 patients with Indo-

Oceanic (IO) strains. We combine EU and IO lineages, because Doss et al. (2013) found that 

the number of IO samples was not sufficient to recover rates for this lineage. Following Doss 

et al. (2013), we also include HIV infection status of each patient (HIV) and drug resistance 

status of the M. Tuberculosis strain (DR). These attributes are coded as binary covariates: 

EIp = 1 if patient p is infected with the EU or IO strain and 0 otherwise, so that intercept 

terms , ,  correspond to the EA strain. The variable HIVp = 1 if patient p is infected 

with HIV and 0 otherwise, and DRp = 1 if patient p is infected with a drug-resistant strain, 

and 0 otherwise. Covariates are log-linearly related to birth, death, and shift rates: 

, , 

.

We estimate coefficients in the full log-linear model described above, as well as in several 

simpler models, using the EM algorithm. The simpler models differ from the full model by 

either excluding the HIV and DR covariates, or excluding all covariates for specified global 

or “simple” rates. For instance, the model labeled “Lineage only, simple ν” in Table 2 has 
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five parameters , and rates defined as , log νp = 

log ν = βν, . Estimates in all cases are not sensitive to starting values. A 

summary and model comparison via the Bayesian Information Criterion (BIC) (Schwarz, 

1978) is included in Table 2, which selects the model including only the lineage covariate 

for modeling death rate μ. Coefficient estimates are displayed graphically for the full model 

as well as the best model selected by BIC in Figure 5. While we choose not to report 

coefficient estimates from each model for brevity, in all models, the confidence interval for 

 does not contain zero, indicating that strain lineage has a statistically significant effect 

on the death rate. The estimate  under the best model indicates that in Euro-

American and Indo-Oceanic lineages loss of IS6110 element occurs exp(2.028) = 7.599 

times faster than in their East-Asian counterpart. Our analysis affirms the result suggested by 

Doss et al. (2013) in the simpler BD framework: M. tuberculosis lineage needs to be taken 

into consideration when studying disease transmission using IS6110 genotypes.

5. Discussion

In this paper, we have developed an EM algorithm for inference in a discretely observed, 

multi-type branching process framework. We focus our attention on fitting BDS processes to 

panel data, driven by the problem of estimating evolutionary dynamics of IS6110 — a 

genetic marker that plays an important role in DNA fingerprinting of M. tuberculosis. Our 

method allows for log-rates to be linear combinations of many patient-specific covariates, 

and is flexible enough to capture the full range of dynamics between observation times by 

approximating the BDS process with a two-type branching process. To our knowledge, there 

is no other method of comparable accuracy for fitting BDS processes in this setting.

The generating functions and numerical techniques we derive to calculate previously 

unknown transition probabilities and restricted moments are helpful tools toward 

probabilistic characterization of such processes more generally. We demonstrate how our 

generating function approach leads to maximum likelihood estimation and evaluation of 

expected complete-data log-likelihood within an EM algorithm, but note that these 

calculations also arise in a variety of other statistical prediction and estimation techniques. 

For example, tractability of the likelihood via our methods allows for their use in Bayesian 

inference.

Several problems associated with our numerical methods remain open. First, although we 

empirically show that our branching process approximation to the discretely observed BDS 

likelihood is highly accurate, rigorous characterization of this approximation is lacking. 

Filling this theoretical gap is an interesting avenue for future research. Second, our method 

has potential numerical limitations in settings with very large populations. Computing 

transition probabilities to population sizes up to N of any particle type typically requires Np 

differential equations to be solved, where p is the number of particle types. Although 

efficient numerical solvers evaluate each ODE in fractions of a second, requiring millions of 

evaluations becomes prohibitive within an iterative algorithm. However, because the support 

of transition probabilities is often concentrated unless observation intervals are very long, 

future work may harness this sparsity to accelerate computations.
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Our covariate-specific rate analysis reaffirms previous indication in the simplified BD 

framework that strain lineage has a significant effect on the death rate (Doss et al., 2013), 

although the large confidence intervals suggest that this lineage effect is somewhat marginal. 

Indeed, more data would be required to be certain in the result, but our principled analysis is 

assuring in that any spurious findings can now be attributed to limited, noisy data rather than 

to model misspecification. The possibility of differences in rates of genetic marker evolution 

across lineages is important in epidemiological studies. For example, similar IS6110 
genotypes across multiple individuals infected with EA lineage of M. tuberculosis do not 

provide strong evidence of these individuals belonging to the same transmission chain, 

because of the slow change rate of IS6110 in the EA lineage. Failing to account for this may 

lead to inferring false relationships among genotypically similar clusters of patients.

The BDS model we consider is general enough so that our methods can be applied to 

studying evolution of any transposable element. Such studies are not limited to infectious 

disease surveillance, as studying evolution of transposable elements in eukaryotes is also of 

great interest (Biémont, 2010). Beyond the BDS framework, the tools we develop for fitting 

branching processes are transferable to many settings. For example, our methodology is 

applicable to compartmental models, a class of well-known multi-type branching processes 

that finds applications in modeling cancerous growth, bacterial evolution, and cellular 

differentiation in systems such as hematopoiesis (Golinelli et al., 2006).
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Figure 1. 
Illustration of the three types of transposition—birth, death, shift—along a genome, 

represented by circles. Transposons, depicted by filled rectangles along the circles/genomes, 

correspond to observable gel bands, denoted by horizontal lines in the rectangles next to 

each circle diagram. Numbers within each circle represent each configuration X(t) in the 

notation introduced in Section 2.2. More specifically, we call the gel band on the left our 

initial configuration and set the number of particles of type 1 to the number of bands, 5, and 

the number of particles of type 2 to 0. On the right set of diagrams, a birth event keeps the 

number of type 1 particles intact and increments the number of type 2 particles by one, a 

death event changes the number of type 1 particles from five to four and keeps the number of 

type 2 particles at zero, and finally a shift event decreases the number of type 1 particles by 

one and increases the number of type 2 particles by one.
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Figure 2. 
Transition probability approximations. BDS transition probabilities are approximated with 

two methods — the FM method, shown with crosses, and the generating function method, 

depicted with triangles. We depict Monte Carlo estimates of the BDS transition probabilities 

with circles; vertical segments indicate their corresponding Monte Carlo confidence 

intervals. This figure appears in color in the electronic version of this article.
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Figure 3. 
MLE parameter estimates on simulated data. The top row displays estimates of global birth, 

death, and shift rates in the simple BDS for three datasets, each with observation interval 

lengths dt = (0.2, 0.4, 0.6). True parameter values used to initialize simulations marked by 

horizontal dashed line, and results using the FM method are included in gray. Monte Carlo 

coverage probabilities for 95% confidence intervals are displayed above box plots. The 

bottom row displays estimated coefficients using EM in the BDS process with covariates, 

shifted by true values.
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Figure 4. 
The left plot shows converged log-likelihood values using EM, accelerated EM, and Nelder-

Mead optimization. The right plot shows parameter estimates produced by the EM, 

accelerated EM, and Nelder-Mead algorithms, with true parameters values shown as crosses. 

This figure appears in color in the electronic version of this article.
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Figure 5. 
Coefficient estimates and 95% confidence intervals in full model and best model according 

to BIC. Notice intervals corresponding to  do not contain 0.
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Table 1

Visualization of data format with covariates zi, i = 1, 2, 3.

Patient Time # Bands Shift z 1 z 2 z 3

1 0 9 no 1.3 6.3 4.2

0.4 9 no 1.3 6.3 4.2

0.8 10 no 1.3 6.3 4.2

1.2 10 no 1.3 6.3 4.2

1.6 10 yes 1.3 6.3 4.2

2.0 10 no 1.3 6.3 4.2

2 0 14 no 0.7 9.1 5.5

0.4 14 no 0.7 9.1 5.5

0.8 13 no 0.7 9.1 5.5

3 ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
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Table 2

Model comparison via . We also fit the log-linear model of Doss et al. (2013), which 

includes separate indicator variables for Euro-American and Indo-Oceanic lineages. Models described as 

“lineage only” do not include HIV, DR covariates, and rates described as “simple” are global to all patients, 

not influenced by covariates in the model.

Model # Par Log-likelihood BIC

Full, EU, IO lineages 15 −119.845 330.01

Full 12 −120.498 313.25

Full, simple ν 9 −122.455 299.10

Lineage covariate only 6 −123.649 293.42

Lin. only, simple ν 5 −123.717 277.54

Lin. only, simple λ, ν 4 −124.472 273.02

Simple λ, ν, μ 3 −127.914 273.90
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