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Abstract

Purpose of review—Autoimmune epileptic encephalopathy is a potentially treatable 

neurological syndrome characterized by the coexistence of a neuronal antibody in the CSF and 

serum. Patients present with combinations of seizures, neuropsychiatric features, movement 

disorder and cognitive decline, but some patients have isolated seizures either at first presentation 

or during their illness. This review summarises our current understanding of the roles of specific 

neuronal antibodies in epilepsy-related syndromes and aims to aid the clinician in diagnosis and 

treatment.

Recent findings—Antigen discovery methods in three neuroimmunology centres independently 

identified antibodies to different subunits of the GABAA receptor; high levels of these antibodies 

were found mainly in patients with severe refractory seizures. These and other antibodies were 

also found in a proportion (<10%) of children and adults with epilepsy. A clinical study comparing 

immunotherapy in patients with autoantibodies or without an identified target antigen found 

neuroinflammatory features were predictive of a therapeutic response. New in-vitro and in-vivo 

studies, and spontaneous animal models, have confirmed the pathogenicity and epileptogenicity of 

neuronal antibodies and their relevance to other mammals.

Summary—Neuronal antibodies are an important cause of autoimmune epileptic 

encephalopathy, early recognition is important as there may be an underlying tumour, and early 

treatment is associated with a better outcome. In the absence of an antibody, the clinician should 

adopt a pragmatic approach and consider a trial of immunotherapy when other causes have been 

excluded.
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Introduction

Autoimmune encephalitis is now an established neurological diagnosis in patients presenting 

with combinations of neuropsychiatric features, seizures, movement disorder and autonomic 

symptoms. The most commonly described neuronal targets strongly associated with seizures 

are the N-methyl-D-aspartate (NMDA), alpha amino-3-hydroxy-5-methyl-4-

isoxazolepropionic acid (AMPA) and gamma amino butyric acid-B (GABAB) receptors, 

leucine-rich-glioma protein 1 (LGI1, part of the VGKC-complex), glutamic acid 

decarboxylase (GAD) and more recently the GABAA receptor [1–6]. Given the 

predominance of seizures in some patients with these disorders, an autoimmune aetiology is 

now often suspected in patients with a “seizure-plus” presentation [7, 8]. This has important 

implications in terms of therapy as early recognition and treatment with immunotherapy is 

potentially curable and therapeutic response may be of diagnostic use in selected cases, even 

in the absence of neuronal antibodies [9, 10].

This review summarises the main presentations of autoimmune epileptic encephalopathies, 

describes recent findings in epilepsy cohort studies and the limited evidence so far for 

efficacy of immunotherapies in these patients, and reports new studies into the underlying 

cellular pathophysiological mechanisms.

Clinical presentation of antibody-mediated autoimmune epileptic 

encephalopathies

NMDAR-antibody encephalitis

Autoantibodies to the NMDAR were first identified in a case series of 12 young females 

(14-44 years) who developed severe encephalopathy with specific clinical features, including 

psychiatric symptoms, seizures, cognitive and autonomic dysfunction, movement disorder 

and decreased level of consciousness, often requiring ventilatory support [11]. As eleven of 

the patients had an ovarian teratoma, and one a mature teratoma in the mediastinum, and the 

patients responded symptomatically to a combination of tumour removal and 

immunotherapy, this disorder was initially reported as a paraneoplastic encephalitis affecting 

young women. However, many studies since have reported cases that include males, children 

and patients with no underlying malignancy [1, 12–16]. Although males are not so common, 

a recent observational study found 61.5% (8/13) of adult males presented initially with a 

seizure that was focal in five [1]. By contrast, only 8/58 (14%) female cases presented with 

seizures initially, and these were mostly generalized. In the single large cohort of 577 

patients, seizures as part of the initial presentation were again more common in men than 

women (27% vs 11%), although in both groups psychiatric disturbance was even more 

frequent [17].

One of the striking aspects of NMDAR-antibody encephalitis is a specific interictal “extreme 

delta brush” EEG pattern found in up to 30% of patients during the course of the illness 

[18]. This distinct waveform, characterized by rhythmic delta activity with superimposed 

beta frequency “riding” on each delta wave, is seen more commonly in severely affected 
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patients with recurrent seizures/status epilepticus, but may be a helpful guide to diagnosis 

and treatment in some patients [19, 20].

VGKC-complex antibodies and limbic encephalitis

VGKC-complex antibodies have been reported in patients with limbic encephalitis, often 

with seizures as the presenting feature, from 2001[21]. This form of limbic encephalitis is 

not often paraneoplastic and the patients often respond well to immunotherapies, with 

marked reductions in antibody levels and modified Rankin Scale scores [22]. MRI 

hyperintensities in the temporal lobes and hyponatraemia are common at first presentation. It 

is now clear that the VGKC-complex antibodies are mainly directed against other 

components of the complex such as LGI1 and CASPR2. LGI1 antibodies are most 

commonly associated with limbic encephalitis [23, 24] and with a recently defined form of 

epileptic event.

Facio-bracial dystonic seizures (FBDS)

LGI1 antibodies are highly associated with FBDS, a disorder characterized by brief, 

dystonic episodes that can precede the onset of or occur within the symptomatology of 

limbic encephalitis [25]. In the initial stages of FBDS, patients can have normal sodium 

levels, brain MRI, and the scalp EEG is also normal in the majority of patients; some 

describe the features of tonic seizures [5, 25, 26]. Anti-epileptic drugs (AEDs) are often 

ineffective, and intriguingly often associated with severe cutaneous reactions in up to 41% of 

patients [25]. Immunotherapy, particularly oral steroids, produces a clear reduction in 

seizures, and has been shown to prevent subsequent development of poor cognitive outcome 

in a few patients [5].

Whether these events represent an autoimmune epileptic encephalopathy or are indeed a 

movement disorder has been the subject of debate as MRI studies have also described T2 

hyperintensities, FDG-PET hypermetabolism and T1 hyperintensity in the basal ganglia [5, 

25, 27, 28]. Moreover, a recent retrospective study of LGI1-Ab FBDS found that scalp EEGs 

were normal in 20/23 assessed, however T1 and T2 basal ganglia signal abnormalities were 

detected in 42% [29], and mesial temporal abnormalities were significantly less common 

than in LGI1-Ab positive patients without FBDS. Nevertheless, as previously described, 

patients responded more frequently and more completely to immunotherapy than anti-

epileptic drugs, and the former should be the first-line treatment of these episodes regardless 

of their cortical or subcortical origin [29]. Recognition of the characteristic semiology and 

the presence of basal ganglia T1 hyperintensity in particular, should alert the clinician to an 

immunotherapy responsive syndrome even in the presence of a normal EEG, and absence of 

mesial temporal MRI changes.

Other antibody mediated clinical presentations

The AMPA receptor (AMPAR) is an ionotropic transmembrane glutamate receptor that 

mediates the majority of fast synaptic transmission throughout the CNS. Autoantibodies to 

this receptor are rare; in 2009 a case series of ten patients all presented with a form of LE, 

four patients had seizures, and seven had an underlying malignancy [30]. Nine received 

immunotherapy and responded to this treatment alongside oncological therapy when 
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required. There was a tendency towards frequent relapse. A recent case series of a further 21 

patients demonstrated a higher prevalence of psychiatric symptoms (~30%) and although 

71% patients responded to immunotherapy or tumour removal, the relatively common co-

existence of onconeuronal antibodies predicted a poor outcome [2].

Antibodies to the GluA3 subunit were identified in early research studies investigating the 

pathogenesis underlying Rasmussen’s encephalitis [31], a rare neurological disorder 

characterized by progressive unihemispheric inflammation of the cerebral cortex causing 

cognitive deterioration, hemiplegia, hemianopia and drug-resistant focal epilepsy [32]. 

Further studies were unable to reproduce this finding of potentially pathogenic GluA3 

receptors [33] and given the lack of response to PLEX seen in patients with this disease, it is 

unlikely that CNS autoantibodies are causative in this condition.

GABA receptors are the main inhibitory receptors throughout the CNS. The G-protein 

coupled GABAB receptors are composed of two subunits GABAB1 and GABAB2, and 

mediate pre- and post-synaptic inhibition. Autoantibodies to the GABAB receptor have been 

reported in a number of case series [3, 34, 35]. Patients presented with symptoms of LE, and 

in one series all patients had early or prominent seizures [34]. EEG revealed encephalopathy, 

partly with epileptiform discharges in some patients [35]. Up to 50% of all cases had an 

underlying SCLC. Response to immunotherapy and oncological treatment was variable with 

full or partial improvement reported to be between 20-83% [3, 35]. In another recent case 

series of five patients, four patients had small-cell lung cancer; in three, the identification of 

the lung cancer was after the diagnosis of GABAB encephalitis, the antibody positivity 

prompting the search for this specific tumour [36]. Overall the GABABR-Ab patients who 

respond best to immunotherapy are those with LE in the context of SCLC [37].

The GABAA receptor mediates most of the fast inhibitory transmission in the brain and is 

the pharmacological target for many anti-epileptic drugs; loss of synaptic GABAA receptors 

by internalization is thought to underlie the resistance seen to benzodiazepines in refractory 

status epilepticus [38]. Recently, high titres of GABAA antibodies binding different alpha, 

beta or gamma subunits were identified in patients with refractory seizures and status 

epilepticus with extensive MRI cortical/subcortical FLAIR changes [6]. The majority of 

cases treated with immunotherapy made a full or partial recovery [6, 39]. Another series, 

identified by the presence of this antibody in sera negative for NMDAR-antibodies, found a 

seizure predominance in presentation (47%) along with memory impairment (47%), 

hallucinations (33%) and anxiety (20%), but because of the lack of a clear limbic phenotype, 

most patients had not been given immunotherapies [39]. Two patients in the third series had 

invasive thymoma, cognitive impairment and multifocal abnormal MRI brain scans, but only 

one had seizures/status epilepticus [40]. GABAA receptor antibodies have all the hallmarks 

of pathogenicity (see below) but it is not yet clear whether they define a highly specific 

syndrome.

Further neuronal antibodies associated with the clinical presentation of autoimmune 

epileptic encephalopathy are listed in table 1.
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New-onset refractory status epilepticus (NORSE)

NORSE is a rare and devastating condition defined as treatment resistant status epilepticus 

in otherwise healthy individuals with no pre-existing history of epilepsy, and no obvious 

aetiological factors [41–43]. The most recent study, a retrospective review of 130 cases, 

found that the most common aetiology was autoimmune in 48% of cases (non-

paraneoplastic (19%) and paraneoplastic (18%)); NMDAR-Abs were the most frequent 

neuronal antibody identified [44]. Immunotherapy response could not be evaluated as 

treatment onset/regimes were highly variable, but other case reports have described dramatic 

responses to plasma exchange and immunotherapy, even in the absence of neuronal 

antibodies [41, 45, 46]. Further collaborative and prospective studies are required to evaluate 

the roles of specific antibodies and of immunotherapy in this challenging condition, where 

early immune therapy may be beneficial.

Neuronal antibodies in adult and paediatric epilepsy cohort studies

A few recent studies have looked for antibodies in cohorts of adult and paediatric epilepsy 

patients [47–49]. The overall incidence of antibodies to any of the antigens described above 

is usually around 10% of the patients, and these antibodies are more common in patients 

with focal seizures of unknown aetiology, suggesting that they might play a role. However, 

immunotherapies were used variably and without prior knowledge of any antibodies, and the 

relevance of these relatively low titre antibodies is not yet clear.

Treatment of autoimmune epileptic encephalopathy

There are currently no consensus guidelines on the treatment of autoimmune epileptic 

encephalopathy. Broadly speaking, most centres advocate “first-line treatment” in the form 

of pulsed intravenous high dose steroids followed by high dose oral corticosteroids, and 

intravenous immunoglobulin and/or plasma exchange; second-line immunotherapy options 

include rituximab, cyclophosphamide, azathioprine, mycophenolate mofetil and 

methotrexate [8, 50–52]. Patients respond well to immunotherapy with the best therapeutic 

responses seen in those diagnosed and treated early, and with tumour removal, if applicable 

[15, 53].

Response to a trial of immunotherapy has also been explored as a diagnostic aid if an 

autoimmune epileptic encephalopathy is suspected in refractory cases of epilepsy [10]. The 

most likely to respond were those patients with neuronal autoantibodies (87.5%), although 

33% (2/6) patients without detectable antibodies also responded.

Historically, unlike paediatric epilepsy patients, adults have rarely been treated for epilepsy 

or epileptic encephalopathy with immunotherapy. In paediatrics, West syndrome and 

patients with electrical status epilepticus in sleep (ESES) respond to immunotherapy 

although these are not labelled “autoimmune epileptic encephalopathy”, as they are more 

likely to have another aetiology such as genetic mutations [54]. Therefore caution must be 

ascribed to assuming that a immunotherapy response indicates an autoimmune condition; 

this can distract from the actual cause, and chronic immunosuppression may cause harm.
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Pathogenicity and epileptogenicity of neuronal antibodies

As well as the favourable clinical response to immunotherapy, in vitro and in vivo studies 

provide further evidence of the pathogenicity of NMDAR-Abs. Incubation of dissociated 

rodent hippocampal neurons with patient NMDAR-Abs in vitro causes a selective reduction 

in surface membrane NMDARs, resulting in “NMDAR hypofunction” [55]. This is 

reversible on removal of the NMDAR-Abs, and mediated by autoantibody cross-linking of 

the receptors and internalization [56]. Similarly, a recent study on the pathogenicity of 

AMPA receptor antibodies showed that human antibodies internalize and degrade surface 

AMPAR clusters and decrease AMPAR-mediated currents in-vitro, leading to increased 

intrinsic excitability [57]. Unlike the glutamate receptor antibodies, there was no reduction 

of GABABR levels on in vitro hippocampal neurons exposed to GABABR antibodies [34], 

but GABAAR antibodies do reduce surface levels of GABAAR’s [6, 39], and selectively 

reduced miniature IPSC amplitude and frequency without affecting miniature EPSCs in one 

electrophysiological study [40].

Ex-vivo electrophysiology studies have shown that one patient’s IgG containing LGI1 

antibodies induced epileptiform activity in CA3 pyramidal cells in rat hippocampal slices, 

similar to that induced by the VGKC inhibitor dendrotoxin [58]. A more detailed in vitro 
study found that LGI1 autoantibodies inhibited the interaction of LGI1 with ADAM22 and 

caused synaptic AMPAR reduction [59], a potentially pathogenic and epileptogenic effect. 

Both pre- and postsynaptic mechanisms are likely to play a role in LE.

The pathogenicity of NMDAR antibodies has been demonstrated in two recent reports. 

Spontaneous seizures were not observed in either study. Cognitive and memory deficits were 

seen in mice after 14 days of CSF infusion with human CSF containing NMDAR antibodies 

[60]. Post-mortem analysis revealed a progressive decrease of total and synaptic NMDAR 

clusters. Lowered seizure threshold was found when purified serum IgG containing 

NMDAR-Abs was injected into mice implanted with wireless EEG transmitters [61] and 

given a sub-convulsive dose of PTZ. In this case, unexpectedly, there was no apparent loss of 

NMDAR expression overall, but it is possible that loss of the receptors in a population of 

inhibitory interneurons, which would cause an overall increase in network excitability, was 

involved (Figure 1[62]).

Spontaneous models of antibody-mediated diseases

VGKC-complex/LGI1-Abs were found in cats with “feline complex partial seizures with 

orofacial movement (FEPSO)” [63], which is now thought to be a form of limbic 

encephalitis. Similar to humans with VGKC-complex antibodies associated with limbic 

encephalitis [64] post-mortem hippocampal lesions showed marked IgG infiltration and 

complement deposition, confirming the same potential pathogenic mechanism [65] and 

suggesting that immunotherapies should be used in this now well-recognised feline 

syndrome.

Finally, a recent report found that Knut, the polar bear of the Berlin Zoological Garden who 

drowned in 2011 following seizures that were observed by many visitors, had high levels of 
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NMDAR-Abs in his serum and CSF making him the first non-human case of NMDAR-ab 

encephalitis, and suggesting that this antibody-mediated autoimmunity may also be of 

clinical relevance to veterinary practice [66].

Conclusions

Autoimmune epileptic encephalopathy is a recognizable and potentially treatable 

neurological syndrome which often present with seizures, often focal but sometimes 

generalised. The discovery of new antigens has broadened the clinical spectrum, and 

clinicians must be alert to search for an autoimmune cause in refractory cases as 

immunotherapy may be beneficial even in the absence of a specific neuronal antibody. 

Having demonstrated the pathogenicity of neuronal antibodies, further basic science 

research into the underlying cellular mechanisms should focus on new pharmacological 

treatments that might preserve inhibitory neuronal function or restore receptor function.
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Key points

• Autoimmune epileptic encephalopathy classically presents with 

seizures, neuropsychiatric features, abnormal movements and cognitive 

decline

• Seizures may be the presenting feature in males with NMDAR-

antibodies

• FBDS is a specific form of epileptic syndrome, strongly associated 

with LGI1 antibodies and responsive to immunotherapies

• EEG and MRI may have specific features such as “extreme delta 

brush” in NMDAR-Ab encephalitis and basal ganglia T1 hyperintensity 

in FBDS giving a diagnostic clue

• A trial of immunotherapy in patients with severe epilepsy without an 

identified antibody may still be of clinical and diagnostic benefit
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Figure 1. Schematic of how NMDAR-Abs might cause increased neuronal excitability
A. Activation of the pyramidal cell (blue triangle) by AMPAR receptors produces a strong 

output. The pyramidal cell action potential also exerts stimulates the inhibitory neurons 

(grey squares) via release of glutamate onto NMDA receptors; these feedback onto the 

pyramidal cell body providing inhibition via GABAA receptors. Meanwhile, depolarisation 

of the pyramidal cell leads to opening of the NMDA receptors which are required for long-

term potentiation. B. In the presence of NMDAR-Abs, the internalisation of NMDARs on 

the interneuron disrupts this feedback inhibition resulting in increased excitatory output. 
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Adapted from Rujescu, D., et al. (2006). “A pharmacological model for psychosis based on 
N- methyl-D-aspartate receptor hypofunction: molecular, cellular, functional and behavioral 
abnormalities.” Biol Psychiatry59(8): 721-729.

Wright and Vincent Page 13

Curr Opin Neurol. Author manuscript; available in PMC 2016 October 01.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

Wright and Vincent Page 14

Table 1.
Neuronal targets in autoimmune epileptic encephalopathy, including classical 
intracellular onconeural proteins less commonly associated with this clinical presentation

Neuronal
target

Cell surface
or
intracellular

Paraneoplastic Neurological features

NMDAR Cell-surface Ovarian teratoma, neuroblastoma, 
testicular germinoma

Encephalitis, neuropsychiatric features, seizures, 
movement disorder, dysautonomia

AMPAR Cell-surface Lung cancer,thymic tumour, breast cancer Encephalitis, seizures, psychiatric features

GABAA Cell-surface Invasive thymoma Encephalitis, status epilepticus, refractory 
seizures

GABAB Cell-surface Small cell lung carcinoma LE

VGKC-complex and LGI1 Cell-surface Thymoma, small-cell lung carcinoma, 
breast, prostate cancer

LE, FBDS

Glycine receptor Cell-surface About 15%, thymoma, lymphoma PERM, SPS, epileptic encephalopthy

DPPX Cell-surface Not yet described Encephalitis, myoclonus, sleep disturbance, GI 
disturbance

mGluR5 Call-surface Hodgkin lymphoma Ophelia syndrome - limbic encephalitis

GAD65 Intracellular Not common but occasional thymoma; 
renal, breast GI tract carcinoma

SPS, LE, refractory seizures (temporal lobe)

Hu Intracellular Classically small-cell carcinoma LE, neuropathy (autonomic, peripheral, sensory), 
brainstem encephalitis

CRMP-5 Intracellular Small-cell carcinoma, thymoma, breast 
cancer

Limbic encephalomyelitis, LEMS, neuropathy, 
optic neuritis

Ma1, Ma2 Intracellular Testicular, breast, colon cancer LE, polyneuropathy, encephalomyelitis

Amphiphysin Intracellular Breast and small-cell lung carcinoma LE, SPS, myelopathy, encephalomyelitis

Abbreviations: DPPX dipeptidyl-peptidase-like protein-6; GI gastrointestinal; LE limbic encephalitis; LEMS Lambert Eaton Myasthenic 
Syndrome; PERM progressive encephalomyelitis with rigidity and myoclonus; SPS stiff-person syndrome
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