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Abstract

A major focus of cancer research for several decades has been understanding the ability of tumors 

to induce new blood vessel formation, a process known as angiogenesis. Unfortunately, only 

limited success has been achieved in the clinical application of angiogenesis inhibitors. We now 

know that lymphangiogenesis, the growth of lymphatic vessels, likely also plays a major role in 

tumor progression. Thus, therapeutic strategies targeting lymphangiogenesis or both 

lymphangiogenesis and angiogenesis may represent promising approaches for treating cancer and 

other diseases. Importantly, research progress toward understanding lymphangiogenesis is 

significantly behind that related to angiogenesis. A PubMed search of ‘angiogenesis’ returns 

nearly 80,000 articles, whereas a search of ‘lymphangiogenesis’ returns approximately 2,635 

articles. This stark contrast can be explained by the lack of molecular markers for identifying the 

invisible lymphatic vasculature that persisted until less than two decades ago combined with the 

intensity of research interest in angiogenesis during the past half-century. Still, significant strides 

have been made in developing strategies to modulate lymphangiogenesis, largely using ocular 

disease models. Here, we review the current knowledge of lymphangiogenesis in the context of 

knockout models, ocular diseases, the biology of activators and inhibitors, and the potential for 

therapeutic interventions targeting this process.
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1. INTRODUCTION

The lymphatic vasculature is responsible for collecting excess fluid and macromolecules 

from capillary beds, returning these elements to the blood circulation, and capturing and 

delivering antigens to lymph nodes to induce immunological responses.1 Thus, 

lymphangiogenesis, the generation of new lymphatic vessels from pre-existing lymphatics, 

serves important functions during embryonic development and wound healing, but 

disruption of the fine balance between pro-lymphangiogenic and anti-lymphangiogenic 

factors can cause certain pathologies. For example, excess lymphangiogenesis can result in 

tumor metastasis2; 3 and deficient lymphangiogenesis can lead to lymphedema. In the eye 

specifically, transmission of immunogenic stimuli from a corneal graft through both 

lymphatic and blood vessels can lead to graft rejection, and the presence of lymphatic 

vessels in the host prior to corneal transplantation has been shown to be a key predictor of 

poor outcome, thus demonstrating the importance of lymphatics in transplantation.4; 5; 6; 7; 8 

Because the identification and visualization of normally invisible lymphatic vessels was 

originally difficult, the contribution of these vessels in graft rejection was largely 

overlooked. However, the discovery of molecular markers for lymphatic vessels has helped 

advance lymphangiogenesis research in the past 20 years, including the recently discovery of 

a classical lymphatic drainage system in the central nervous system. 9

Normally, the cornea lacks lymphatic vessels and can tolerate foreign antigens without 

mounting a systemic immune response, a concept termed “immune privilege.”10; 11 This 

makes corneal transplant acceptance possible without human leukocyte antigen (HLA) 

matching.12 The eye has an anterior chamber-associated immune deviation (ACAID) 

through which inflammatory and immune cells are naturally suppressed when foreign 

antigens are introduced into the anterior chamber, preventing a systemic immune response.12 

When a corneal graft is introduced, it forms the anterior surface of the anterior chamber, and 

through ACAID, rejection can be avoided.12 However, in the presence of corneal 

neovascularization, the integrity of the ACAID is lost, and the risk associated with graft 

rejection increases significantly because immune privilege is no longer applicable.13

The normal adult cornea is both avascular and alymphatic, and it is, therefore, an ideal 

model for easily assessing both forms of vessel formation.10; 11; 14 Lymphangiogenesis in 

the cornea occurs when lymphatic vessels either grow from pre-existing vessels in the 

limbus of the eye or form de novo.15 Under hypoxic and inflammatory conditions, various 

members of the vascular endothelial growth factor (VEGF) family are released by 

inflammatory cells to stimulate both angiogenesis and lymphangiogenesis.16; 17; 18 

Elucidation of the mechanisms by which lymphangiogenesis occurs in the cornea can lead to 

the development of therapeutics targeted at reducing corneal neovascularization and may be 

extrapolated to the prevention of tumor cell metastasis in cancer patients.19; 20; 21

In this review, we first provide an overview of lymphatic markers and knockout models 

currently used to study lymphatic development and emphasize why the cornea serves as a 

great model for studying lymphangiogenesis. We also provide updated descriptions of the 

normal ocular surface anatomy, factors involved in regulating lymphangiogenesis, and 

Yang et al. Page 2

Surv Ophthalmol. Author manuscript; available in PMC 2017 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



ocular diseases associated with lymphangiogenesis. Finally, we discuss strategies for 

modulating lymphangiogenesis in the context of disease.

2. CORNEAL LYMPHANGIOGENESIS AND ANGIOGENESIS

The cornea is normally avascular and serves as an ideal model in which to study both 

angiogenesis and lymphangiogenesis.1; 4; 11; 15 However, in various ocular pathologies, 22 

corneal angiogenesis and lymphangiogenesis are induced, and corneal transparency is lost. 

The presence of newly formed blood and lymphatic vessels induces leakage of proteins, 

lipids, and calcium within the cornea, which results in a reduction in visual acuity and 

increases the risk of graft rejection after corneal transplantation.4; 5; 6; 7; 8 Prior to the 

discovery of lymphatic markers, corneal neovascularization was believed to only involve 

blood vessels, since the lymphatic vessels are biomicroscopically undetectable.23 However, 

we now know that pathologic lymphangiogenesis is usually present with angiogenesis and 

occurs in the setting of an inflammatory insult directly to the cornea, overriding the 

angiogenic and lymphangiogenic privilege of the cornea.24 Members of the VEGF family 

(VEGF-A, -B, -C, and –D) are the primary mediators of both angiogenesis and 

lymphangiogenesis. Lymphangiogenesis is primarily mediated by VEGF-C and VEGF-D 

binding to vascular endothelial growth factor receptor 3 (VEGFR-3) on lymphatic 

endothelial cells (LECs).25; 26 Bone marrow-derived cells, such as macrophages, produce 

both VEGF-C and VEGF-D.11; 27; 28 If inflammation occurs after corneal transplantation, 

macrophages will enter via the blood vasculature in response to cytokines and other 

mediators of inflammation, whereas antigens are transported by antigen-presenting cells to 

regional lymph nodes via the lymphatic vasculature.28

3. LYMPHATIC MARKERS

A major breakthrough in the study of lymphangiogenesis occurred with the introduction of 

lymphatic-specific markers that made lymphatic vessel visualization more accessible and 

facilitated significant scientific advancements. The ideal characteristic of a lymphatic-

specific marker is its exclusive expression on LECs.29; 30 However, this is rarely the case 

because many of the lymphatic-specific markers currently used are also expressed on certain 

nonendothelial cells. Thus, the most important feature is that these markers are not 

expressed on blood vessels and can be used to distinguish lymphatic vessels from blood 

vessels. A summary of lymphatic-specific markers is provided in Table 1.

3.1. LYVE-1

Banerji et al. discovered lymphatic vessel endothelial hyaluronan (HA) receptor 1 

(LYVE-1), a member of the Link superfamily of HA-binding proteins, by searching the 

expression sequence tag database for cDNAs homologous to CD44, the only other major 

member of the Link superfamily of HA receptors.31 Although both CD44 and LYVE-1 bind 

to HA, CD44 is not expressed on lymphatic vessels and is instead primarily located on blood 

vascular endothelial cells. In contrast, LYVE-1 is highly expressed on lymphatic vessels and 

serves as a lymphatic- specific marker.31 LYVE-1 binds to and internalizes HA31; 32 and is 

speculated to assist HA in its involvement with cell migration in the lymphatic system33 and 

to transport HA to the liver or regional lymph nodes for degradation.34 Platanova et al. 
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reported that LYVE-1 and FGF2 have a functional relationship in which LYVE-1 and FGF2 

interaction inhibits FGF2-induced lymphangiogenesis and also prevents TNF-β–dependent 

down-regulation of LYVE-1.35

LYVE-1 mRNA has been detected in a variety of organs where its cellular expression pattern 

was analyzed to determine its status as a lymphatic-specific marker. An abundant amount of 

LYVE-1 mRNA was detected in the human spleen sinusoidal endothelium, lymph nodes, 

heart, lung, and fetal liver.31; 36 LYVE-1 mRNA was also detected in smaller amounts in the 

human appendix, muscles, placental syncytiotrophoblasts, bone marrow, and adult liver 

sinusoidal endothelium.31; 36 In the liver, LYVE-1 is expressed in both lymphatic and blood 

endothelial cells and cannot be used to differentiate lymphatic vessels from blood vessels.37 

Instead, prospero homeobox 1 (Prox-1) is present on liver lymphatic vessels, but not on liver 

blood vessels, and is a better lymphatic marker for the liver.37 When different diseased states 

of the liver were examined, it was found that blood vessels in cirrhotic livers express less 

LYVE-1 than blood vessels in healthy livers, whereas blood vessels of hepatocellular 

carcinomas express no LYVE-1.37 In both of these states, LYVE-1 expression in the liver 

lymphatic vessels remained the same.37 Aside from its expression in the liver, LYVE-1 is 

confined to LECs in adult humans and mice and can overall be used as a lymphatic-specific 

marker.31 LYVE-1 expression is most visible in the draining lymphatic vessels of the 

gastrointestinal system, the lacteals that drain intestinal villi, and the subdermal lymphatic 

vessels of the skin.31 On the lymphatic vessel, LYVE-1 has a bipolar distribution and is 

present on both the luminal and abluminal surfaces of the lymphatic endothelium.31 LYVE-1 

and FGF2 have a bifunctional relationship in which FGF2 regulates LYVE-1 expression by 

reversing the TNF-β–dependent downregulation of LYVE-1 and increasing the overall 

expression of LYVE-1.35 In contrast, LYVE-1 acts on FGF2 and inhibits FGF2-dependent 

lymphangiogenesis.35 LYVE-1 expression in corneal lymphatics is variable, with an increase 

in the number of LYVE-1 absent gaps along corneal lymphatic vessels up until 8 weeks of 

age, when LYVE-1 expression begins to increase.38 Nakao et al. reported that the LYVE-1 

absent regions potentially serve as microvalves that facilitate unidirectional lymphatic flow 

and as immunological hot spots for stromal macrophage re-entry into the lymphatic 

vessels.38

LYVE-1 expression in corneal lymphatics is variable, with an increase in the number of 

LYVE-1 absent gaps in the lymphatic vessels from birth until week 8.

Through the detection of LYVE-1 with anti-LYVE-1 antibodies, the presence of 

lymphangiogenesis in the cornea,15 inflammatory diseases,39 and the skin via VEGF-C 

induction40 has been established. The major advantages associated with using LYVE-1 as a 

lymphatic marker are its specificity and its use as a method to visualize lymphatic vessels in 
vivo through anti-LYVE-1 antibodies conjugated with fluorophores.41

3.2. VEGFR-3

VEGFR-3 interaction with VEGF-C and VEGF-D induces lymphatic vessel sprouting from 

the venous system, an early step in lymphangiogenesis.42 The complete absence of 

VEGFR-3 is embryonic lethal (for more information regarding VEGFR-3 knockout, refer to 

section 4.4.).42 VEGFR-3 is expressed on all blood vessels embryonically, but becomes 
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predominantly expressed in LECs later in development.43; 44 Although VEGFR-3 is 

frequently used in research as a marker for lymphatic vessels, alone it is not sufficient 

because VEGFR-3 can be expressed on blood vessels.45 Specifically, studies have identified 

VEGFR-3 on the tip cells of the retina blood vessels,46, 47 in chronic inflammatory 

wounds,48; 49; 50; 51 in tumors during neovascularization,48; 49; 50; 51 and on fenestrated 

capillaries of normal tissues.46 VEGFR-3 loses its lymphatic specificity in tumors because 

its expression is upregulated on blood vessels.50 Previous studies using VEGFR-3 as a 

lymphatic marker have identified the presence of lymphatic vessels in cutaneous 

lymphangiomatosis,52 hemangiomas,52 and regions surrounding lymphomas53 and breast 

carcinomas.53; 54 Furthermore, the presence of VEGFR-3 has revealed the lymphatic 

endothelium origin of AIDS-associated Karposi’s sarcoma.53 These studies also used 

antibodies against vascular-specific markers (i.e., CD31, PAL-E, and von Willebrand factor) 

to ensure that the detected VEGFR-3 was indeed on lymphatic vessels and not on blood 

vessels.52; 53

3.3. Prox-1

The transcription factor Prox-1 is a lymphatic-specific marker and required for LEC 

commitment from blood endothelial cells (BECs).55 Prox-1 expression is restricted to 

lymphatic vessels and has no effect on the development or function of blood vessels.55 Thus, 

the embryonic lethality of Prox-1 knockout murine models is attributed to defects in the 

lymphatic system (for more information regarding Prox-1 knockout, refer to section 4.1.). 

Prox-1 is predominantly restricted to LECs of normal tissues and tumors.56 In addition to 

LECs, Prox-1 is also expressed in hepatocytes,37 some photoreceptors in the liver,37 

cardiomyocytes,57; 58 and pancreatic epithelial cells.57; 58 Prox-1 is co-expressed with 

CD31/PECAM-1, a transmembrane protein present on both blood and lymphatic vessels, 

and staining for both Prox-1 and CD31 is the most reliable way to identify LECs given that 

Prox-1 can be present on non-endothelial cells.59; 60 One of the major advantages of using 

Prox-1 as a lymphatic marker is that it is absent on blood vessels, and unlike LYVE-1, 

Prox-1 can be used to identify lymphatic vessels in the liver.37 Wilting et al. compared 

Prox-1 to VEGFR-3 and concluded that it is a much better lymphatic marker due to its 

lymphatic specificity in all tissue types.59 Overall, Prox-1 is a reliable lymphatic marker in 

normal and pathological human tissue.59

3.4. Podoplanin

Podoplanin was first described by Wetterwald et al., who identified the protein on osteocytes 

and osteoblasts and called it E11 antigen.61 Soon after, Breiteneder-Geleff et al. discovered 

the same protein on rat podocytes and named it podoplanin.62 Alternate names for 

podoplanin include OTS-8,63 M2A antigen,64 T1α,65 Aggrus,66 and glycoprotein 36.67 In all 

organs examined, podoplanin is expressed on LECs and not BECs, but it is also expressed 

on many nonendothelial cell types.68 The adult lung is a major site for T1α/podoplanin 

expression,65 and other sites include osteocytes,61; 63 the choroid plexus,61 podocytes,62 skin 

endothelium,69 and central nervous system ependymal cells.68

Before Schacht et al. discovered that mouse monoclonal D2-40 antibody can recognize 

human podoplanin, it was very difficult to study human podoplanin expression due to a lack 
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of protein detection methods.68 An obstacle in detecting lymphatic vessel through 

immunohistochemistry is the absence of a single exclusive lymphatic marker; thus, current 

guidelines recommend the use of at least two lymphatic-specific markers for identifying 

lymphatic vessels in the eye.70 Cursiefen et al. used both podoplanin and LYVE-1 to 

confirm that lymphangiogenesis occurs in the cornea.15 Currently, podoplanin is used to 

identify many different types of tumors: lymphangiomas,69; 71 Karposi’s sarcomas,69; 71; 72 

angiosarcomas,69; 71; 73 and squamous cell carcinomas.74 Additionally, podoplanin has also 

been found to be a potential diagnostic marker for epitheliod mesothelioma73; 75; 76 and 

gonadal and extragonadal germ cell tumors.64; 68; 77

4. KNOCKOUT AND MUTANT MODELS FOR STUDYING 

LYMPHANGIOGENESIS

Many factors have been implicated in the process of lymphangiogenesis with varying 

degrees of importance. Knockout models allow researchers to gain insight into the specific 

functions these factors have in the development of the lymphatic system. Factors can be 

involved in the initial development of the lymphatic system or in downstream maturation 

events (Fig. 1). A clear understanding of the process of lymphatic system development and 

the unique roles each factor plays serves as an important clinical tool for developing 

treatments for diseases involving the lymphatic system. A summary of factors involved in 

lymphangiogenesis and their corresponding knockout models is provided in Table 2.

4.1. Prox-1 knockout models

Prox1, prospero-related homeobox transcription factor gene, is expressed in the developing 

central nervous system, lens, pancreas, heart, and liver of mice.58 Wigle and Oliver found 

that Prox1 is present in a subset of BECs that eventually gives rise to the lymphatic 

system.55 Through two primary types of murine Prox1 knockout models, Prox1’s critical 

regulatory role in the development of the lymphatic system and the commitment of BECs 

into LECs was discovered.55

The Prox1 heterozygous knockout murine model, Prox1+/−, is viable at birth, but lethal 2–3 

days later.55 Hemizygous Prox1+/− mice develop dysfunctional lymphatic vessels and a 

chylous ascites phenotype, which presents with chyle in the intestines, at the time of 

death.55; 78 This is in contrast to the nullizygous murine knockout model, Prox1−/−, which is 

lethal at E14.5 and has no lymphatic vasculature present.55; 78 At E14.5, both Prox1+/− and 

Prox1−/− mice present with severe edema, suggesting the haploinsufficiency of Prox1 in 

lymphatic development.55

A more detailed analysis of the embryonic development of Prox1+/− and Prox1−/− mice 

reveals Prox1’s specific effects on the development of the lymphatic system. Early 

lymphatic commitment and development involves two main steps: budding and sprouting. In 

budding, endothelial venous cells bud out to form lymphatic sacs. In sprouting, endothelial 

cells from the lymphatic sacs sprout to give rise to lymphatic vessels. At E10.5, Prox1+/− 

and Prox1−/− mice are developmentally similar and both exhibit normal budding.55 

However, by E11.5, Prox1−/− mice have suppressed levels of endothelial budding with 
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random migration due to defective polarization, and by E12, complete arrest of budding is 

observed.55; 81 These findings reveal that Prox1 is not required for the initial endothelial cell 

budding from the cardinal vein but is required for the maintenance of further endothelial cell 

budding and sprouting.78 At E13.5, Prox1+/− mice show normal endothelial sprouting, 

whereas Prox1−/− mice exhibit no sprouting and an absence of lymphatic vessels.81 During 

the process of budding and sprouting, Prox1 plays a role in the lymphatic commitment of 

budding endothelial cells by upregulating the lymphatic-specific markers VEGF-C, LYVE-1, 

and secondary lymphoid tissue chemokine (SLC) to help BECs commit to a lymphatic 

fate.81 Budding endothelial cells in Prox1+/− mice are similar to those in wild-type mice in 

that they begin to express these lymphatic-specific markers and suppress expression of their 

original blood vascular markers.81 Prox1−/− mice on the other hand do not express LYVE-1 

or SLC and only express low levels of VEGFR-3, while also expressing high levels of the 

blood vascular markers CD34 and laminin, overall adopting a blood vascular phenotype.81

After the discovery that Prox-1 is necessary for lymphatic development from the embryonic 

venous blood, Hong et al. and Petrova et al. performed experiments using human dermal 

microvascular endothelial cells (HDMECs) and found that Prox-1 expression can reprogram 

BECs into LECs.82; 83 The introduction of Prox-1 to HDMECs successfully induced the 

expression of lymphatic-specific markers VEGFR-3 and podoplanin and suppressed the 

expression of some of the previously elevated blood vascular markers.82; 83

4.2. Sox18 knockout models

SRY-related HMG-box 18 (Sox18) is a transcription factor that is expressed on lymphatic 

vasculature precursor cells and is necessary for inducing Prox-1 expression.84 Mutations in 

Sox18 cause the autosomal recessive and dominant forms of hypotrichosis-lymphoedema-

telangiectasia syndrome in humans.85

Heterozygous Sox18+/− mice survive to adulthood but have very dense and branched 

lymphatic vessels.84 Homozygous Sox18−/− mice die at 14 days post coitum (d.p.c.) and 

have no Prox-1 venous expression and subsequent lymphatic development.84 Thus, Sox18 is 

required only during initial lymphatic development, and its absence leads to a complete halt 

in further development.84

4.3. VEGF-C and VEGF-D knockout models

Vascular endothelial growth factors C and D (VEGF-C and VEGF-D) are the only known 

high affinity ligands for VEGFR-3 (flt-4), a receptor unique to adult lymphatic vessels.44 

These ligands play a critical role in regulating lymphangiogenesis and are necessary for LEC 

migration and survival.42 Schoppmann et al. found that tumor-associated macrophages 

express high levels of VEGF-C and VEGF-D, which are necessary for the induction of 

peritumoral lymphangiogenesis and contribute to cancer metastasis.86 The development of 

VEGF-C and VEGF-D murine knockout models revealed the involvement of VEGF-C in 

LEC sprouting from embryonic veins during early lymphatic development and the 

comparatively trivial role that VEGF-D plays in lymphangiogenesis.42; 87

Hemizygous Vegfc+/− murine models presented with lymphatic vessel defects, emphasizing 

the necessity for two functional Vegfc alleles for normal lymphatic development.42 In 
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contrast to nullizygous Vegfc−/− mice, a fraction of Vegfc haploinsufficient mice survive to 

adulthood, but many die perinatally.42 When examined at E13, Vegfc+/− mice have normal or 

only slightly reduced lymph sac formation, a process primarily guided by Prox1 and as a 

whole unaffected by VEGF-C levels.42 At the time of birth, Vegfc+/− mice present with 

lymphatic hypoplasia in all of the studied organs, including the skin.42 During the first few 

postnatal weeks, lymphatic capillaries slowly grow into most of these organs; however, this 

effort is not sufficient to completely revert the mice to a wild-type phenotype.42 The 

lymphatic defects persist in the skin, and the cutaneous lymphatic vessel hypoplasia does not 

improve with time, contrary to what is seen in the other organs.42 When the mice reach 

adulthood, lymphedema and abdominal chylous ascites are present as a result of the 

lymphatic hypoplasia.42 The lymphatic phenotype seen in Vegfc+/− mice can be rescued by 

VEGF-D overexpression as seen in Haiko et al’s K14-hVEGF-D;Vegfc+/− compound mice, 

indicating some overlap in the functions of VEGF-C and VEGF-D.87 Küchler et al. 

investigated the role of VEGF-C in zebrafish and found that lymphatic vessel development 

in zebrafish was also sensitive to levels of VEGF-C and VEGFR-3 signaling.88

Nullizygous Vegfc−/− mice all die embryonically, with most dying between E15.5 and 

E17.5.42 Defects presented as lymphedema are seen as early as E12.42 Without VEGF-C, 

lymph sacs and lymphatic vessels are completely absent, because Prox-1-positive venous 

endothelial cells cannot proliferate, survive, or sprout into lymphatic vessels and thus 

undergo apoptosis as evidenced histologically by macrophage infiltration.42 Similar results 

were seen in Xenopus laevis tadpole VEGF-C knockout models.89 Typically, VEGFR-3 is 

initially expressed on all blood and lymphatic vessels, but through the course of normal 

development, blood vessel VEGFR-3 is downregulated and the receptor can only be found 

on lymphatic vessels. In Vegfc−/− mice, the VEGFR-3 on blood vessels is never 

downregulated, but it is in Vegfc+/− mice, suggesting that VEGF-C participates in the 

downregulation of VEGFR-3.42, 26 Overall, the primary effect of complete VEGF-C 

knockout is the absence of lymphatic vessels, which has been proven to be embryonic lethal.

To examine the specific role of VEGF-D in lymphangiogenesis, Haiko et al. developed 

Vegfd−/− mice and Vegfc−/−;Vegfd−/− double knockout mice.87 Vegfd−/− mice show no 

lymphatic abnormalities, indicating that VEGF-D plays a secondary role to VEGF-C in 

regulating lymphangiogenesis.87 The Vegfc−/−;Vegfd−/− double knockout mice are 

phenotypically similar to the Vegfc−/− mice, with both models presenting no lymphatic 

vessels at the time of embryonic death.87

Through these various knockout models, the specific and necessary roles of VEGF-C in 

LEC proliferation, migration, and sprouting from the lymph sacs have been determined.42 

Although VEFG-C is not required for the Prox-1 dominated BEC commitment to LECs, it is 

needed for the continued development of lymphatic vessels.42

4.4. VEGFR-3/flt-4 knockout models

VEGFR-3 (or flt-4) is initially present on all blood and lymphatic vessels during 

development. Eventually, VEGFR-3 is upregulated in Prox-1–expressing cells that sprout 

from the venous system to form the lymphatic system and is downregulated in blood vessels. 

By the time development is complete, VEGFR-3 is almost exclusively present in lymphatic 
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vessels.43; 46 Upon VEGF-C and VEGF-D binding to VEGFR-3, downstream signaling 

leads to the proliferation, migration, and survival of cultured human LECs.90 In humans, 

VEGFR-3’s role in inducing lymphangiogenesis has been established, and a missense 

mutation in VEGFR-3, the cause of primary human lymphedema or Milroy’s disease, leads 

to lymphatic hypoplasia.91; 92; 93 Because VEGF-C and VEGF-D are the only known 

ligands of VEGFR-3, knockout models can be used to reveal potential functions of 

VEGFR-3 that are independent of VEGF-C and VEGF-D. VEGFR-3 knockout, conditional 

knockout, and missense mutation models are clinically important tools for investigating the 

role of VEGFR-3 in lymphangiogenesis and Milroy’s disease.

Chy mice have a missense mutation in one Vegfr3 allele and serve as a murine model for 

Milroy’s disease.93; 94 Both Chy mice and Vegfc+/− mice present with abdominal chylous 

ascites and a deficiency in subcutaneous lymphatic vessels.42; 94; 95 Vegfr3+/neo mice, a 

conditional heterozygous knockout model, are phenotypically similar to Vegfc+/− and Chy 

mice, with all three presenting with abdominal chylous ascites.42 The haploinsufficient 

nature of Vegfr3 can be seen when comparing Vegfr3+/neo and Vegfr3neo/neo conditional 

knockout models. Vegfr3neo/neo mice, similar to Vegfc−/− mice, are embryonic lethal, but 

Vegfr3+/neo mice can survive to adulthood.42 When examined at E17.5, Vegfr3neo/neo mice 

lack lymphatic vessels in their skin, whereas Vegfr3+/neo mice retain some lymphatic vessel 

remnants.42 The lymphatic phenotypes present in VEGFR-3 knockout mice are similar to 

those seen in VEGF-C knockout mice; however, Vegfr3−/− mice embryos were found to have 

cardiovascular failure, a phenotype not present in Vegfc−/− mice.42 This finding indicates 

that VEGFR-3 has a ligand other than VEGF-C and VEGF-D that plays a role in 

angiogenesis.

4.5. Podoplanin knockout models

Podoplanin is a transmembrane glycoprotein initially discovered for its ability to control 

human kidney podocyte shape.96 Podoplanin and VEGF-C both play integral roles in 

lymphatic vasculature development and are both regulated by the homeobox gene Prox1.82 

After further investigation, it was found that podoplanin is primarily expressed on the 

lymphatic epithelium and is also one of the most highly expressed lymphatic-specific 

markers.69; 83 Schacht et al. produced hemizygous and nullizygous knockout models of 

murine podoplanin (found on alveolar type 1 cells of the lung) to examine the exact role that 

podoplanin plays in lymphangiogenesis.69; 97; 98

Unlike the previously discussed genes involved in lymphangiogenesis, podoplanin is not 

essential for life, and T1α/podoplanin+/− mice are healthy, fertile, and differ minimally from 

wild-type mice. Upon examining the intestinal and cutaneous lymphatic networks in T1α/
podoplanin+/− mice, Schacht et al. saw that the lymphatic vessels are dense, well-organized, 

and have no deficiencies in lymphatic transportation.98 The only differences present in T1α/
podoplanin+/− mice compared to their wild-type counterparts were the presence of some 

dilated lymphatic vessels and a few regions with incomplete network formation, which were 

both not significantly detrimental.98

Nullizygous T1α/podoplanin−/− mice die at birth due to respiratory failure from the loss of 

T1α in alveolar type 1 cells.99 Podoplanin plays a role in the later stages of 
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lymphangiogenesis, and its absence does not prevent the lymphatic system from developing. 

Although a lymphatic system is detected at the time of death, it contains severe 

organizational and functional defects attributed to podoplanin’s involvement in lymphatic 

pattern formation.98 These defects include a diminished lymphatic transport capability, 

congenital lymphedema, lymphangectasia in abdominal and cutaneous lymphatic vessels, 

undetectable small lymphatic capillaries, and absent intestinal lymphatic lacteals for dietary 

lipid absorption.98 Many of these defects, including the lymphangiectasia, may potentially 

be caused by the lack of anastomosing lymphatic vessels typically present between 

superficial and subcutaneous lymphatic networks.98 In another study, Bertozzi et al. found 

that complete absence of podoplanin leads to an incomplete separation between blood and 

lymphatic vessels.100 This nonseparation phenotype is similar to that seen in slp-76−/− and 

Clec-2−/− mice (discussed later).100; 101 Podoplanin, C-type lectin-like receptor 2 (CLEC-2), 

SLP-76, and Syk are all components of a signaling pathway involved in the separation 

between blood vascular and lymphatic systems, and the complete absence of podoplanin 

leads to the presence of chyle and blood in mice mesenteric and intestinal lymphatic 

vessels.100

After observing the effects of podoplanin through knockout models, Schacht et al. confirmed 

their conclusions by observing the effects of podoplanin overexpression.98 When two 

different cell lines (human microvascular endothelial cells and murine 

hemangioendothelioma-derived EOMA cells) were overexpressed T1α/podoplanin, their 

lymphatic cells showed very long and thin cell extensions, increased migration and 

adhesion, and an increased propensity for tubule formation.98 Even though podoplanin is not 

involved in early lymphatic development, it plays a crucial and necessary role in the later 

stages of lymphatic patterning and networking.

4.6. Ang2 knockout models

Angiopoietin 2 (Ang2) is a member of the vascular growth factor family. Ang2 has 

contradictory roles in angiogenesis and lymphangiogenesis depending on a number of 

factors. In angiogenesis, Ang2 promotes vessel regression in the absence of VEGF, but 

promotes vessel growth in the presence of VEGF.102; 103; 104 Ang2 carries out its effects 

through binding to Tie2, a tyrosine kinase receptor specific to BECs, and through unknown 

mechanisms, Ang2 can either activate or repress Tie2 signaling.105; 106; 107 Although its 

name implies a primary effect on vascularization, Ang2 knockout models reveal that Ang2 is 

integral in the fundamental processes of lymphatic maturation and remodeling.108; 109

Ang2’s involvement in lymphatic vasculature maturation and remodeling makes it an 

indispensible factor in normal lymphatic functioning as seen in Ang2−/− mice. Most Ang2−/− 

mice die within 2 weeks of birth, and the few that survive to adulthood exhibit severe 

lymphatic dysfunctions including chylous ascites, chylothorax, and lymphedema.108; 110 In 

wild-type mice, lymphatic remodeling occurs between P0–P5 and involves sprouting of the 

secondary lymphatic plexus from the primary plexus and the transformation of the 

remaining primary plexus into collecting lymphatic vessels with valves.109; 111 Dellinger et 

al. compared wild-type and Ang2−/− mice at three different postnatal time points and found 

that Ang2−/− mice have hypoplastic primary and secondary lymphatic networks and do not 
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adopt the collecting lymphatic phenotype, which is characterized by elongated LECs and 

downregulated LYVE-1 levels.108 Overall, Ang2−/− mice display a disorganized lymphatic 

system with sparse lymphatic vessels that do not surround and follow major blood vessels.

4.7. EphrinB2 knockout models

EphrinB2, a transmembrane ligand that binds to the receptor tyrosine kinase EphB4, 

participates in a unique bidirectional signaling pathway. The forward signaling is EphB4-

dependent and involves ephrinB2 binding to EphB4, inducing EphB4 autophosphorylation 

and activating downstream signaling pathways.112; 113 The reverse signaling is ephrinB2-

dependent and involves the ephrinB2’s C-terminal PDZ-binding motif signaling back to its 

ephrinB2 host cell.114; 115 Thus, when a cell containing ephrinB2 encounters an EphB4-

containing cell, the signal has the potential of propagating in both the forward and reverse 

directions. EphrinB2 is highly expressed in the LECs of collecting lymphatic vessel valves 

and plays an important role in regulating lymphatic valve formation and morphology along 

with lymphatic capillary sprouting.111; 116; 117; 118; 119 Complete and correct valve formation 

ensures the unidirectional flow of lymph and is imperative for a proper functioning 

lymphatic system, especially at the lymphatic venous junctions.

Bazigou et al. discovered that complete deletion of efnb2 in mature lymphatic vessels leads 

to a decreased number and deformed morphology of the lymphatic luminal valves, 

suggesting that a continuous presence of ephrinB2 is necessary for valve maintenance.120 

The amount of ephrinB2 expression is also correlated with the amount and integrity of 

valves formed. In a mouse model with a heterozygous deletion of efnb2, fewer lymphatic 

valves are present in the cornea in comparison to the number in wild-type mice.121

Because ephrinB2 carries out both forward and reverse signaling, many researchers have 

aimed to determine the type of ephrinB2 signaling and the specific region of ephrinB2 

responsible for lymphatic valve formation. Makinen et al. created ephrinB2ΔV/ΔV mice by 

removing the valine in the C-terminal PDZ-binding motif of ephrinB2 and found that this 

motif executes reverse signaling and is involved in lymphatic valve formation.111 The 

ephrinB2ΔV/ΔV mice die within 3 weeks after birth and present with chylothorax, absent 

luminal valves, lymphatic leakage and backflow, and incomplete separation between blood 

vessels and lymphatic vessels.111 Zhang et al. extended the ephrinB2ΔV/ΔV model by also 

replacing the six critical intracellular tyrosine residues with phenylalanine to prevent 

tyrosine phosphorylation in EphB4-dependent forward signaling.122 The impaired forward 

signaling in these ephrinB26YFΔV/6YFΔV mice was confirmed through observation of a 

decrease in the number of phosphorylated EphB4 receptors.122 These ephrinB26YFΔV/6YFΔV 

mice die perinatally, lack lymphatic valve development, and have an overall phenotype 

similar to that of ephrinB2ΔV/ΔV mice.122 Interestingly, the administration of an EphB4 

agonistic antibody can save ephrinB26YFΔV/+ mice from lymphatic valve defects and 

suggests that forward signaling is also required for proper valve formation.122 Having 

already removed the critical signaling regions in ephrinB26YFΔV/6YFΔV mice, Zhang et al. 

replaced the entire intracellular region of ephrinB2 with β-gal to create ephrinB2lacZ/lacZ 

mice.122 Although ephrinB2lacZ/lacZ mice are perinatally lethal, they show normal lymphatic 

development with an abundance of lymphatic valves at E18.122 This suggests that the PDZ-
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binding motif and subsequent reverse ephrinB2 signaling is not required for lymphatic valve 

formation.122 To confirm this, Zhang et al. mated their previous two mutant models to form 

ephrinB2lacZ/6YFΔV mice, which survive to adulthood and exhibit a normal lymphatic 

phenotype, implying that ephrinB2lacZ can compensate for the ephrinB26YFΔV allele.122

4.8. FOXC2 knockout models

Forkhead Box C2 (FOXC2, also named mesenchymal fork head-1) is a transcription factor 

that is expressed in both developing embryos and adults.123; 124; 125; 126 FOXC2’s role in 

lymphangiogenesis is of particular importance because of the phenotypic similarities seen 

between Foxc2 heterozygous mutant mice and humans with lymphatic-distichiasis syndrome 

(LD), a rare autosomal dominant genetic disorder caused by mutations in FOXC2 and 

characterized by the presence of primary lymphedema and distichiasis.127; 128; 129 Foxc2 is 

required for lymphatic maturation, remodeling, and valve formation, and the consequences 

of its absence can be seen in hemizygous and nullizygous knockout models.

Heterozygous Foxc2+/− mice survive to adulthood and appear grossly normal.127 However, 

upon further examination, common lymphatic defects include lymphatic hyperplasia and 

dilation, lymphatic reflux from the cisterna chili into dilated lymphatic channels in the 

hepatic hilum, and increases in the number and size of lymph nodes.127 All of the 

hemizygous mice present with distichiasis, a condition in which an extra row of eyelashes is 

present.127 Overall, Foxc2+/− mice are a good model for the lymphatic and ocular 

phenotypes seen in LD.127

The absence of both Foxc2 alleles is embryonic lethal, with a majority of nullizygous 

Foxc2−/− mice dying by E12.5.130; 131 Severe cardiovascular and skeletal defects are present 

in all embryos, indicating that Foxc2 has an indispensible role in cardiovascular remodeling 

and skeletal formation.130; 131 Lymphatic development arrests at the primary plexus stage in 

Foxc2−/− mice, suggesting that Foxc2 is not required for initial lymphatic development; 

however, maturation of the primary plexus into collecting vessels and formation of luminal 

valves does not occur.125; 132 Typically, lymphatic vessels develop a collecting vessel 

phenotype through downregulation of Prox-1, LYVE-1, VEGFR-3, and SLC expression. 

However, these markers are not downregulated in Foxc2−/− mice, and their lymphatic vessels 

remain in an immature capillary-like state characterized by high expression of VEGFR-3.132

4.9. Nrp2 knockout models

Neuropilin-2 (Nrp2) was initially discovered as a transmembrane nervous system receptor 

that binds to class 3 semaphorins to guide the direction of axon development.133; 134; 135 

Later, it was found that Nrp2 also binds to VEGF-C and plays a role in 

lymphangiogenesis.94 Nrp2 is initially expressed in the developing nervous, vascular, and 

lymphatic systems, but by E13, it is downregulated in the nervous and vascular systems and 

only highly expressed in the lymphatic system.136 Although the exact effects of Nrp2 on 

lymphangiogenesis are not known, the clinical significance of Nrp2 is highlighted by Caunt 

et al.’s finding that blocking the interaction between Nrp2 and VEGF-C decreases tumor 

lymphangiogenesis and metastasis.137 Through various mutant murine models, research 
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groups have found that Nrp2 exerts its main lymphangiogenic effects by promoting 

lymphatic sprouting from pre-existing lymphatic vessels.136; 138

Three different murine nrp2 knockout models have been created, nrp2+/−, nrp2−/−, and 

nrp2+/;vegfr3+/−, to examine the effects of Nrp2 on lymphangiogenesis.136; 138 Of these 

models, nrp2+/− mice appear to be similar to wild-type mice and lack any detectable 

lymphatic defects.136 The nrp2−/− and nrp2+/−;vegfr3+/− double heterozygous mice show 

significant overlap and similarities in lymphatic defects.138 Although both of these mice are 

viable, they reproduce at a reduced Mendelian ratio, indicating embryonic death.136; 138 

Because the superficial dermal lymphatic network is formed through sprouting from deeper 

major lymphatic vessels, the dermis is an ideal region to observe the effects of Nrp2.136 The 

skin lymphatic vessels in both nrp2−/− and nrp2+/−;vegfr3+/− mice are characterized by a 

reduced area of lymphatic coverage with enlarged and poorly branched lymphatic vessels.138 

Furthermore, nrp2−/− mice have skin lymphatic vessels located in atypical regions of the 

dermis.136 Nrp2 guides the process of lymphatic sprouting from pre-existing lymphatic 

vessels by modulating tip cell stability in sprouting.136; 138 In nrp2−/− and nrp2+/−;vegfr3+/− 

mice, the number of tip cells is reduced with a majority of the tip cells failing to extend their 

filopodia in sprouting.136; 138 With impaired lymphangiogenesis, the lymph sac becomes 

enlarged in these mice and severe edema is detected by E15.5.136; 138

Studies so far indicate that Nrp2 is not required for the initial lymphatic sprouting from the 

venous system but rather for the further growth of the lymphatic network from pre-existing 

lymphatic vessels.136 Nrp2 modulates this sprouting by directly inhibiting tip cell retraction 

and stalling to increase its overall stability and thus indirectly promoting tip cell extension in 

response to VEGF-C.136 Because both VEGFR-3 and Nrp2 are co-expressed on lymphatic 

vessels and both bind to VEGF-C, it is speculated that Nrp2 is a VEGFR-3 co-receptor that 

mediates VEGF-C–induced lymphangiogenesis without activating downstream signaling 

pathways directly.94; 136; 139; 140

4.10. SLP-76 and Syk knockout models

Adaptor protein SH2 domain-containing leukocyte protein of 76 kDa (SLP-76) and spleen 

tyrosine kinase (Syk) are intracellular signaling proteins on hematopoietic cells that are 

involved in the separation of blood vessels from lymphatic vessels.141; 142 Both Slp-76−/− 

and Syk−/− knockout mice display a similar phenotype in which blood vessels and lymphatic 

vessels are not completely separated in the developing mice. This nonseparation phenotype 

is also seen in podoplanin and CLEC-2 knockout mice.100; 101 Specifically, Slp-76−/− and 

Syk−/− mice lack arterio-venous-lymphatic shunts and have a direct vascular and lymphatic 

connection that leads to blood-filled lymphatic vessels.142 SLP-76 and Syk in hematopoietic 

cells prevent LECs from connecting to pre-existing blood vessels and are essential in 

forming the separation between the closed blood vascular system and the open lymphatic 

system.142; 143

4.11. CLEC-2 knockout models

CLEC-2 is a receptor present on platelet cells that binds to its endogenous ligand, 

podoplanin, present on LECs.144 CLEC-2 is the mediator between podoplanin and the 
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SLP-76 and Syk pathway and an important component in inhibiting developing lymphatic 

vessels from fusing with blood vessels.145; 146 Clec-2+/− mice are healthy, fertile, and do not 

present with lymphatic defects.100 Clec-2−/− mice, on the other hand, are embryonic lethal 

or die within the first few weeks after birth due to respiratory failure.100; 101 The 

nonseparation phenotype of Clec-2−/− mice can be explained by CLEC-2’s interactions with 

podoplanin, SLP-76, and Syk. During the course of lymphatic development at the venous 

lymphatic junction, podoplanin present on LECs binds to the CLEC-2 on platelet cells to 

activate the platelet cells.101 Once activated, the platelets release granules with contents that 

inhibit lymphangiogenesis in vivo.101 The platelet releasates involved in platelet-mediated 

inhibition of lymphangiogenesis include bone morphogenetic protein-9 (BMP-9), 

transforming growth factor-β (TGF-β), platelet factor 4, angiostatin, and endostatin.101 Of 

these releasates, BMP-9 is thought to be the most important and potent because it is the only 

one that inhibits tube formation by LECs.101

4.12. Elk3 (Net) knockout model

Elk3 (or Net) is a member of the Ets-domain transcription factor and ternary complex factor 

families.147 The exact mechanism of Elk3’s involvement in lymphangiogenesis is unknown, 

but it co-localizes with VEGFR-3 in the thoracic duct and the intestinal and cutaneous 

lymphatic vessels.147 Elk3−/− mice die shortly after birth and present with chylothorax and 

lymphangiectasia.147

5. LYMPHATIC STRUCTURE IN THE LIMBUS

The limbus is the border between the opaque sclera and transparent cornea and contains 

blood vessels that arise primarily from the anterior ciliary arteries and lymphatic vessels that 

connect to the conjunctival lymphatic network.151 Despite the small size of the limbus, it has 

several vital ocular functions, which include maintaining nourishment for the cornea and 

containing the pathways for outflow from the aqueous humor.151 The lymphatic and blood 

vasculature within the limbus are not evenly distributed and may be heterogeneic in 

patients.152; 153 Understanding the molecular mechanisms driving lymphatic heterogeneity 

and the lymphangiogenic or angiogenic response during ocular pathologies and transplant 

rejection may provide insight into the etiology of some of these diseases and strategies for 

certain procedures and treatments.153 Ecoiffier et al. found that lymphatic vessels were 

nasally dominated in the limbus and in the cornea under inflammatory conditions.152 

Because the lymphatic vessels are more prone to develop on the nasal side, treatments using 

subconjunctival injection of anti-lymphangiogenic reagents or surgical procedures such as 

corneal and limbal transplantation may be more effectively approached via the nasal side.152 

Age may also factor into the distribution of limbal lymphatic vessels.154 Hos et al. found 

that older mice have fewer resting limbal lymphatic vessel sprouts than young mice, and that 

younger mice show greater lymphatic corneal neovascularization in response to an 

inflammatory stimulus.154

The limbus is believed to serve a crucial role in preventing corneal neovascularization and 

maintaining corneal avascularity.155 Significant increases in inflammation and corneal 

neovascularization have been demonstrated in experimental limbal damage or pathological 
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limbal stem cell deficiency, suggesting that the limbus serves as a physical barrier to 

angiogenesis and lymphangiogenesis.156; 157; 158 Collin et al. found that corneal 

lymphangiogenesis arises from limbal lymphatics in the vascularized rabbit cornea.159 

Lymphatic vessel formation from the limbus is primarily mediated by VEGFR-3 binding to 

its ligands VEGF-C and VEGF-D.2; 3; 160; 161; 162; 163; 164; 165; 166 The presence of other 

mechanisms for corneal lymphangiogenesis has not been established. Our research group 

has questioned the role of the limbus as merely a physical barrier and found that removal of 

half of the limbus results in corneal neovascularization from the opposite side.167 Further 

research is needed to understand the molecular pathways by which the limbus maintains 

corneal avascularity.

6. DISEASES ASSOCIATED WITH CORNEAL LYMPHANGIOGENESIS

6.1. Dry eye disease

Dry eye disease (DED) is an immune-inflammation mediated disorder that affects the ocular 

surface resulting in abnormal tear composition.168 More than 10 million Americans 50 years 

and older have this disease.169 DED severely affects patients’ vision-related quality of life 

and may lead to psychological and physically debilitating symptoms.168 Cyclosporine is the 

only treatment for DED currently approved by the U.S. Food and Drug Administration 

(FDA), but its use is primarily palliative.170 Inflammation of the ocular surface is maintained 

by the entry of primarily CD4+ T cells.171 In DED, lymphangiogenesis in the cornea occurs 

without hemangiogenesis, and the lymphatics grow from the limbal areas to the central 

cornea.172 Because DED occurs without hemangiogenesis, inflammation leads to selective 

upregulation of VEGF-C, VEGF-D, and VEGFR-3.172 Proinflammatory cytokines, such as 

interleukin (IL)-17 and IL-1β, are present at increased levels in corneas of patients with 

DED and are essential for regulating the gene expression of VEGFR-3 and VEGF 

ligands.173; 174; 175

Goyal et al. administered systemic anti-VEGF-C treatment in a murine model before 

inducing DED and found significant reductions in lymphatic area and caliber compared to 

the untreated group.176 VEGF-A binding to VEGFR-2 can also induce lymphangiogenesis, 

but these lymphatic vessels have a poorly functional phenotype, exhibiting dilated and leaky 

vessels.177 When VEGF-C is interrupted with anti-VEGF-C treatment, the residual 

lymphatics are likely less effective at carrying antigen-presenting cells.176 Mice that are 

treated with anti-VEGF-C also show decreased expression of interferon gamma (IFNγ) and 

IL-17, which are potent inflammatory attractants.176 By disrupting the VEGF-C/VEGFR-3 

axis, the afferent arm of the immune cycle is interrupted. The anti-VEGF-C treatment also 

suppresses epithelial disease associated with DED, likely by reducing the expression of 

proinflammatory cytokines.176 Lee et al. also found therapeutic efficacy of epigallocatechin 

gallate (EGCG), a principal extract of green tea, in murine dry eyes by suppressing 

expression of inflammatory cytokines (IL-1β and CCL2), VEGF-A and VEGF-D, and 

CD11b+ cells.178 Thrombospondin-1 (TSP-1) has recently been identified as a key 

endogenous inhibitor for corneal lymphangiogenesis related to DED and may have potential 

as a therapeutic target for DED.179 TSP-1 promotes the cleavage of TGF-β into the active 

form, which has anti-inflammatory roles and induces regulatory T cells.179 TSP-1 inhibits 
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lymphangiogenesis by binding to CD36 present on macrophages and downregulating their 

production of VEGF-C.180 Without TSP-1’s anti-lymphangiogenic effects, TSP-1–deficient 

mice have spontaneous isolated lymphatic outgrowths.180 TSP-1 null mice also have a 

lacrimal gland and corneal inflammation and are used as mouse models of Sjögren 

syndrome.181 Cho et al. recently found that surgical insults such as corneal suture or incision 

aggravate preoperative DED in a murine model.182 Thus, dry eye may be part of a pre-

lymphangiogenic milieu that is amplified upon corneal injury.182 Surgeons may need to use 

more aggressive anti-inflammatory treatment in patients with pre-existing DED.

6.2. Corneal transplant rejection

Corneal transplantation is one of the most prevalent and successful ocular procedures. 

Because the cornea is avascular and immunologically privileged, corneal transplantation 

does not require HLA matching or the use of high-dose immunosuppressants.183 However, 

complications can arise if the recipient has severely inflamed and prevascularized beds prior 

to transplantation, providing a mechanism by which antigen-loaded dendritic cells from the 

graft gain immediate access to the lymph nodes where allosensitization can occur.5; 184 The 

rejection rates in high-risk patients can exceed 70%.185; 186; 187 Effector cells reject the graft 

by entering through the vascularized cornea, and thus, the requirements of both 

hemangiogenesis and lymphangiogenesis for graft rejection are met. Recent research has 

focused on modulating the afferent arm of the immune system to prevent graft rejection. The 

risk of human corneal graft rejection is correlated with lymphangiogenesis, and the presence 

of lymphangiogenesis is a signal for poor prognosis of the allograft.188 Using a suture-

induced corneal neovascularization assay, selective lymphangiogenesis inhibitors have been 

evaluated.8 Grafts placed into a hemvascularized recipient bed show similar survival rates as 

grafts placed into a completely avascular recipient bed.8 However, if the recipient had 

lymphatic vessels within the bed, graft survival is significantly lower, suggesting that 

lymphatic vessels are more important for graft rejection than blood vessels.8 Patients that 

carry a certain combination of single nucleotide polymorphisms in IL-17F, VEGF-A, and 

tumor necrosis factor (TNF)-α of the ACGTCT haplotype may be at increased risk of 

developing corneal transplant rejection, which may require the surgeon to adjust the 

therapeutic approach according to a patient’s genetics.189 The immune response against 

allogeneic corneal tissue is also intensified in the presence of allergic conjunctivitis, which 

has been shown to have corneal lymphangiogenesis involvement.190; 191

Corticosteroid therapy remains the mainstay for preventing corneal transplant rejection, and 

the initiation time point for treatment is crucial for graft survival.192 Specifically, presurgical 

corticosteroid treatment improves graft survival in high-risk patients than extended 

treatment.192 The anti-lymphangiogenic and anti-angiogenic potency of corticosteroids 

depends on the specific corticosteroid used. Corticosteroids with stronger anti-inflammatory 

activity, such as dexamethasone, exert stronger in vivo anti-lymphangiogenic and anti-

angiogenic effects in comparison to prednisone and fluoromethalone, corticosteroids with 

weaker anti-inflammatory properties.193 The strength of corticosteroid used and its adverse 

drug reactions should both be considered when administering steroids for promoting graft 

survival. Cho et al. reported that combining steroid treatment with VEGFR-1 morpholino, a 

synthetically produced molecule that binds mRNA to inhibit translation or alternative 
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splicing, decreases both angiogenesis and lymphangiogenesis and improves corneal graft 

survival in a high-risk corneal transplantation murine model.194 In addition, a combination 

of Flt23k nanoparticles that deliver plasmids expressing anti-VEGF intrareceptor Flt23k and 

steroid treatment significantly reduces lymphangiogenesis and improves graft survival in a 

mouse model of corneal transplantation.195

Initial approaches to inhibiting lymphangiogenesis begin by targeting members of the 

lymphangiogenesis signaling pathway. Studies show that inhibiting VEGF-A in the 

postoperative corneal transplant reduces both angiogenesis and lymphangiogenesis, 

improving the overall graft survival.5; 6; 7;8 Additionally, targeting VEGFR-3 has also been 

shown to potentiate anti-lymphangiogenic effects beneficial in prolonging corneal graft 

survival.4

By administering a soluble form of VEGFR-2 (sVEGFR-2) that specifically traps VEGF-C, 

Albuquerque et al. observed a significant and selective reduction in lymphangiogenesis 

without affecting hemangiogenesis.196 Thus, treatment with sVEGFR-2 has the therapeutic 

potential to improve corneal allograft survival. Emami-Naeini et al. used a soluble form of 

VEGFR-3 (sVEGFR-3), which consisted of the ligand-binding domain of VEGFR-3 fused 

to the Fc domain of immunoglobulin, and evaluated its therapeutic effects on corneal 

transplant survival.197 Treatment of mice after corneal allogeneic transplantation and 

intrastromal suture placement with sVEGFR-3 inhibited lymphangiogenesis, improved graft 

survival, reduced the frequency of allosensitized T cells, and decreased the frequency of 

IFN-γ–secreting T cells compared to a control group.197 Zhang et al. showed that the 

combined blockade of VEGFR-3 and very late antigen-1, a mediator of corneal 

inflammatory lymphangiogenesis in vivo, using neutralizing antibodies against the two 

receptors increases high-risk transplant survival.198

Maruyama et al. administered podoplanin-neutralizing antibody in vivo to understand the 

role of podoplanin in corneal transplant rejection.199 They found that neutralization of 

podoplanin reduced lymphatic vessel growth and the presence of macrophages, suggesting 

the potential role of podoplanin as a therapeutic target.199 Bucher et al. used photodynamic 

therapy to regress mature lymphatic vessels prior to corneal transplantation in a murine 

model.200 Photodynamic therapy followed by corneal instrastromal photosensitizer 

verteporfin injection resulted in selective regression of lymphatic vessels.200 This may prove 

to be an effective strategy to reduce the risk of graft rejection in high-risk patients prior to 

surgery.200

Hua et al. showed the therapeutic efficacy of resolvin D1 analogue (RvD1a), a potent lipid 

mediator of anti-inflammatory effects, in a murine model.201 Mice treated with RvD1a had 

decreased T-cell infiltration into the corneal graft and a reduced frequency of IFN-γ–

secreting T cells in draining lymph nodes.201 RvD1a inhibits the maturation of dendritic 

cells as well as alloimmune sensitization after corneal transplantation.201 Recently, Dohlman 

et al. compared the efficacies of VEGF trap, anti-VEGF-C, and sVEGFR-3 in vivo.202 They 

found that the VEGF trap aflibercept, which primarily neutralizes VEGF-A, is significantly 

more effective than current therapies at reducing the rate of corneal transplant rejection, 
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suggesting that the efferent arm of the immune system via hemangiogenesis plays a more 

important role than lymphangiogenesis in corneal transplant rejection.

Tang et al. reported that knockdown of neuropilin-2, a co-receptor for VEGF-C, selectively 

inhibits lymphangiogenesis in vivo prior to corneal transplantation.203 By employing an 

artificial microRNA to knockdown neuropilin-2 in a mouse model of high-risk corneal 

transplantation, they determined that inhibiting neuropilin-2 may selectively inhibit 

lymphangiogenesis to improve graft survival rate.203

Hos et al. reported that blockade of IRS-1, a pro-lymphangiogenic factor, results in in vivo 

inhibition of lymphangiogenesis.204 GS-101 antisense oligonucleotide against IRS-1, under 

the trade name Aganirsen, is currently in phase III clinical trials for the treatment of corneal 

graft rejection. Cursiefen et al. reported that GS-101 eye drops administered at a daily dose 

of 86 μg/day effectively inhibit active corneal angiogenesis and lead to its regression.205; 206

6.3. Herpetic stromal keratitis

The most severe form of corneal herpes simplex virus-1 (HSV-1) infection, herpetic stromal 

keratitis (HSK), is the leading cause of blindness in developing countries.207 HSV-1 is a very 

infectious human pathogen with a seroconversion rate between 50–90%.208 In HSK, 

lymphangiogenesis is induced in the alymphatic cornea and immune privilege is lost. During 

the initial stage of HSK development, inflammatory lymphangiogenesis is induced 

exclusively through VEGF-A and VEGFR-2 signaling pathways, and the lymphatic vessels 

persist even after the infection has subsided.209 This differs from inflammatory 

lymphangiogenesis that occurs during bacterial infections or wound healing, which involves 

recruitment of macrophages and VEGF-C and VEGF-D activity.209 The reported 

upregulation of VEGF-A is attributed to VEGF-A production by infected corneal epithelial 

cells and is an atypical host response to a viral infection, making it rather a unique 

characteristic of HSV-1.209 The lymphatic vessels produced from VEGF-A and VEGFR-2 

interaction are more dilated and leaky than the typical VEGF-C–induced lymphatic 

vessels.210; 211; 212 Although the integrity of the VEGF-A–induced lymphatic vessels is 

inferior, they are still capable of transporting antigens to draining lymph nodes and impeding 

immune privilege.209 Infiltrating neutrophils213; 214 and CD4+ T cells215; 216 in later stages 

of HSK development are responsible for most of the damage seen in HSK.

Current standard treatments for HSK, including topical antivirals to antagonize viral 

replication and corticosteroids to limit the immune response, do not address the presence of 

corneal lymphatic vessels. Corneal lymphangiogenesis in HSK leads to stromal opacity, and 

corneal transplantation may be required to restore vision.209 However, transplant rejection 

rates are higher in HSK patients.217 Because VEGF-A–dependent lymphangiogenesis occurs 

in HSK, VEGF-A serves as a promising therapeutic target, and drugs targeting VEGF-A 

such as bevacizumab,218; 219; 220; 221 ranibizumab,193 and VEGF trap5; 222 have shown 

positive results as potential anti-lymphangiogenic treatments for HSK. Although the exact 

role of insulin receptor substrate-1 in lymphangiogenesis remains unknown, anti-sense 

oligonucleotides against IRS-1 (insulin receptor substrate-1) inhibit lymphangiogenesis in 

both mouse models204 and human HSK patients205; 206 and are potential therapeutic targets 

for the suppression of lymphangiogenesis.
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GS-101 antisense oligonucleotide blockade of IRS-1 has also been shown to inhibit 

lymphangiogenesis and angiogenesis as a treatment for corneal keratitis patients and is 

currently in clinical trials as the first topical anti-angiogenic agent for the cornea.206

6.4. Glaucoma

Glaucoma, a neurodegenerative disease that leads to optic nerve neuropathy, is caused by 

impaired aqueous humor drainage, which subsequently leads to an increased intraocular 

pressure (IOP). The two passageways for draining the aqueous humor are the conventional 

or trabecular outflow pathway223 and the unconventional or uveoscleral outflow pathway 

involving the ciliary body224; 225. The presence or absence of “true” lymphatic vessels in the 

human eye is still a controversial topic. Heindl et al. pointed out that there is no sufficient 

evidence that ciliary body lymphatic vessels are true lymphatic vessels without extraocular 

extension226 and that the presence of intraocular lymphangiogenesis in ciliary body 

melanomas with extraocular extensions is associated with a poorer prognosis227. In addition, 

immunohistochemical staining for LYVE-1 on postmortem human adult eyes reveals the 

absence of lymphatic vessels.228 New guidelines for the identification of lymphatic vessels 

in the eye, including using at least two different immunohistochemical stains, aim to clarify 

the identification of lymphatic vessels.70

Some studies show that compared to the rest of the eye, the ciliary body has the most 

lymphatic vessels.229 Current glaucoma treatments target the trabecular and uveoscleral 

outflow pathways to lower the IOP, but if these medications do not work, surgical treatment 

with the risk of vision loss may be required. Latanoprost, a prostaglandin F2 analog, is a 

commonly prescribed topical antiglaucoma drug that acts on the uveoscleral outflow 

pathway.230; 231 Recently, Tam et al. reported that latanoprost increases lymphatic drainage 

via the uveoscleral pathway by 400%, suggesting that the efficacy of the treatment lies in its 

effects on the lymphatic system.230 However, Hos et al. found that tafluprost, a 

prostaglandin F2 analog, has no effect on murine corneal angiogenesis or 

lymphangiogenesis and can be used to treat inflammation without affecting the vascular and 

lymphatic profile of the cornea.232 With this knowledge, a better understanding of the 

lymphatics of the eye and their role in glaucoma can lead to the development of better 

therapeutic interventions for glaucoma and other ocular pathologies involving an increased 

IOP.

6.5. Ocular tumors

Many types of cancers can occur in the eye, with lymphangiogenesis involvement depending 

on the cell type and location. Heindl et al. reported that the transformation of a conjunctival 

intraepithelial neoplasia into an invasive squamous cell carcinoma (SCC) of the conjunctiva 

involves conjunctival lymphangiogenesis.233 Furthermore, the risk of SCC recurrence is 

associated with the amount of lymphangiogenesis present.233 In another study, Heindl et al. 

reported that intraocular lymphangiogenesis increases tumor size and metastasis, and is thus 

correlated with mortality in patients with malignant melanoma and extraocular 

extensions.227 Recently, Hos et al. described the role of tumor-associated lymphangiogenesis 

in ocular malignancies and its potential role in future therapeutic development.20
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7. MODULATION OF LYMPHANGIOGENESIS

Many endogenous and pharmaceutical factors have been found to modulate 

lymphangiogenesis, either by activating or inhibiting it. Because fewer anti-

lymphangiogenic factors have been identified in the literature compared to pro-

lymphangiogenic factors, we focus here on inhibitors of lymphangiogenesis. Many 

molecules inhibit lymphangiogenesis by modulating members of the VEGF and VEGFR 

family (Fig. 2). Table 3 and Fig. 3 summarize both endogenous and pharmaceutical 

activators and inhibitors of lymphangiogenesis, and a more detailed explanation of pro-

lymphangiogenic factors can be found in Zheng et al.234.

7.1 Pharmacological modulation

7.1.1 Anti-VEGF-A—Although VEGF-A is primarily associated with angiogenesis in solid 

tumors, several studies have demonstrated that VEGF-A also regulates 

lymphangiogenesis.5; 236; 237 VEGF-A has been shown to induce lymphatic vessel formation 

in both mouse5 and rat238 models of corneal injury. Inhibition of VEGF-A in these studies 

inhibited the growth of lymphatic vessels, suggesting that VEGF-A activates both 

angiogenesis and lymphangiogenesis through multiple mechanisms.239 The current belief is 

that VEGF-A directs lymphangiogenesis via indirect and direct mechanisms. Through its 

indirect mechanism, VEGF-A recruits inflammatory cells that supply lymphangiogenic 

factors, VEGF-C and VEGF-D.238 The direct mechanism involves VEGF-A directly binding 

to VEGFR-2 on pre-existing lymphatic vessels.29; 240; 241 Whitehurst et al. showed that anti-

VEGF-A neutralizing antibody 2C3 suppresses tumor lymphangiogenesis and metastasis in 

an orthotopic breast tumor model, suggesting that VEGF-A neutralizing therapeutics may 

prove to be clinically useful for preventing metastasis in breast cancer patients.242 

Bevacizumab is a recombinant, humanized, monoclonal antibody that targets VEGF-A and 

is approved by the FDA for various metastatic carcinomas. Bock et al. found that 

bevacizumab inhibits not only corneal angiogenesis but also lymphangiogenesis.221

Serum eye drops are prescribed for ocular surface disorders associated with reduced trophic 

factors.243 Because these eye drops contain growth factors, they often induce 

lymphangiogenesis and angiogenesis.244 Thus, serum eye drops have antagonistic effects 

relative to bevacizumab both in vitro and in vivo, suggesting that the opposing effects of 

serum eye drops and bevacizumab must be taken into account when considering 

combinatory therapies.245 Li et al. have shown that by blocking insulin-like growth factor-I 

receptor and administering bevacizumab in a human gastric cancer cell line, both 

angiogenesis and lymphangiogenesis are greatly reduced; thus, this combination may be a 

potential therapeutic approach for gastrointestinal cancers.246 The combination of 

fotemustine and bevacizumab has been shown to be clinically efficacious in untreated 

metastatic melanoma patients during a phase II clinical trial in Italy.247

7.1.2 Anti-VEGFR-2—Because anti-VEGFR-2 antibodies have been found to be effective 

at inhibiting angiogenesis in vitro248 and in vivo,249 their effects on lymphangiogenesis have 

also been evaluated. Kodera et al. found that anti-VEGFR-2 treatment results in only partial 

reduction in LEC growth and function.250 Using an orthotopic spontaneous breast cancer 
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metastasis model, Roberts et al. observed that anti-VEGFR-2 antibodies suppress tumor 

lymphangiogenesis, and the combination of anti-VEGFR-2 and anti-VEGFR-3 antibodies is 

more potent at decreasing lung and lymph node metastases than either antibody alone.251 

Other research groups also have found that anti-VEGFR-2 antibodies inhibit the growth of 

lymphatic vessels, but their efficacy is limited compared to other pharmacological 

modulators of lymphangiogenesis.252; 253

7.1.3. Anti-VEGFR-3—VEGFR-3 interaction with VEGF-C and VEGF-D is essential in 

normal lymphatic development. Using a mouse monoclonal anti-VEGFR-3 antibody that 

antagonizes binding of VEGFR-3 to VEGF-C, Pytowski et al. demonstrated that the 

neutralizing antibody can block normal and VEGF-C-enhanced lymphangiogenesis in wild-

type and tumor murine models without affecting the integrity of previously formed 

lymphatic vessels.254 Direct targeting of VEGFR-3 has been shown to almost completely 

inhibit ingrowth of lymphatic vessels without affecting angiogenesis.255 The use of 

VEGFR-3 neutralizing antibodies also has been implicated in reducing corneal 

lymphangiogenesis,256 lymph node metastasis and lymphatic vessel density in primary 

tumors,256 and lymphangiogenesis in gastric cancer.257 The major disadvantage of anti-

VEGFR-3 therapy as an anti-tumor treatment is the timing of tumor detection, because anti-

VEGFR-3 therapy does not affect previously formed lymphatic vessels and will only prevent 

future lymphangiogenic events.254 Still, the anti-lymphangiogenic effects of anti-VEGFR-3 

therapy show clinical potential for a variety of diseases.

7.1.4 VEGF Trap—VEGF trap is a soluble chimera of the binding domains of VEGFR-1 

and VEGFR-2 coupled to a human Fc fragment.258 VEGF trap has been shown to have 

similar pharmacokinetics as monoclonal anti-VEGF antibodies but has a higher affinity for 

VEGF.258 By suppressing lymphangiogenesis and angiogenesis, VEGF trap suppresses the 

inflammatory response in murine corneal suture models238 and improves graft survival in 

mice after normal-risk corneal transplation.5 Fukasawa and Kore reported that VEGF trap 

also suppresses pancreatic ductal adenocarcinoma lymph node enlargement, growth, and 

metastasis.259 Two side effects of systemic administration of VEGF trap are hypertension 

and proteinuria, and thus, caution should be used when considering VEGF trap treatment in 

patients with a history of hypertension or impaired renal function.260

Intravitreal aflibercept, also known as VEGF trap-eye, is a form of VEGF trap that is 

purified and formulated for intraocular injection.261 Heier et al. reported that aflibercept 

injections elicit similar results as ranibizumab for the treatment of age-related macular 

degeneration (AMD), but to achieve the same results, ranibizumab injections must be 

administered twice as frequently as aflibercept injections.261 However, a recent study 

comparing aflibercept and ranibizumab treatment patterns for AMD showed that the number 

of injections patients receive is comparable in the first year of treatment with aflibercept or 

ranibizumab; this may render the previously reported aflibercept-associated benefits of a 

decreased treatment and compliance burden and injection-related risks inapplicable.262 In 

another study, aflibercept was found to have greater efficacy for improving visual acuity in 

patients with diabetic macular edema in comparison to bevacizumab and ranibizumab, while 

also allowing for a greater interval of time between injections.263 The FDA has approved 
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aflibercept under the trade name Eylea for the treatment of wet AMD and diabetic 

retinopathy in patients with diabetic macular edema.

Topical application of ranibizumab has been shown to directly inhibit corneal 

lymphangiogenesis and angiogenesis in vitro and in vivo, and thus, ranibizumab is a 

potential therapeutic agent for conditions with limbal stem cell deficiency, such as chemical 

burns.264 The FDA approved pegaptanib, an antibody against the human isoform of VEGF-

A, for the treatment of AMD. Unlike the other therapies discussed above, pegaptanib has 

anti-angiogenic effects, but no effects on lymphangiogenesis.265

7.1.5. sVEGFR-3—sVEGFR-3 is composed of the soluble extracellular ligand-binding 

domain of VEGFR-3. sVEGFR-3 inhibits lymphangiogenesis and causes regression of 

previously formed lymphatic vessels by binding to and trapping VEGF-C.266 The anti-

lymphangiogenic effects of sVEGFR-3 make it a potential therapeutic agent for the 

treatment of various cancers. In a murine orthopic urinary bladder cancer model, sVEGFR-3 

gene therapy was found to suppress lymphangiogenesis and metastasis.267 Additionally, 

sVEGFR-3 gene therapy in an endometrial cancer model reduces lymph node and lung 

metastasis, two important prognostic factors in endometrial cancer.197 When administered in 

conjunction with chemotherapy, sVEGFR-1, -2, and -3 gene therapy reduces 

lymphangiogenesis and tumor growth in ovarian cancer models and is more efficacious than 

treatment with sVEGFR-1, -2, or -3 alone.268; 269 sVEGFR-3 also has been shown to 

increase corneal allograft survival through the suppression of lymphangiogenesis, T cell 

allosensitization, and corneal allograft rejection.197; 270

7.1.6. Other—Additional molecules reported to exhibit anti-lymphangiogenic properties 

include modified forms of endogenous molecules, synthetic drugs, and herbal components. 

Many endogenous molecules have anti-lymphangiogenic properties, but obstacles such as a 

short half-life and insufficient therapeutic concentrations prevent these molecules from 

suppressing lymphangiogenesis without modification. Recombinant forms of canstatin271 

and lamstatin272, fragments found at the C-terminal of type IV collagen’s α2 and α6 chains, 

respectively, reduce LEC migration and exhibit anti-lymphangiogenic properties. When 

administered in melanoma mice models, the 16K N-terminal region of human prolactin has 

been reported to decrease the number of lymphatic vessels in both the primary tumor and 

sentinel lymph nodes through the inhibition of LEC proliferation, migration, and tube 

formation.273 Small peptides derived from somatotropin-containing domains have also been 

shown to exhibit anti-angiogenic properties.274

Another approach to inhibiting lymphangiogenesis is to pharmacologically target 

endogenously produced pro-lymphangiogenic molecules. Members of the matrix 

metalloproteinase (MMP) family, MMP-2 and MMP-9, exhibit pro-lymphangiogenic 

properties275 and are inhibited by the synthetic MMP inhibitor MMI270.276 

Cyclooxygenase-2 (COX-2) expression is implicated in many different cancers,277; 278; 279 

and COX-2 inhibitors celecoxib,280; 281 under the trade name Celebrex, and rofecoxib,46 

under the trade name Vioxx, have been reported to inhibit lymphangiogenesis. Another 

pharmaceutical method for inhibiting lymphangiogenesis involves the use of siRNA gene 
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silencing to downregulate the expression of VEGF-C, a potent stimulator of 

lymphangiogenesis.282

Curcurmin, a natural component of the plant turmeric, has also been reported to show anti-

lymphangiogenic potential.283

7.2. Endogenous modulation

Endogenous anti-lymphangiogenic molecules play important regulatory roles in preventing 

excess lymphatic vessel development. During tumor development and metastasis, the 

balance between anti-lymphangiogenic and pro-lymphangiogenic factors is offset, with 

lymphangiogenesis activators overpowering inhibitors. The current literature related to 

endogenous anti-lymphangiogenic molecules is limited, and thus, these factors represent an 

avenue for further research.

sVEGFR-2 is a monomer composed of the soluble extracellular domain of membrane-bound 

VEGFR-2 and created through alternative splicing. sVEGFR-2 functions as an anti-

lymphangiogenic factor by antagonizing VEGF-C.196 sVEGFR-2 is produced by the corneal 

epithelium and plays an integral role in maintaining the alymphatic nature of the cornea.196 

Administration of exogenous sVEGFR-2 can inhibit cornea suture-induced and corneal 

transplant-induced lymphangiogenesis to increase corneal allograft survival.196 Furthermore, 

a reduction in sVEGFR-2 levels leads to lymphatic invasion of the cornea and skin and is 

implicated in the progression of neuroblastoma.196; 284 The primary advantage of 

administering sVEGFR-2 to inhibit lymphangiogenesis is its specificity in targeting the 

lymphatic system and its lack of influence on the vascular system.196

Sempahorins were initially discovered for their ability to guide axon growth cones upon 

binding to Nrp2 during neuronal development. Members of class 3 sempahorins are believed 

to inhibit lymphangiogenesis through their interactions with Nrp2.136 Moreover, class 3 

sempahorins exhibit anti-tumorigenic activity in certain cancer cells by inducing 

apoptosis.285; 286; 287; 288

Vasohibin-1 is an anti-lymphangiogenic protein that is endogenously produced by BECs and 

has been reported to inhibit tumor lymphangiogenesis, lymph node metastasis, and corneal 

lymphangiogenesis.289

Endostatin is the C-terminal fragment of type XVIII collagen that exhibits both anti-

angiogenic and anti-lymphangiogenic properties. 290 Specifically, endostatin inhibits VEGF-

stimulated LEC proliferation and migration.291

TSP-1, an ECM protein, endogenously inhibits lymphangiogenesis in the cornea and other 

tissues by binding to CD36 on macrophages and downregulating their production of VEGF-

C.180

TRAIL is a type II transmembrane protein member of the TNF family expressed in epithelial 

and endothelial layers of the cornea.292 Corneal expression of TRAIL has been shown to 

inhibit lymphangiogenesis.293; 294
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CONCLUSION

Lymphangiogenesis has now been implicated in many diseases for which treatments with 

angiogenic inhibitors have failed, and several research groups are on the brink of uncovering 

pathophysiological mechanisms involving lymphangiogenesis. Recent and ongoing research 

continues to show us that lymphangiogenesis may be as important as angiogenesis in 

regulating physiological processes and in the development of certain pathologies. Thus, a 

thorough understanding of lymphangiogenesis in the contexts of knockout models, the 

cornea, and ocular diseases has the potential to support the development of therapeutics for 

various diseases in which lymphangiogenesis is upregulated or downregulated, such as 

cancer, lymphedema, and some ocular diseases.
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Abbreviations

HLA human leukocyte antigen

ACAID anterior chamber-associated immune deviation

VEGF vascular endothelial growth factor

VEGFR vascular endothelial growth factor receptor

LEC lymphatic endothelial cell

LYVE-1 lymphatic vessel endothelial hyaluronan receptor 1

TNF tumor necrosis factor

HA hyaluronan

Prox-1 prospero homeobox 1

BEC blood endothelial cell

SLC secondary lymphoid tissue chemokine

HDMEC human dermal microvascular endothelial cell

Sox18 SRY-related HMG-box 18

CLEC-2 C-type lectin-like receptor 2

Ang angiopoietin

Foxc2 forkhead box c2

LD lymphatic-distichiasis syndrome

Nrp2 neuropilin 2

Syk spleen tyrosine kinase
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BMP bone morphogenetic protein

DED dry eye disease

IL interleukin

EGCG epigallocatechin gallate

TSP-1 thrombospondin-1

IFNγ interferonγ

RvD1a resolving D1 analogue

HSK herpetic stromal keratitis

HSV-1 herpes simplex virus-1

IOP intraocular pressure

SCC squamous cell carcinoma

AMD age-related macular degeneration

IRS-1 insulin receptor substrate-1
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Fig. 1. 
Diagram of proteins essential to specific steps in the development of the lymphatic system. 

(Adapted from Cueni and Detmar45, with permission from Nature Publishing group).
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Fig. 2. 
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Fig. 3. 
Lymphangiogenesis is highly regulated via a balance between various activators and 

inhibitors. Lymphangiogenesis occurs when either the levels of activators are increased or 

inhibitors are decreased, whereas lymphedema may develop if either the activators are 

downregulated or the inhibitors are upregulated. (Adapted from Bruce R. Zetter235, with 

permission from Nature Publishing group).
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Table 1

Lymphatic markers and their presence on lymphatic and/or blood vessels

Lymphatic Marker Present on Lymphatic Vessels Present on Blood Vessels Reference(s)

LYVE-1 ++ +a 31; 37

VEGFR-3 + +b 43; 44

Prox-1 ++ − 78

Podoplanin ++ − 61; 69

Desmoplakin + − 79

CCL21 + − 80

aLYVE-1 is present on blood vessels in the liver.

bVEGFR-3 is present on blood vessels in many organs
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Table 2

Murine knockout models and their lymphatic phenotypes reveal gene functions in lymphangiogenesis

Murine Model Lethality Lymphatic Phenotype Gene Function Reference(s)

Prox-1

Prox1+/− P2–P3 Abdominal chylous ascites. 
Detectable but dysfunctional 
lymphatic vessels.

Prox-1 is required for the 
maintenance of lymphatic 
cell budding and sprouting 
and is critical in BEC 
commitment to LECs.

55; 78; 8

Prox1−/− E14.5 Arrested sprouting with no lymphatic 
vessels present. Venous ECs lack 
lymphatic markers LYVE-1 and SLC 
but contain blood markers CD34 and 
laminin.

SRY-related HMG-box 18 (Sox18)

Sox18+/− Normal Fine, dense, and more branched 
lymphatic vessels.

Sox18 is a transcription 
factor that is responsible 
for inducing the 
expression of Prox-1 on 
lymphatic vasculature 
precursor cells.

84; 85

Sox18−/− 14.5 d.p.c. No lymphatic vessels present. No 
venous Prox-1 expression.

Vascular endothelial growth factors C and D (VEGF-C and VEGF-D)

Vegfc+/− Normal or perinatal Abdominal chylous ascites. 
Cutaneous lymphatic hypoplasia with 
lymphedema in adults.

VEGF-C controls the 
process of Prox-1– 
positive LEC sprouting 
and migration from 
embryonic veins. VEGF-
C is required for LEC 
proliferation and survival. 
VEGFD plays a similar 
but not as impactful role 
as VEGF-C.

42; 87

Vegfc−/− E17–E19 No detected lymphatic vessels. Severe 
embryonic lymphedema.

Vegfd−/− Normal Normal lymphatic vasculature.

Vegfc−/− x Vegfd−/− E16.5 Same phenotype as Vegfc−/−.

Vascular endothelial growth factor receptor 3 (VEGFR-3)

Vegfr3+/neo Normal Leaky and dysfunctional lymphatic 
vessels. Transient abdominal chylous 
ascites after birth.

VEGFR-3 is regulated by 
VEGF-C and VEGF-D 
and is necessary for LEC 
proliferation and survival. 
VEGFR-3 is also 
necessary for 
angiogenesis.

42; 148

Vegfr3neo/neo Perinatal No detectable lymphatic vessels. 
Cardiovascular failure.

Vegfr3lz/lz E10.5 No detectable lymphatic vessels.

Podoplanin

T1α/podoplanin+/− Normal Similar to wild-type mice. Some 
regions of dilated lymphatic vessels 
with incomplete lymphatic network 
formation.

Podoplanin plays a critical 
role in lymphatic 
patterning and network 
formation. Specifically, 
podoplanin promotes LEC 
migration, adhesion, and 
tubulogenesis.

98; 100

T1α/podoplanin−/− Perinatal Congenital lymph edema, impaired 
lymphatic transport, 
lymphangiectasia, undetectable small 
lymphatic capillaries, absent 
abdominal lacteals, and lack of 
anatamosing lymphatic vessels 
between superficial and subcutaneous 
lymphatic networks. Incomplete 
separation between blood vascular 
and lymphatic vascular systems.

Angiopoietin 2 (Ang2)

Ang2+/− Normal Collecting lymphatics with valves are 
present. Needs additional 
investigation.

Ang2 is required for the 
remodeling and 
maturation of the primary 
lymphatic plexus. This 
includes the emergence of 

108; 110
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Murine Model Lethality Lymphatic Phenotype Gene Function Reference(s)

Ang2−/− Perinatal or normal Abdominal chylous ascites and 
chylothorax. Lymphedema present. 
Lack of collecting lymphatic vessels 
with valves. Primary and secondary 
lymphatic plexus hypoplasia. 
Impaired lymphatic maturation and 
remodeling.

a secondary lymphatic 
plexus along with the 
development of collecting 
lymphatic vessels with 
valves.

EphrinB2

EphrinB2ΔV/ΔV Perinatal No lymphatic valves. Chylothorax. EphrinB2 is essential in 
regulating valve formation 
and morphology in 
developing lymphatics. 
Data regarding whether 
ephrinB2 forward or 
reverse signaling is 
responsible for valve 
formation are conflicting.

111; 114; 122

EphrinB26YFΔV/6YFΔV Perinatal No lymphatic valves. Chylothorax.

EphrinB2lacZ/lacZ Perinatal Normal lymphatic valves detected at 
E18.

EphrinB26YFΔV/lacZ Normal Normal lymphatic development.

Forkhead box c2 (Foxc2)

Foxc2+/− Normal Lymphatic hyperplasia and reflux. 
Distichiasis.

Foxc2 is necessary for the 
lymphatic vessel 
maturation and valve 
formation.

125; 127; 130; 131; 132

Foxc2−/− E12.5 Cardiovascular and skeletal defects. 
Impaired lymphatic maturation, 
remodeling, and valve formation.

Neuropilin-2 (NRP2)

Nrp2+/− Normal Appears unaffected. Nrp2 is necessary for new 
lymphatic vessels 
sprouting from pre-
existing lymphatic vessels. 
Nrp2 inhibits tip cell 
retraction and thus 
promotes VEGF-C 
induced tip cell extension 
from the lymphatic sprout.

94; 136; 138

Nrp2+/−vegfr3+/− Reduced Mendelian ratio Lymphatic hypoplasia in the skin with 
lymphatic vessel enlargement and 
increased branching. Reduced number 
of tip cells with defective filopodia 
extension from existing tip cells. 
Enlarged lymph sac and severe edema 
present.

Nrp2−/− Reduced Mendelian ratio

SLP-76 and Syk

Slp-76−/− or Syk−/− Perinatal Nonseparation phenotype. Chylous 
ascites. Lymphatic vessels are filled 
with blood.

Slp-76 and Syk are 
hematopoietic 
intracellular signaling 
proteins required for the 
separation of the closed 
blood vascularsystem 
from the open lymphatic 
system.

142; 143

C-type lectin-like receptor 2 (CLEC-2)

Clec-2+/− Normal Normal CLEC-2 serves as the 
intermediate between 
podoplanin and SLP-76/
Syk. LEC podoplanin 
binds to CLEC-2 to 
activate platelet cells and 
induce release of granules 
that inhibit 
lymphangiogenesis.

100; 101; 145; 146

Clec-2−/− Perinatal Nonseparation phenotype.

Elk3 (Net)

Elk3−/− Perinatal Chylothorax and lymphangiectasis. N/A 147

Integrin α9

α9−/− Perinatal Chylothorax and lymphangiectasis. Integrin-α9 binds to 
VEGF-C and VEGF-D 
and also interacts with 
VEGFR-3.

149; 150
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Table 3

Endogenous and pharmaceutical compounds that modulate lymphangiogenesis.

Mechanism of Action Reference(s)

Lymphangiogenesis Activators

VEGF-A Directly binds to VEGFR-2 on pre-existing lymphatic cells. Indirectly recruits inflammatory 
cells that produce VEGF-C and VEGF-D.

221; 238; 242

VEGF-C and VEGF-D Directly binds to VEGFR-3 on lymphatic cells. Indirectly stimulates lymphangiogenesis. 295

PDGFa A direct lymphangiogenic factor that binds to tyrosine kinase receptors on LECs and induces 
a signaling pathway similar to VEGF-C binding to VEGFR-3.

296

bFGFb bFGF or FGF-2, binds to VEGFR-3 and indirectly stimulates lymphangiogenesis. LYVE-1 
can bind to bFGF and inhibit bFGF-dependent lymphangiogenesis.

35; 256

IGF-1 and IGF- 2c IGF induces phosphorylation of intracellular signaling factors and extracellular kinases in 
LECs

297

HGFd Mechanism is unknown, but it is believed that HGF can bind to VEGFR-3 and induce 
lymphangiogenesis.

298

Ang Mechanism is unknown, but it is believed that Ang-2 and Ang- 2 induces lymphangiogenesis 
through binding to its Tie2 receptor.

299; 300; 301; 302

IRS-1 Mechanism is unknown, but it is believed that IRS-1 promotes macrophage infiltration, 
which plays a role in lymphangiogenesis. Inhibition of IRS-1 by GS-101 (Aganirsen) 
suppresses lymphangiogenesis.

204; 205; 206

Lymphangiogenesis Inhibitors

sVEGFR-2 Binds to VEGF-C and prevents it from binding to VEGFR-3 and inducing 
lymphangiogenesis.

196

Class 3 Semaphorins Binds to Nrp2 on lymphatic cells. Believed to inhibit VEGF-C phosphorylation of VEGFR-3. 136; 303

Endostatin Competes with VEGF-C for binding to VEGFR-3. 291

Vasohibin-1 Believed to inhibit the pro-lymphangiogenic effects of VEGF- A. 289; 304

Anti-VEGFR-2 A neutralizing antibody that directly binds to VEGFR-2 and prevents it from interacting with 
VEGF-C.

248; 249

Anti-VEGFR-3 A neutralizing antibody that binds VEGFR-3 and prevents VEGF-C binding to VEGFR-3. 254

VEGF trap A soluble decoy receptor that binds and traps VEGF, preventing it from binding to VEGFR-1 
and VEGFR-2 and inducing lymphangiogenesis.

259; 5; 238; 261

sVEGFR-3 A soluble receptor that binds to and traps VEGF-C, preventing it from binding VEGFR-3 and 
inducing lymphangiogenesis.

266

Canstatin Inhibits Ang-1–induced lymphangiogenesis. 271

Lamstatin Believed to stimulate apoptosis. 272

16K N terminal human 
prolactin

Induces LEC apoptosis. 273

Small peptide derived from 
somatotrophin-contained 
domain

Induces LEC apoptosis. 274

MMPI270 Inhibits the actions of MMP2 and MMP9, two pro- lymphangiogenic members of the MMP 
family.

276

COX-2 inhibitors Inhibits the action of COX2 enzymes implicated in lymphangiogenesis. 280; 281; 46

siRNA Downregulates VEGF-C expression by gene silencing. 282

Curcurmin Believed to inhibit tubule formation through Akt and MMP2 pathways. 283

Note. – PDGF = platelet-derived growth factor; bFGF = basic fibroblast growth factor; IGF = insulin-like growth factor; HGF = hepatocyte growth 
factor.
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