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Study Objectives: To examine the integrity of sleep-promoting neurons of the ventrolateral preoptic nucleus (VLPO) in postmortem brains of narcolepsy 
type 1 patients.
Methods: Postmortem examination of five narcolepsy and eight control brains.
Results: VLPO galanin neuron count did not differ between narcolepsy patients (11,151 ± 3,656) and controls (13,526 ± 9,544).
Conclusions: A normal number of galanin-immunoreactive VLPO neurons in narcolepsy type 1 brains at autopsy suggests that VLPO cell loss is an unlikely 
explanation for the sleep fragmentation that often accompanies the disease.
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INTRODUCTION
Type 1 narcolepsy is a common and debilitating neuro­
degenerative disorder characterized by excessive daytime 
sleepiness and cataplexy.1 In addition, sleep fragmentation is 
common in type 1 narcolepsy, and typically develops a few 
years after the onset of sleepiness and cataplexy.2 Sleep frag­
mentation can worsen other manifestations of narcolepsy,3 
and sodium oxybate consolidates sleep and improves daytime 
sleepiness and cataplexy.4 The cause of sleep fragmentation in 
narcolepsy is unknown, but the delayed onset of sleep frag­
mentation suggests a pathophysiology distinct from that under­
lying excessive daytime sleepiness and cataplexy.

The loss of hypothalamic neurons producing orexin (hypo­
cretin) is regarded as the main cause of narcolepsy, and orexin 
levels in cerebrospinal fluid (CSF) are already undetectable or 
very low when symptoms first occur.5–7 The orexin neurons 
control the activity of wake-promoting and sleep-promoting 
nuclei, and the components of these two systems have mutu­
ally inhibitory connections.8 Several monoaminergic and cho­
linergic nuclei promote wakefulness. Conversely, neurons of 
the ventrolateral preoptic nucleus (VLPO) use gamma-amino­
butyric acid and galanin to inhibit these arousal regions, and 
loss of VLPO neurons can cause long-lasting sleep fragmenta­
tion.9–11 The loss of orexin neurons leads to behavioral state 
instability, with poor maintenance of wakefulness and poor 
consolidation of sleep.8

In postmortem brains of type 1 narcolepsy patients, we 
recently found a marked increase in histamine-producing 
neurons of the tuberomammillary nucleus (TMN),12,13 a key 
arousal-promoting structure densely innervated by the orexin 
and VLPO neurons.9,14 We speculated that the increase in his­
taminergic TMN neurons reflects a compensatory response to 

pii: sp-00510-15� ht tp://dx.doi.org/10.5665/sleep.5754

Significance
Sleep fragmentation is common in narcolepsy type 1 but difficult to explain by orexin deficiency alone. As elderly people with fragmented sleep have a 
loss of sleep-promoting galanin neurons in the ventrolateral preoptic area (VLPO), we examined the VLPO in people with narcolepsy type 1. We found a 
normal number of galanin VLPO neurons, suggesting that the fragmented sleep of narcolepsy must arise from another cause.

counterbalance the loss of excitatory drive from orexin neu­
rons, and that stronger or dysregulated histaminergic signaling 
may subsequently cause fragmented nighttime sleep.12

However, sleep fragmentation could arise if inhibitory in­
puts from sleep-active VLPO galanin neurons are insufficient 
to silence neuronal activity in the histaminergic TMN and 
other arousal-promoting nuclei. To test this hypothesis, we ste­
reologically measured the numbers of VLPO galanin neurons 
in brains of people with narcolepsy and control individuals, 
and examined the correlations between galanin, orexin, and 
histaminergic TMN neurons.

METHODS

Human Subjects
We studied hypothalamic tissue of five patients with type 
1 narcolepsy and eight non-neurological controls. Data on 
orexin and histamine cell counts of the five narcolepsy patients 
(cases A, C-F) and six controls (cases 2, 3, 6, 9, 11, 12) were pub­
lished previously.12 Two additional control brains were provided 
by the Neuropathology Department of Beth Israel Deaconess 
Medical Center, Boston, Massachusetts. Compared to the six 
previously reported brains, the two additional brains contained 
similar numbers of orexin and histamine neurons. The medical 
records of the control subjects did not contain any history of 
brain disorders and their routine neuropathological examination 
was unremarkable. Postmortem delay was slightly shorter in the 
narcolepsy group than in controls (8.3 ± 6.7 h versus 18.4 ± 6.7 h, 
P = 0.10), but the difference was insignificant. Fixation time was 
longer in the narcolepsy group than in the controls (1 w to 2 y 
versus 2 mo to 11 y, respectively). The local ethics committees of 
all involved institutes approved the study protocol.
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Brain Tissue Processing and Immunohistochemistry
We performed immunostaining for orexin and histidine decar­
boxylase (HDC) as detailed in our previous paper.12 Because 
the human VLPO is a much smaller structure than the orexin 
field or the TMN, we examined VLPO-containing sections in 
a 1:6 series, as opposed to 1:24 series for orexin and HDC im­
munostaining. To identify VLPO neurons, we immunostained 
sections for galanin after antigen retrieval to improve labeling. 
After the initial reaction with hydrogen peroxide, we put sec­
tions in Tris-buffered saline (TBS; pH 11.0) at 95°C for 20 
min. After cooling to room temperature, we washed the sec­
tions twice in TBS for 10 min, and then continued with the 
blocking step. Overnight incubation with polyclonal rabbit 
anti-galanin primary antiserum (1:2000; Peninsula Laborato­
ries, San Carlos, CA LLC; Product# T-4326; Lot# A08910) was 
followed by incubation with biotinylated donkey anti-rabbit 
secondary antiserum (1:500; Jackson ImmunoResearch Labo­
ratories, West Grove, PA, Product# 711-065-152; Lot# 101909).

Stereological Cell Counts
To count VLPO galanin neurons, we used the same general ste­
reological techniques as recently described.11 In brief, we placed 
a 1 × 3 mm rectangle over the VLPO, so that the long axis was 
parallel to the lateral wall of the third ventricle. This allowed 
assignment of the VLPO galanin neurons and their reliable 
separation from galanin neurons of other nuclei in the anterior 
hypothalamus. To achieve accurate cell counts as determined 
by Gunderson coefficient of error < 10%, we chose a counting 
grid of 150 × 150 μm and a counting frame of 50 × 50 μm.

Statistics
Group data are reported as means and standard deviations. We 
compared cell counts between groups using Student t test and 

performed correlation analyses using the Pearson test. Statis­
tical significance was accepted at P < 0.05.

RESULTS
The number of VLPO galanin neurons was 13,526 ± 9,544 in 
controls, and 11,151 ± 3,656 in narcolepsy patients (P = 0.54) 
(Figure 1). In narcolepsy patients, the number of galanin neu­
rons inversely correlated with the number of orexin neurons 
(r = −0.93, P = 0.02), whereas in controls the association tended 
to go in the opposite direction (r = 0.615, P = 0.10) (Figure 2). 
The numbers of VLPO galanin and histaminergic TMN neu­
rons did not correlate in narcolepsy patients (r = 0.27, P = 0.66) 
nor in controls (r = −0.29, P = 0.49).

Mean age was similar in narcolepsy patients and controls 
(71 ± 15 y versus 66 ± 10 y, P = 0.59). Age had no major effect 
on the number of VLPO galanin neurons in narcolepsy patients 
(r = −0.443, P = 0.46) nor in controls (r = −0.391, P = 0.34). All 
narcolepsy patients were male, whereas four controls (50%) 
were female (P = 0.10). The number of VLPO galanin neurons 
was similar in female and male controls (13,641 ± 7,956 versus 
13,411 ± 12,214, P = 0.98).

DISCUSSION
We found that type 1 narcolepsy patients have normal numbers 
of galanin-containing VLPO neurons. The number of VLPO 
neurons correlated inversely with the number of orexin neu­
rons but not with the number of histaminergic TMN neurons.

These experiments have some limitations. First, prior 
studies described sleep fragmentation in narcolepsy,2,3 but as 
we did not directly measure sleep disruption, we cannot be 
certain how cell counts correlate with sleep/wake behavior. 
Second, we examined a relatively small number of brains, and 
some observations such as the correlations between cell counts 

Figure 1—Photomicrograph of the ventrolateral preoptic area (VLPO) of a control brain, with neurons immunolabeled for galanin (A). The number of 
galaninergic VLPO neurons is similar in narcolepsy patients and controls, whereas the number of orexin neurons was significantly reduced and the number 
of histaminergic TMN neurons was significantly increased in narcolepsy patients compared to controls (B). *P < 0.001. 3V, third ventricle; OT, optic tract; 
PVN, paraventricular nucleus; SON, supraoptic nucleus. Scale bar, 1 mm.
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in different brain regions will be better supported with a larger 
number of subjects. Third, we cannot exclude that sleep-ac­
tive, nongalaninergic VLPO neurons, such as those producing 
gamma-aminobutyric acid, are affected in narcolepsy. Never­
theless, more than 80% of sleep-active VLPO neurons express 
galanin messenger RNA,15 and most sleep-active VLPO neu­
rons that inhibit histaminergic TMN neurons contain galanin.9 
Fourth, even though the number of VLPO galanin neurons is 
normal, it is still possible that dysfunction of VLPO neurons 
contributes to disrupted sleep. Last, we have not yet examined 
other brain regions implicated in the production of sleep such 
as the median preoptic nucleus or parafacial zone,16,17 as these 
cell groups lack specific markers for the sleep-active neurons.

The first postmortem studies of narcolepsy patients noted 
that the loss of orexin neurons was highly selective, with pres­
ervation of adjacent neurons producing melanin-concentrating 
hormone,6,12 and researchers speculated that the symptoms of 
narcolepsy are entirely due to orexin neuron loss. However, the 
recent discovery of increased numbers of histaminergic TMN 
neurons challenged this view, and it is now important to ex­
amine other sleep-wake regulating nuclei.

The pattern of disrupted nighttime sleep in narcolepsy is 
clearly different from that seen in typical insomnia. Narco­
lepsy patients usually fall asleep quickly and often enter stage 
R sleep in less than 15 min. They also have frequent arousals 
and brief awakenings, with subsequent reduction of sleep ef­
ficiency, more time spent in N1 sleep, and prolonged wake time 
after sleep onset.2,3,18,19 Last, research in rodents and humans 
demonstrated that homeostatic and circadian processes are es­
sentially preserved in narcolepsy.20–22

This pattern of sleep disruption has some similarities to that 
seen with VLPO lesions. During sleep, VLPO galanin neurons 

likely inhibit histaminergic neurons of the TMN and other 
arousal regions.9,23–25 Lesions of the VLPO in rats fragment 
sleep and reduce total sleep amount.10 Recently, Lim et al.11 
counted VLPO galanin neurons in 45 participants of the Rush 
Memory and Aging Project, and compared the neuron num­
bers with actigraphy data obtained in the years before death. 
They found that actigraphic measures of sleep fragmentation 
were associated with lower numbers of VLPO galanin neurons, 
and this correlation was significant in both participants with 
and without Alzheimer disease.11 Moreover, patients with Al­
zheimer disease, a neurodegenerative disorder that typically 
causes severe sleep disruption, had only half as many VLPO 
galanin neurons as participants without Alzheimer disease. 
We used the same immunostaining and stereological tech­
niques, but the numbers of VLPO galanin neurons in our nar­
colepsy patients were slightly higher than reported by Lim et 
al. for the elderly participants without Alzheimer disease, but 
similar to the galanin neuron count in 14 control males of an­
other study.26 Thus, although VLPO neuron loss can fragment 
sleep, this does not appear to be the cause of disrupted sleep 
in narcolepsy. Considering its delayed development after the 
initial attack to the orexin neurons, it is hard to explain frag­
mented sleep without assuming changes in other cell groups, 
and based on current evidence, increased histamine signaling 
is one possible mechanism. In this line, histamine antagonists 
improve chronic primary insomnia,27 and photo-evoked re­
lease of histamine inhibits VLPO neurons in mice.28 Still, other 
hypotheses such as reduced VLPO activity or changes in other 
sleep-promoting systems need to be tested as well.

It remains unclear why the number of VLPO galanin neu­
rons is inversely correlated with the number of orexin neu­
rons. Possibly, more severe orexin neuron loss spurs greater 

Figure 2—In narcolepsy patients (open circles), the numbers of galaninergic VLPO neurons and orexin neurons are inversely correlated. In controls (closed 
circles), the association of the two systems tends to be opposite. The numbers of galaninergic VLPO neurons and histaminergic TMN neurons are not correlated.
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compensatory changes in VLPO neurons. If so, then this re­
sponse must be independent of the TMN as TMN cell counts 
did not correlate with VLPO counts. In addition, more VLPO 
neurons may not result in better sleep because people with type 
1 narcolepsy probably have more extensive orexin neuron loss 
than those with type 2 narcolepsy, but they have more sleep 
disruption,29 lower sleep efficiency, and more awakenings.3 
Understanding the functional relationship between the VLPO 
and orexin neurons will require larger postmortem studies 
with premortem measurements of sleep architecture.

In conclusion, disrupted nighttime sleep remains a poorly 
understood yet common problem in narcolepsy. We now find 
that the VLPO appears intact in narcolepsy, but other potential 
causes of disrupted sleep need to be evaluated in future studies.
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