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Abstract

Although the positive effects of exercise on the well-being and quality of independent living for 

older adults are well-accepted, many elderly individuals lack access to exercise facilities, or the 

skills and motivation to perform exercise at home. To provide a more engaging environment that 

promotes physical activity, various fitness applications have been proposed. Many of the available 

products, however, are geared toward a younger population and are not appropriate or engaging for 

an older population. To address these issues, we developed an automated interactive exercise 

coaching system using the Microsoft Kinect. The coaching system guides users through a series of 

video exercises, tracks and measures their movements, provides real-time feedback, and records 

their performance over time. Our system consists of exercises to improve balance, flexibility, 

strength, and endurance, with the aim of reducing fall risk and improving performance of daily 

activities. In this paper, we report on the development of the exercise system, discuss the results of 

our recent field pilot study with six independently-living elderly individuals, and highlight the 
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lessons learned relating to the in-home system setup, user tracking, feedback, and exercise 

performance evaluation.
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I. Introduction

Providing care for populations at risk such as older adults and those with neurodegenerative 

diseases is a major societal challenge. This challenge can be partially mitigated by 

improving the health-related behaviors of older adults. In addition to nutrition and 

socialization, physical and cognitive exercises are among the most effective preventive 

approaches that improve outcomes as well as quality of life [1]. Despite these benefits, many 

older adults continue to face difficulty in engaging in exercise activity due to various social 

and economic reasons, including motivation, confidence and skills. One approach that can 

be used to address these barriers is using coaching in conjunction with a variety of health 

behavior change techniques, including motivational interviewing [2]. Unfortunately, a 

personal coach is typically not economically feasible, and access to exercise classes in 

community centers is not an option for many older adults.

One promising approach that mitigates these problems is the use of a semi-automated 

coaching [3], [4] in conjunction with automatic exercise monitoring and health-coaching 

system. In our prior work, we developed a prototype of such a semiautomated coaching 

system that comprises unobtrusive sensing of each participants’ behaviors and combines it 

with artificial intelligence tools aiding the coach in crafting individualized messages to the 

participants. This original coaching system was focused on cognitive and physical exercises, 

sleep, and socialization. Although the participants were encouraged to exercise using 

YouTube videos, this system lacked the ability to track and provide real-time feedback for 

physical exercises. This functionality is important in replicating the benefits of a personal 

exercise coach.

Fortunately, with the introduction of more affordable motion sensing technology and better 

video graphics it is now possible to develop home-based systems that enable coaching of 

both physical and cognitive exercises. Such a possibility is collaborated by the explosion of 

exergames that combine exercises with video games to enhance motivation and promote 

more active lifestyle for wide population segments [5], [6]. Several commercial fitness 

applications have been released to date, such as Your Shape: Fitness Evolved (Ubisoft 

Montreal, 2010), UFC Personnal Trainer (Heavy Iron Studios, 2011), Nike+ Kinect Training 

(Microsoft Studios, 2012) etc. Unfortunately, many of the available commercial fitness 

applications are geared toward a younger population and are too difficult and not sufficiently 

engaging for older users. In addition, older adults often require specially designed user 

interfaces due to inherent sensory and cognitive difficulties [7], [8].

Several research studies pertaining to well-being and exercise in older adults applied off-the-

shelf technologies or developed customized systems to study short- and long-term effects of 
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computer-assisted exercise. Doyle et al. [9] introduced a proof-of-concept custom-designed 

interactive vision-based system that delivered balance and strength exercises to older adults. 

Even though the proposed technology was aimed for elderly to use at home, the authors 

report only the results from in-lab testing with a small number of participants. Tsai et al. 

[10] recently assessed the acceptability of a fitness testing platform, iFit, for installation in 

an assisted living community with the aim of promoting fitness and slowing the onset of 

frailty. Macek et al. [11] proposed a custom-designed physical exercise system using an 

ultrasound sensor and heart-rate monitoring device. The authors stressed the importance of 

collecting continuous physical measures for performance analysis during the exercise. Doyle 

et al. [12] presented a smartphone-based exercise system where they emphasized the 

importance of visual feedback on quantitative measures in exergaming.

In recent work Garcia et al. [13] and Pisan et al. [14] used Microsoft Kinect camera in 

stepping-exercise system targeting older population to predict the loss of balance under 

cognitive load. The physical health and cognitive abilities of the participants were assessed 

using in-exercise collected data and standardized clinical measures. The qualitative 

evaluation of the system, however, was reported only from the initial laboratory testing. 

Similar proof-of-concept systems based on the Microsoft Kinect camera were also presented 

by Lange et al. [15] and Ganesan et al. [16], who both reported only on usability and data 

gathered in a laboratory setting. For a more comprehensive survey of interactive exercise 

research in older adults, we refer the reader to several systematic reviews found in literature 

[17]–[19].

In summary, although several researchers have studied interactive exercise in older adults, 

the majority used commercial games without any direct measurements of the physical 

activity or the participants were tested only in a controlled laboratory environment. This is 

unfortunate because in order to capture the time-varying characteristics of the exercise 

performance and to better understand the changes over time, continuous physical 

measurements (e.g., joint angles, positions, velocities) are needed. Furthermore, the higher 

level statistics of these measurements (e.g., average, standard deviation, variability), also 

referred to as internal outcome measures [20], can provide additional parameters for 

quantitative analysis.

The algorithms that capture and quantify exercise activity in commercial products are 

usually proprietary and are typically inaccessible for post-hoc analysis. As a result, most of 

the existing research studies rely on clinical assessment based on external outcome measures 
that include various standardized scales and subjective questionnaires to quantify the effect 

of such intervention. These measures, obtained only intermittently, do not provide any direct 

information on physical performance during the exercise, nor can they be used for just-in-
time coaching. To alleviate this issue, researchers used additional sensors (e.g., body-worn 

motion trackers) to measure the activity during commercial game play [21], subject to the 

usual drawbacks, including synchronization and usability issues.

The main focus of this paper is therefore on the research necessary to design and deploy a 

general architecture for a computer-based interactive exercise system with real-time 

assessment and guidance in combination with remote coaching approaches [3], [4]. This 
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work extends the initial presentation of our exercise system in [22] by including additional 

details on the design, implementation and deployment. Our interactive exercise system is 

based on the Microsoft Kinect camera that records user's entire body kinematics and 

provides automated visual and auditory feedback on the performance. To assess the 

acceptability and usability and to examine the feasibility outside laboratory environment, we 

deployed the system into six homes of elderly individuals who used it during a time period 

of two to six weeks. Based on this experience, we provide guidelines for future development 

of interactive exercise systems for older users with vision-based motion-tracking technology. 

The particular lessons learned and reported in this paper include (1) limitations on living 

space with respect to deployed technology, (2) usability issues with the camera and software, 

(3) usability issues with the user interfaces, (4) the form of visual and auditory feedback, and 

(5) interpretation of physical measurements from the captured kinematics in relation to 

clinical outcome measures and standard components of physical fitness, such as balance, 

flexibility, strength, and endurance [23].

The remainder of this paper is organized as follows. Section II describes the design of the 

proposed automated coaching system based on the Kinect camera. The pilot study design is 

presented in Section III, and the results of the pilot study are evaluated in Section IV. User 

feedback and lessons learned are elaborated in Section V, and finally, future work is 

discussed in Section VI.

II. Exercise System Design

Our goal in this research was to develop an architecture for automated exercise coaching of 

older users that would motivate them and track their physical performance while being able 

to exercise in their home. The initial phase included detailed needs analysis for the complete 

coaching system that included focus groups with older adults, caregivers, coaches, etc. [3]. 

In this paper, however, we focus on the resulting requirements restricted to the interactive 

exercise coaching system as follows:

• Use of unobtrusive, low-maintenance, and low-cost measurement modality;

• Inclusion of age-appropriate exercises for older adults;

• Development of an elderly-friendly user interface;

• The ability to obtain raw measurements that would provide estimations of balance, 

endurance, strength, and flexibility [23];

• Compatibility for future integration with the coaching platform.

Although we considered other options including wearable devices, to meet the requirements 

for an unobtrusive, low-cost and low-maintenance solution, we opted for the Microsoft 

Kinect camera [24]. This approach allowed us to develop a customized solution, as opposed 

to using a commercially available fitness application.

A. Usability, User Interface and Control Flow

The first implementation was based on a PC with an LCD screen controlled by a variety of 

possible navigation methods. In adherence to the design recommendation for older users, the 
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key design objective was set to accommodate potentially reduced cognitive, sensory, and 

motor capabilities [7]. Accordingly, the amount of information and choices presented on 

each screen were minimized. The color and size of text was carefully selected to provide 

high contrast and visibility since the users would operate the system from a distance. 

Switching between screens was controlled by a set of buttons that were consistently 

positioned at the bottom of the display. To address the possibility of different sensory 

impairments, we implemented various modes of navigation, such as keyboard, mouse, 

remote control, and speech. All of these modalities were tested at various stages of the 

development and deployment. Gesture controls were avoided because of the potential 

difficulties due to various motor impairments that affect elderly. The user interface was 

implemented in C++ programming language using OGRE 3D graphics library [25].

Figure 1 shows the control flow of the user interface. When the exercise software is started, 

the user is presented with the main screen with a personalized greeting from where he/she 

can watch several introductory videos, start the warm-up, or start a new exercise session. 

The screen also provides access to the camera setup where the Kinect camera tilt can be 

adjusted. The exercise session consists of a sequence of 12 exercises (more details on the 

exercise selection are provided in Section III-B). Each exercise consists of three stages: (1) 

instructions - including a demonstration of the routine, (2) execution - computer-assisted 

exercise by the user, and (3) exercise summary - the overall evaluation of the performance.

Each exercise is presented in a form of video instructions of the coach explaining the health 

benefits of the exercise and demonstrating the routine. The users can at any time start the 

exercise once they familiarize themselves with the instructions. After watching the 

instructions, users perform the exercise on their own by following the video feedback. The 

performance is measured in real-time using the Kinect skeleton representation while various 

corrective alerts are provided by the system via textual and computer-generated audio cues. 

More details on the movement analysis and feedback are provided in Sections II-B and II-C. 

Once the user completes a predefined number of repetitions or selects the “End Exercise” 

button, the display of that exercise ends, and the performance is recorded into the database. 

Afterwards, a message of encouragement is briefly displayed showing the remaining number 

of exercises followed by the summary screen. The summary screen presents a weekly chart 

with performance scores observed in the particular exercise. The user can also view monthly 

or the last 10-session summary.

B. Real-time Movement Analysis

We used the skeleton representation from the Microsoft Kinect to measure the movement 

kinematics. The Kinect is a depth-sensing camera that provides relatively robust 3D 

reconstruction even in low-light conditions [24]. The accompanying Kinect software 

development kit (Kinect SDK) provides segmentation of human blobs even in cluttered 

scenes and real-time pose estimation with the 3D locations of 20 joints [26]. In our 

architecture the Kinect camera pose estimation is applied in three areas: (1) to quantify the 

performance of each exercise, (2) to support repetition counting, and (3) to trigger feedback 

alerts that attempt to correct an exercise performance. The processing of the raw skeletal 

data is performed in real time as shown in Figure 2.
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To quantify the performance of each exercise, we first extracted measurement primitives 
from the skeletal data, i.e., joint angles, angles relative to the vertical or horizontal plane, 

distances, absolute positions, etc. These measurement primitives for a particular exercise 

were chosen based on the goals of the specific exercise (i.e. primary measurements). These 

internal, hidden variables were also used to count repetitions, trigger alert messages, 

compute movement features and generate overt feedback to the user. The actual performance 

metrics were derived by potentially non-linear combinations of several input primitives. To 

represent the participants’ relative performance, the primary measurements were normalized 

to form movement scores bounded by the range of 0 and 1, based on the maximum range of 

the measurement primitives (e.g., range of motion of elbow flexion between 0 and 90 

degrees translates into a score of 0 to 1). Since the Kinect output is noisy, the extracted 

exercise-specific metrics were smoothed by moving average filters.

To track execution of exercise repetitions, it was necessary to divide each exercise into 

stages identified by the exercise stage detection module that was designed to uniquely 

determine the instantiated exercise stage from the pose measurements. In this model, the 

stage transitions can be triggered by a single or combination of several different 

measurements or scores, detected as transitions either using a fixed threshold or a 

dynamically adjusted threshold controlled by a hysteresis function. Again, to improve the 

robustness of this approach the stages were filtered using a time constant to define the 

expected minimal duration of each stage. In principle, these inferences could be learned 

using standard machine learning techniques, but the small amounts of data and high 

variability would present considerable challenges to the machine learning approaches.

Finally, the correctness of exercise execution was checked based on selected complex pose 

measurements. In each stage, we defined constraints of the movement, such as keeping the 

hands close to each other, keeping the feet on the floor, maintaining the torso in upright 

position, etc. The constraints were defined as thresholds for selected pose measurements 

which can be based on a single measurement primitive or a combination of multiples as 

mentioned above. If the constraint was violated, the alert module executed a message via 

textual and audio cues as described in the next section.

As an example, Figure 3 shows the Buddha's Prayer exercise [27] which consists of lifting 

the arms upward and downward while keeping the palms close together and sitting tall in the 

chair. The goal of the exercise is to lift the hands as high as possible without loosing contact 

between the palms. Figure 3a shows the relevant joints involved in the exercise. The primary 

measurement M is defined as the minimum vertical distance of the left (LW(z)) and right 

wrist (RW(z)) as measured from the ground plane. The minimum is chosen in order to 

ensure that sufficient lift is exerted in both hands. The corresponding score, which is shown 

on the screen via the performance bar (Figure 4), is calculated as a ratio of the difference of 

vertical distance between shoulders and current wrist position, normalized by the length of 

the arm, which corresponds to the maximal possible lift.

Figure 3b shows the verification of the exercise correctness (keep the palms close) which is 

determined from the hidden measurement. The hidden measurement in this case is defined 

as the Euclidean distance d between the two wrist positions. If the distance exceeds the 
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threshold, the messaging system will display the alert. In addition, the exercise requires 

subject's upright sitting posture, therefore, the system also tracks the tilt angles with respect 

to the ground normal for the upper body.

Finally, Figure 3c shows the stage detection which is used to track exercise repetitions. The 

stage detection alternates between two stages (1 and 2) through a hysteresis function. If the 

current exercise stage is set to 1 and the primary measurement is increasing, the stage 

detector will transition to stage 2 once the hysteresis threshold Δ is exceeded. Once the stage 

detector is in stage 2, the transition to stage 1 will occur only if the primary measurement is 

decreasing and exceeds its value reduced for the hysteresis threshold. Table I shows the 

measurements collected for each exercise.

C. In-exercise Feedback

During the design phase we explored several visualization options on how to present the 

instructions from the coach and in-exercise feedback to the users. We considered (1) full-

screen video of the coach with Kinect video insert, (2) video of the coach with Kinect 3D 

data presented side by side, and (3) Kinect video and skeletal data with pictorial cues of the 

exercise. Informal usability assessment with coaches and several users suggested a 

preference for a full-screen video visualization.

For the in-exercise feedback, the video is overlaid with additional feedback data as shown in 

Figure 4. In the top portion of the screen, the consecutive number of the exercise, the 

exercise name, and current repetition count are presented. In the lower-right corner, a video 

of the user captured by the Kinect camera is displayed for reference. To provide assistive 

feedback during the exercise, the user is also presented with visual cues on the targeted 

performance measurements which are displayed in a form of a dynamic performance bar 
whose length corresponds to the performance score as defined by the given complex pose 

measurement. A white vertical line denotes the maximum value achieved during a particular 

session. Below the performance bars, we display the corrective and encouraging message 

cues. The messages are also conveyed to the user via text-to-speech synthesis. We use 

additional audio cues (short “ding” sounds) whenever movement repetition is successfully 

counted.

D. Database

The data storage for the exercise system was implemented locally using MySQL [28]. For 

each user the system tracked the start and end time of each exercise session. Within the 

session, data in each time instance (at approx. 30 Hz) consisted of raw Kinect skeletal data 

for 3D positions of 20 joints, current value of observed primary and hidden measurements, 

position of the video feedback, current exercise stage, current repetition count, and feedback 

messages if provided. Overall exercise performance was stored in the summary table which 

included name of the exercise, number of completed repetitions, and observed primary 

measurements with corresponding name, minimal and maximal values.
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III. Pilot Study Design

A. Study Participants

The study participants were selected from a pool of subjects of the Oregon Center for Aging 

& Technology (ORCATECH) Living Lab at Oregon Health & Science University [29] who 

were also enrolled in a health-coaching program. A total of six independently living elderly 

subjects (2 male, 4 female) were included in the pilot study. All the subjects were Caucasian 

with a mean age 81, ranging from 74 to 91. The selection criteria included the ability to (1) 

speak and read English, (2) understand and follow instructions, and (3) ambulate without 

any assistive devices. All the participants had normal or corrected vision and none of the 

participants had any known health problems that would prevent them from using the 

designed system safely on their own.

B. Exercise Program

We based our exercise program on Sue Scott's Able Bodies Balance Training book [27] 

which offers more than 130 exercises to enhance balance, flexibility, strength, and endurance 

in older adults. We selected 12 exercises that are aimed to reduce fall risk, increase balance 

confidence, and have positive impact on activities of daily living (ADL). Table I provides the 

list of selected exercises with detailed information on each exercise. The exercise selection 

was also determined by considering robust tracking with the Kinect camera, based on our 

initial tests [30], while providing sufficient variety of exercises that engage different parts of 

the body.

C. Performance Assessment - Outcome Measures

During the course of the pilot study the participants’ exercise performance was continuously 

monitored by the coaching system using the primary measurements extracted from the 

Kinect pose estimation as defined in Section II-B. We converted these primary 

measurements into several internal outcome measures by analyzing higher-level statistics, 

such as averages, deviation and variability to assess and provide feedback about the 

participants’ overall performance of each exercise in each session as well as across sessions.

We also evaluated the participants’ physical abilities at the beginning and at the end of the 

coaching intervention using several external outcome measures which included standardized 

clinical tests, such as the Senior Fitness Test (SFT) developed by Rikli and Jones [31] and 

the Berg Balance Scale (BBS) [32]. The Senior Fitness Test (SFT) measures the physical 

parameters associated with functional ability and identifies the risk for loss of the ability to 

perform specific ADL. We included the following four items in our pilot study: (1) the chair-
stand test (CST) and (2) arm-curl test (ACT) for measurement of muscle strength in lower 

and upper body, respectively; (3) the 4-foot up-and-go test1 (4FUGT) for assessment of 

agility and balance; and (4) the 2-minute step-in-place test (2MSPT) for evaluation of 

aerobic endurance. The Berg Balance Scale (BBS) on the other hand is a 14-item scale 

1Rikli and Jones [31] designed this test originally for an 8-foot distance but due to space limitations in elderly homes, we modified the 
test to 4-foot distance.
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developed for measuring both static and dynamic balance abilities of older adults. Table I 

provides a list of internal and external outcome measures for each exercise.

D. Experimental Protocol

A phone interview was first conducted to determine which participants were appropriate for 

the pilot study based on health-related inclusion criteria and availability of physical space to 

accommodate the Kinect camera system. Selected participants were initially visited by the 

health coach to obtain informed consent and further information on general health, physical 

activity levels, and computer usage. Next, the health coach administered the initial fitness 

tests (i.e., SFT and BBS) and recorded participant's pre-intervention scores. The exercise 

system with the Kinect camera was then installed and the participant was given training on 

how to use the system. The health coach led the participant through the exercises and 

provided specific instructions to augment provided instructional videos. The participants 

were instructed to complete at least 10 sessions and were suggested to exercise preferably 

once every other day during the course of the enrollment. During this time, the health coach 

checked in with the participants on weekly basis to note any issues with the exercise 

intervention or the system. Afterwards, post-intervention tests and usability feedback was 

gathered and the system was removed.

IV. Pilot Study Results

A. Data Collection Overview

Table II provides a summary of the user experience with the exercise system. We can 

observe that the duration of the exercise regimen varied considerably between the 

participants. Some participants (e.g., participants #3 and #5) had the exercise system in their 

homes for a longer term (approx. 6 weeks) whereas others (e.g., participants #4 and #6) 

completed their sessions in a shorter term (approx. 2 weeks). We can see from ESU rates 

that some participants (e.g., participants #4 and #6) used the system more frequently than 

others, even exceeded the recommended exercise regimen. On the other hand, the analysis of 

EER rates and completions of individual exercises (not shown in the paper) reflect that some 

participants (e.g., participants #5 and #6) struggled to complete the required number of 

repetitions in several exercises or concluded their workout sessions by skipping a few of the 

exercises entirely. Since one of our goals was to obtain information on system usage without 

providing restrictions on the exercise regimen, the resultant exercise data are not fully 

controlled and thus the participants cannot be easily compared. Due to limited space, we 

illustrate several different analysis directions and present a sample of results based on the 

pilot study data.

B. Evaluation of Internal Outcome Measures

In this section, we provide an example of an internal outcome measure which evaluates the 

in-exercise performance from the Kinect measurements for one subject, as described in 

Section II-B. Figure 5 shows the extracted primary measurement of wrist lift for the 

Buddha's Prayer exercise as well as the corresponding detection of stages, repetition counts, 

and selected skeletal key frames, as performed by participant #6 on day 11.
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Figure 6 presents a longitudinal, exercise-specific evaluation of the participant's performance 

across all exercise sessions. In this particular case, we review results of the Buddha's Prayer 
exercise performed by participant #6. The analysis of repetition times can provide 

information on general flexibility, strength, and endurance levels both during an exercise 

session and across multiple sessions. For instance, Figure 6a shows a slight decrease in the 

wrist lift measurements across multiple exercise sessions. This trend roughly corresponds to 

the reduction of the average exercise repetition times across multiple sessions as shown in 

Figure 6b. Since this observation provides only a coarse correlation with individual's 

flexibility and strength levels, it is difficult to directly infer overall trends in flexibility and 

strength changes.

A closer look at individual sessions in Figure 6 shows a considerable trend in decreasing of 

the wrist lift in each set. The results indicate that the subject may have fatigued towards the 

end of the set. Similarly, in-session trends can be analyzed for the exercise repetition times. 

Specifically, the participant took longer to complete the first few arm lifts as compared to the 

last set in almost all of the exercise sessions. The decline in the wrist lift decrease and the 

repetition times (i.e., smaller variance in data points within a session) indicates some overall 

improvement in the endurance levels.

C. Evaluation of External Outcome Measures

Table III presents the pre- and post-intervention scores for the external outcome measures 

introduced in Section III-C as well as the participant demographics. We see that participants 

#2 and #5 performed at least the same between their pre- and post-intervention scores for all 

tests. However, participants #3 and #4 showed decline in ACT and 2MSPT while participant 

#1 showed decline in 2MSPT and 4FUGT, and participant #6 showed decline only in 

2MSPT. We observe that 2MSPT scores for most of the participants deteriorated in the post-

intervention assessment. It is also important to note that BBS significantly suffered from the 

ceiling effect as 4 out of 6 participants achieved the perfect (or almost perfect) scores in both 

pre- and post-intervention tests. In this paper we defer from performing further statistical 

analysis of the external outcome measures due to a small sample size, short duration of the 

study, and relatively open exercise regimen that the participants followed.

V. Discussion - Lessons Learned

In this section we discuss usability issues and lessons learned from the reported pilot study. 

The summary of our findings can be found in Table IV.

A. System Setup

Since the system was aimed to be used in a home setting, the main usability limitation was 

imposed by the Kinect camera. The field of view of the Kinect is 43° × 57° (vertical × 

horizontal) with the depth range between 0.8 m and 4 m. To capture full body, the user had 

to be standing or sitting between 1.8 m to 3.0 m away from the camera.

To determine the availability of the space and to examine other constraints in homes of 

potential users, we had at the start of this project surveyed the living accommodations of 30 

participants in the ORCATECH Living Lab program. The survey included information on 
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the type of home, location of the main computer, size of computer monitor, available space 

in front of the computer desk, type of chair, availability and type of TV screen, and available 

space in front of the TV screen. The initial survey showed that majority of participants had a 

desktop computer with a monitor size between 14” and 17”. The computer was typically 

located either in the office space or a bedroom with 1.2 m to 2.5 m (about 4’ to 8’) available 

in front of the computer. 12 participants reported to have a newer or flat screen TV in their 

living room with sizes ranging from 24” to 52”. The participants reported to have anywhere 

between 1.0 m and 2.5 m (about 3’ to 8’) of free space available in front of the TV screen; 

however, some participants stressed that they would not want to rearrange furniture to 

accommodate the system. We have also determined that almost all of the participants had 

older computers with operating systems that would not be compatible with the Kinect 

camera. Based on this survey and careful evaluation of different options we decided to use 

an all-in-one computer with 23” monitor that would provide more flexibility in terms of 

system setup in different rooms while providing smaller footprint and large display. We set 

up two identical systems that were moved between participants’ homes to collect the entire 

dataset.

From the deployment in the six homes we found that the allin-one computer was initially 

very easy to setup by the coach, however, in some of the homes, it was difficult to find space 

for the system as it was somewhat heavy and bulky. Most participants had the computer 

placed next to their existing computer system. One participant used a cart with wheels to set 

up the computer screen closer while keeping sufficient distance for the Kinect camera in 

order to view the screen better. The participants reported that although they did not mind 

having the system in their home they did not see it as a viable long term solution. They 

expressed preference to use the exercise system either with an existing computer at their 

desk or having it connected to their TV. At the start of the study, however, majority of the 

participants did not have newer TV sets or sufficient space in their living room that could 

accommodate the system.

B. Kinect Tracking

Our exercise system relies on the pose estimation given by the Kinect software. The Kinect 

tracking algorithm, however, was primarily designed and trained for in-game interactions 

with several assumptions, such as users are standing, the view is unobstructed, body limbs 

are away from the trunk, there is no object interaction etc. In our previous publication [30] 

we examined the accuracy of the Kinect when tracking six of the exercises included in this 

study. Through the comparison with an optical motion capture system, we determined the 

distribution of joint position accuracy in three different orientations with respect to the 

camera. Based on these findings, we determined which of the joints were more reliable to 

track in particular exercises. The highest errors were found in hip and ankle joints, in 

particular during the sitting exercises. Similarly from these pilot data, we observed that the 

sitting skeleton often had much larger errors in the lower parts of the body, especially in the 

hips. The accuracy of the sitting pose was also influenced by the position of the Kinect 

camera. If the camera was positioned too low and was thus unable to observe user's thighs, 

the estimate of the hip position was less accurate. These errors also increased when a chair 

with larger footprint was used. A more stable skeleton was observed when subjects were 

Ofli et al. Page 11

IEEE J Biomed Health Inform. Author manuscript; available in PMC 2017 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



performing standing exercises. However, some of the exercises had to be performed while 

holding on to a chair which sometimes also influenced the tracking accuracy.

Another issue which occasionally prevented participants from being able to complete the set 

of exercises was faulty user identification. The Kinect keeps track of users identities (by 

assigning a user ID number) while they are in the scene. If the user leaves the scene or is 

fully occluded by another user, the tracking system will assign him/her with a new ID 

number. Our system assumed that the user who is the closest to the camera was the active 

user whose skeletal data were recorded. Although the participants exercised alone, there 

were several instances where a piece of furniture was misidentified as a human user and 

tracked instead. Since the users had no feedback on what is being tracked by the system, 

their activity was not counted for the particular session. When analyzing such data, we also 

noticed that when two skeletons are tracked in the scene, regardless of which one is used for 

the measurement, the stability of measured joint positions is decreased.

When selecting the exercises for this study, we performed extensive testing in the lab [30] to 

determine which measurements are the most reliable under given conditions. Although it 

was not possible to achieve stable full-body skeleton tracking in some of the exercises, the 

extracted measures were sufficiently reliable to track exercise repetitions and trigger 

corrective cues.

C. Exercise Selection

For the pilot study we used a set of 12 exercises which included activities of upper and lower 

extremities, primarily focusing on improving balance and strength. The exercises were 

chosen with regard to safety considerations (since the participants were performing the 

exercises without direct supervision) and the ability of the Kinect to robustly recognize and 

track the user performing a particular exercise.

The most challenging exercise was Cops and Robbers which consists of three stages: 

extension of arms, retraction of arms, and rotation of forearms to vertical position. During 

initial testing, subjects were typically combining the second and third stage, therefore the 

system was not able to properly count the repetitions. After discussing the issue with the 

coach, we decided to modify the requirements of this exercise and define only two stages 

which helped the participants get their repetitions counted even when performance was only 

partially correct. We believe it is necessary to provide clearer reminders of particular steps 

before and during the exercise.

Overall, the participants liked the selection of exercises, although some of them felt that the 

exercises were not challenging enough and did not have sufficient diversity to use this 

system for a longer time period. Other participants reported that ‘the exercise made them 

sore’ as they exceeded their regular level of activity. In the future, we thus plan to include 

broader selection of exercises that would target different levels of users, from easy to more 

challenging, and provide workout for different parts of the body, such as upper, lower, and 

full body. To compensate for the limitations of the Kinect to track the human body in more 

challenging poses, some of the exercises could provide only video instructions while no real-

time detection of exercise stage is performed.
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D. In-Exercise Feedback

When designing the in-exercise feedback screen, we tried to incorporate familiar elements of 

traditional workout videos as opposed to using 3D graphics that is typical for video games in 

order to appeal to older adults. The feedback on the exercise performance was overlaid on 

top of the video layer in form of performance bars, repetition counter, and textual cues. 

Additional audio cues were played along side the textual messages.

The participants reported that they found the in-exercise feedback screen useful, although 

some of the participants did not understand how the performance bars related to their 

movement. Some also did not remember that the thick mark inside the performance bar 

represented their last maximal performance which they were supposed to reach or exceed. 

The subjects liked the audio cues that were provided by the system, for example to remind 

them to sit tall during a particular exercise or to encourage them. One of the participants, 

however, mentioned that ‘the kudos and feedback were not him’ and he did not think they 

were necessary.

The participants liked the instructor. They mentioned that ‘the instructor talks clearly, speaks 

to the camera’. They found the demonstrations of each exercise to be useful for correct 

performance. The subjects, however, complained about the readability of the textual 

information provided during the exercise as it was too small for them to read from such a 

distance. This issue could be addressed by reducing the amount of textual information and 

use of a bigger screen, such as a TV screen.

Although the participants were able to see the output video captured by the Kinect camera 

during their exercise performance, they could not tell if the system was tracking them 

correctly or not. As discussed earlier, some of the subjects were not tracked properly or their 

repetitions were not always counted. We initially decided to provide only the video feedback 

in order to minimize the complexity of the visual feedback. In the future, we plan to include 

more focused feedback on the data output from the Kinect (e.g., segmented human figure) 

that would provide better cues to users to be able to self-correct some of the camera/tracking 

related issues.

E. User Interface

For the interaction with the exercise software we implemented several options, such as a 

mouse, keyboard shortcuts, touch screen, and voice control. During our initial testing we 

also considered use of a wireless presentation remote, however, we decided against it as it 

required turning it off after each use, otherwise the battery life was significantly reduced. We 

also determined that the voice control would be too challenging for the participants to use it 

reliably, therefore it was turned off for the pilot study. We eventually opted for using 

wireless keyboard and mouse for interacting with the software since all the participants in 

our pilot study were computer users and were thus already accustomed to the keyboard/

mouse. Keyboard shortcuts (i.e., single key strokes) or mouse clicks were used to interact 

with the on-screen buttons. Overall the subjects reported that ‘the interaction with the 

screens was very intuitive and they were able to easily find their way around the program’. 

One of the participants reported that ‘the text on the buttons was difficult to read’, however 
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most participants were able to read the button labels. With increased complexity of the 

exercise software that would in the future offer more variety in the selection of exercises, the 

user interface will require use of symbolic buttons, color cues, and less textual information.

F. Outcome Measures

As discussed previously, the internal and external outcome measures need to be able to 

detect changes in user performance that are associated with the standard components of the 

physical fitness, such as balance, flexibility, strength, and endurance. The quantification of 

these are important in order to guide the health coach as well as to provide feedback to the 

users which will incentivize them to exercise more regularly.

In our pilot study we computed several high-level performance primitives from the Kinect 

skeletal tracking as the internal outcome measures to evaluate user performance and to 

provide in-exercise feedback, stage detection, repetition counting, and exercise correctness 

verification. These measurement primitives proved to be robust enough, however, for each 

exercise, the selection of the appropriate measures had to be determined manually in 

collaboration with an exercise consultant. There is a need to develop a more generalized 

framework that would define appropriate measures for different exercises in more automated 

manner. Another open issue relates to the interpretation of the Kinect-derived performance 

measures in terms of aforementioned standard components of the physical fitness.

The effects of the exercise intervention also need to be interpreted in terms of standardized 

clinical measures, as those are the most useful for the health coach. The subjects in our pilot 

study were evaluated by several different scales at the beginning and the end of their exercise 

regime. Although we did not find a significant correlation by direct comparison of our 

internal outcome measures against the external outcome measures, we observed some trends 

that could be explored further with the help of more sophisticated approaches and data 

collected over a longer time period. For instance, instead of using primary measurements 

directly as the internal outcome measures, one could extract more advanced parameters that 

could consider a subject's simplified dynamics model (e.g., mass and inertia) to relate the 

performance to the standard components of physical fitness and provide a better foundation 

for direct comparison between such internal measures and the external outcome measures.

For the future studies, selecting the appropriate clinical tests will be as important as selecting 

the appropriate exercises for our coaching system. For this pilot study, we administered BBS 

and SFT. The BBS was developed originally to measure balance among older adults who 

need assistance in ADLs and live in residential care facilities. However, all participants in 

our pilot study were living independently. Therefore, the BBS scores suffered significantly 

from the ceiling effect as 4 out of 6 participants achieved the perfect (or almost perfect) 

scores in both pre- and post-intervention tests, leaving no room to detect potential 

improvements. Alternatively, to better account for cases where standard clinical tests fall 

short of measuring changes successfully, a comprehensive process-evaluation plan [33] can 

be developed to assess the overall implementation of the proposed exercise coaching system.
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G. Social Aspects

Another important factor influencing exercise adherence is the social aspect. Social support 

can in general increase the self-efficacy and subsequently enhance adherence [34]. In our 

study, we initially discussed various possibilities to include social interaction between the 

participants, such as having the exercise system in a common space for different users to 

use, providing ability for participants to share their scores with others, forming a competitive 

environment, etc. However, we had decided to exclude that component in the first iteration 

of the exercise system as we did not yet fully understand the potential technical difficulties 

(e.g., wireless internet connectivity) and participants’ interest in such interactions. The social 

interaction with regard to the exercise system was thus primarily limited to the weekly 

communications with the health coach. We will, however, explore some of the 

aforementioned social elements in our future work.

VI. Conclusion

Interactive exercise systems hold promise in promoting physical activity for all ages as 

shown by several previous stud ies. One of the interesting questions remains on how to 

balance the attractiveness and effectiveness of the exercise systems in real-world settings 

while considering various factors, such as age and educational level of users, system and 

environmental constraints, type of feedback, level of gamification, incentives, and social 

interaction. In our pilot study we deployed an interactive exercise system with automated 

feedback and coaching capabilities for older adults in their homes. Physical performance 

metrics and inference algorithms were based on data from the Microsoft Kinect camera 

mounted in users’ homes. In this paper we showed that despite several real-world 

challenges, the system was able to collect continuous exercise data during the entire 

deployment period while the participants expressed positive attitude towards using such a 

system for longer term in the future. Although this study was limited in terms of number of 

subjects and duration of the trials, it provided several insights on the system deployment and 

usability issues concerning elderly users. In our future work we are planning to improve the 

software capabilities with a wider selection of exercises, more focused and relevant in-

exercise and post-exercise feedback, and a more flexible user interface. This will provide a 

foundation for a subsequent more controlled research study with a larger number of 

participants studied over a longer period of time, with a goal of understanding how best to 

help older adults achieve improved physical functioning and maintain independence.
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Fig. 1. 
User interface control flow displaying the main screens of the exercise system. The bottom 

three screens were common for each of the 12 exercises in the program.
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Fig. 2. 
Overview of the data processing pipeline for automated coaching. Kinect 3D joint position 

data are processed into higher-level performance measures which are in turn used to verify 

exercise execution, count repetitions, and provide feedback on performance.
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Fig. 3. 
Exercise analysis example for the exercise Buddha's Prayer: (a) performance evaluation is 

done by extracting primary measurements related to the exercise; (b) exercise execution is 

verified using hidden measurements and corrective feedback is provided to the user; (c) 

stage detection determines the stage of the exercise and tracks number of repetitions.
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Fig. 4. 
Feedback screen displayed during the exercise performance includes video of the instructor, 

video captured by the Kinect camera, and various feedback elements related to the exercise 

performance on the top-left side of the screen.
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Fig. 5. 
Primary measurement example for Buddha's Prayer (participant #6; day 11): (a) wrist lift 
(dashed curve), stage detection (dark/light shades), repetition counts (solid vertical lines), 

and maximum/minimum values of the wrist lift measurement in each exercise repetition 

(diamonds/squares, respectively), (b)-(g) skeletal poses for key frames marked with cross 

markers in (a).
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Fig. 6. 
Analysis of the wrist lift measurements across all exercise sessions as observed in participant 

#6: (a) box plot of the maximum distance traveled by the wrists in each repetition, (b) box 

plot of the time taken to complete each repetition. Circular markers denote chronological 

data points for each session. The box represents the extent between 25th and 75th percentile 

from the median; the whiskers extend to the minimum and maximum values.
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TABLE II

Overall User Experience With The System

D S / Ŝ SCE/SC̃E/SĈE EER ESU

Participants

1 29 12 / 15 118 / 144 / 180 82% 66%

2 28 12 / 14 121 / 144 / 168 84% 72%

3 44 11 / 22 130 / 132 / 264 98% 49%

4 17 10 / 9 112 / 120 / 108 93% 104%

5 44 16 / 22 124 / 192 / 264 65% 47%

6 14 11 / 7 99 / 132 / 84 75% 1 18%

D: # days the system was deployed in a home.

S: # sessions (days) the system was used for exercise by a user.

Ŝ: [D/2], expected # sessions under exercise-every-other-day regimen.

SCE: total # successfully completed exercises by a user in S sessions.

SC̃E: 12 × S, expected SCE by a user in S sessions.

SĈE: 12 × S, expected SCE by a user in Ŝ sessions.

EER: SCE/SC ̃E, effective exercise rate.

ESU: SCE/SĈE, effective system usage.
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TABLE IV

Summary of Key Findings in the Pilot Study

Category Benefits Limitations Implications

Living Space • Participants liked the 
fact that they could 
exercise at home.

• Only few participants had the 
required 8’+ space in front of their 
computer.
• Accuracy of tracking was affected in 
some exercises due to small space.
• Chair or other objects were some-
times interfering with tracking.

• Kinect 2 has improved skeletal tracking and 
wider field of view (60Deg HFOV vs. 43Deg 
HFOV).
• Set up the system in a living room or 
common space for multiple users.

Computer System • All-in-one computer was 
easy to set up by a non-
technical person, i.e., 
health coach.

• It was difficult to find space for the 
computer since it was rather large and 
bulky.
• Participants thought the all-in-one 
computer would not be appropriate as 
a long-term solution.
• 23" screen was still too small for 
some older adults.

• Use of a small-desktop PC connected to an 
existing large screen TV set.
• Configure the computer to work as a turn-
key system.

User Interface • Participants found the 
exercise software easy to 
use.
• Participants were able to 
use wireless keyboard and 
mouse successfully.

• Several participants still had 
difficulty seeing text on the screen.

• Improvements in the UI: larger fonts, 
buttons with familiar icons, more contrast in 
colors.
• Better use of text-to-speech to assist users 
in reading larger amounts of text.
• Use of dedicated remote to control 
interaction.

In-Exercise Feedback • Participants liked the 
video guidance through 
the exercise sessions.
• Most participants liked 
receiving encouraging 
feedback from the 
exercise system.

• Participants questioned when the 
system is able to see them.
• Participants did not understand 
meaning of performance measures.

• Adding feedback with the Kinect body 
tracking information (e.g., human figure, 
skeleton).
• Simplified feedback through repetition 
counting.
• Provide more effective feedback to correct 
improper performance.
• Development of more intuitive performance 
scores (e.g., scores related to balance, 
strength, flexibility, endurance).

Exercise Regimen • Participants in general 
liked included exercises.

• Some participants found exercises 
too easy for their level of fitness.
• Some exercises were consistently 
performed incorrectly.
• Participants asked to have more 
variety and control over the exercises 
for longer-term use of the exercise 
system.

• Provide larger variety of exercises with 
different difficulty levels for different parts of 
the body.
• Provide participants with a weekly schedule 
of exercises based on their past performance.

Outcome Measures • Kinect-based internal 
outcome measures proved 
to be robust enough to 
perform exercise tracking 
in most cases.

• Proposed outcome measures for 
tracking the exercises were difficult to 
convey to the participants.
• External outcome measures (e.g. 
BBS, SFT) suffered from ceiling 
effect.

• Derive performance measures based on 
standard components of physical fitness from 
Kinect data.
• Select appropriate clinical measures based 
on participant fitness levels to avoid the 
ceiling effect.
• Use of process evaluation methodology 
[33] to assess effectiveness of intervention.
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