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Abstract
Neurogenesis takes place in the adult mammalian brain in 
three areas: Subgranular zone of the dentate gyrus (DG); 
subventricular zone of the lateral ventricle; olfactory bulb. 
Different molecular markers can be used to characterize 

the cells involved in adult neurogenesis. It has been 
recently suggested that a population of bone marrow (BM) 
progenitor cells may migrate to the brain and differentiate 
into neuronal lineage. To explore this hypothesis, we 
injected recombinant SV40-derived vectors into the BM and 
followed the potential migration of the transduced cells. 
Long-term BM-directed gene transfer using recombinant 
SV40-derived vectors leads to expression of the genes 
delivered to the BM firstly in circulating cells, then after 
several months in mature neurons and microglial cells, 
and thus without central nervous system (CNS) lesion. 
Most of transgene-expressing cells expressed NeuN, a 
marker of mature neurons. Thus, BM-derived cells may 
function as progenitors of CNS cells in adult animals. The 
mechanism by which the cells from the BM come to be 
neurons remains to be determined. Although the observed 
gradual increase in transgene-expressing neurons over 16 
mo suggests that the pathway involved differentiation of 
BM-resident cells into neurons, cell fusion as the principal 
route cannot be totally ruled out. Additional studies using 
similar viral vectors showed that BM-derived progenitor 
cells migrating in the CNS express markers of neuronal 
precursors or immature neurons. Transgene-positive 
cells were found in the subgranular zone of the DG of 
the hippocampus 16 mo after intramarrow injection 
of the vector. In addition to cells expressing markers 
of mature neurons, transgene-positive cells were also 
positive for nestin and doublecortin, molecules expressed 
by developing neuronal cells. These cells were actively 
proliferating, as shown by short term BrdU incorporation 
studies. Inducing seizures by using kainic acid increased 
the number of BM progenitor cells transduced by SV40 
vectors migrating to the hippocampus, and these cells were 
seen at earlier time points in the DG. We show that the 
cell membrane chemokine receptor, CCR5, and its ligands, 
enhance CNS inflammation and seizure activity in a model 
of neuronal excitotoxicity. SV40-based gene delivery of 
RNAi targeting CCR5 to the BM results in downregulating 
CCR5 in circulating cells, suggesting that CCR5 plays an 
important role in regulating traffic of BM-derived cells 
into the CNS, both in the basal state and in response 
to injury. Furthermore, reduction in CCR5 expression in 
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circulating cells provides profound neuroprotection from 
excitotoxic neuronal injury, reduces neuroinflammation, 
and increases neuronal regeneration following this type of 
insult. These results suggest that BM-derived, transgene-
expressing, cells can migrate to the brain and that they 
become neurons, at least in part, by differentiating into 
neuron precursors and subsequently developing into 
mature neurons.
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Core tip: It was previously thought that the development 
of new neurons did not take place in the adult brain of 
higher vertebrates. There has been substantial progress 
in understanding neurogenesis in the adult brain during 
the last decade, showing that neural progenitor cells can 
induce neurogenesis, mainly in three areas: Subventricular 
zone, subgranular zone of the hippocampal dentate 
gyrus, and olfactory bulb. More recently, it has been 
shown that bone marrow progenitor cells can participate 
in neurogenesis in the adult brain. In this review, we 
discuss the mechanisms of the migration, differentiation, 
and maturation of bone marrow progenitor cells in 
the adult brain. We also consider the increase of adult 
neurogenesis following experimental seizures, provided 
that neuroinflammation is decreased by reducing the 
expression of chemokines, and consequently the related 
migration of inflammatory cells into the brain parenchyma.
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ROLE OF BONE MARROW PROGENITOR 
CELLS IN ADULT NEUROGENESIS
Neurogenesis in the adult brain is a relatively new 
concept. There are three regions of the adult brain 
in Mammals where neurogenesis can take place in 
the adult mammal: Subgranular zone (SGZ) of the 
dentate gyrus (DG); subventricular zone (SVZ) of the 
lateral ventricle; and olfactory bulb (OB). The cells 
participating in neuronal development in adults have 
been characterized using molecular markers. It has 
been more recently suggested that a population of bone 
marrow (BM) progenitor cells could also contribute to 
adult neurogenesis. One way to verify if this hypothesis 
is correct would be to stain BM stem cells in situ and to 
track them in the body. In this review, we report that 
injecting the BM of rats and rabbits with SV40 vectors 

results in the transduction of BM precursor cells that 
are migrating, among other organs, to the brain where 
they differentiate in neurons and microglial cells. It has 
also been previously shown that neuroinflammation 
can hamper the process of neuroregeneration following 
insult in the DG. We show here that reducing the 
levels of certain chemokine receptors in circulating 
cells by gene transfer of siRNA against these receptors 
in a context of a rat model of neurotoxicity leads to a 
decrease in inflammation and an increase of BM-derived 
cells migrating to the brain. 

GENE DELIVERY TO BONE MARROW 
PROGENITOR CELLS
Ex vivo gene delivery is the most utilized procedure for 
transducing hematopoietic stem cell (HSC). However, 
in order to replace the ex vivo approach of transduction 
and reimplantation HSC, direct delivery of viral vectors 
into the BM has been proposed[1-3]. This procedure has 
been suggested because ex vivo gene transduction and 
reimplantation may modify the homing properties and 
can change the functions of progenitor cells and HSC[4-6]. 
Furthermore, HSC transduced by ex vivo gene delivery 
procedures may become exposed to infectious agents[4]. 
We tried here to assess the efficiency of intramarrow 
injection in the femoral cavity of rats using rSV40 
vectors. Levels of transgene expression were evaluated 
in peripheral blood population during several months[7]. 
Transgene expression was observed during several 
months in multiple BM and peripheral blood lineages by 
using this method[7]. Long term expression of transgene 
in platelets and the correction of haemophilia phenotype 
for at 5 mo were observed in other studies[8]. Sustained 
gene expression was also found present in neuronal 
cell after in vivo gene transfer[9]. The direct injection 
of viral gene delivery in the bone marrow can take full 
advantage of the stem cells that are present within the 
bone marrow including non hematopoietic cells[8,10]. The 
targeting of HSC within their niche may be advantageous 
in the treatment of Fanconi anemia (FA) by ensuring 
that they maintain their function and by enabling the 
correction of the remaining stem cells[6]. This approach 
also eliminates challenges, such as the requirement for 
preconditioning[8,10], thus making it very promising in the 
treatment of FA[6] and haemophilia[8]. Moreover, gene 
transfer based on direct intramarrow injection should 
prevent difficulties seen during ex vivo approach such as 
stimulation by cytokines, putative loss of engraftment, and 
keeping HSC properties overtime[8,10]. Gene transfer to the 
BM improves the efficiency of HSC viral vector transduction 
and strengthens the supportive microenvironment by 
opposition to intravenous inoculation that delivers vector 
to blood[8,10]. Consequently, this procedure leads to better 
preservation of stem cell viability and capacity[10]. We 
used the intrafemoral gene delivery approach to BM 
progenitor cells to study their fate in the body, and more 
particularly in the brain. We will first review the cells 
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involved in adult neurogenesis, their molecular markers, 
the different areas involved in adult neurogenesis, and the 
factors influencing neuronal development. Then, by using 
gene delivery into the femoral cavity, we will show the 
migration and differentiation of transduced BM progenitors 
to the brain. Finally, we will demonstrate that reducing 
neuroinflammation in an animal model of experimental 
seizure leads to an increase of BM progenitor cells migr
ating towards the brain.

NEUROGENESIS IN THE ADULT BRAIN
The traditional concept was that the development and 
growth of new neurons from neuronal stem precursor cells 
does not take place in the adult brain of higher vertebrates. 
In 1962, Altman[11] demonstrated neurogenesis in the brain 
of an adult rat. There was no further report until Goldman 
and Nottebohm[12] reported evidence of neurogenesis in 
canaries. This was further substantiated in 1992 when 
studies reveal similar evidence of adult neurogenesis[13]. 
There has been substantial progress in understanding 
neurogenesis in the adult brain during the last decade. 
However, molecular events leading to the increase 
number, migration, and differentiation of progenitor cells in 
the brain need to be better characterized. The participation 
of BM progenitor cells to adult neurogenesis has also been 
suggested more recently. 

Adult neurogenesis occurring in mammalian brain is 
now a well accepted idea, essentially in three regions: 
SGZ of the DG, SVZ of the lateral ventricle, and olfactory 
bulb[14]. Dividing cells see their number reduced after 
birth, except in the SGZ of the DG and the SVZ (Figure 
1)[15]. 

Neuroblasts and progenitor cells from the SVZ also 
migrate through the rostral migratory stream (RMS) to 
the OB maturing into new neurons (Figure 1). The same 
process has been documented in primates, including 
humans[16-18]. Neurons, produced in the DG and the SVZ 
are primarily granular neurons[17] and to a lesser extent 

periglomerular neuronal cells for the OB[19]. 
The SVZ of the lateral ventricle is mainly located in 

the lateral wall of the lateral ventricle which is facing the 
striatum[20]. It contains various neural progenitor cells 
along its wall. Four different types of cells have been 
identified in the SVZ of the lateral ventricle of mice[20,21]. 
They are described as types A, B, C and E cells (Figure 
2). These cells differ from each other based on the 
ultrastructure, morphology and molecular markers 
expressed by the cells. Type A cells, the most common 
ones, are darker than B cells in electron microscopy. 
Their cell bodies are elongated and contain up to two 
processes; they have abundant lax chromatin with two 
to four nucleoli; the cytoplasm is dark and contained free 
ribosomes. The rough endoplasmic reticulum has only 
a few short cisternae, the Golgi apparatus is small, and 
many microtubules are arranged along the long axis of 
the cell[20]. These type A cells were described as being 
connected to each other by junctional complexes[20]. Type 
A cells are neuroblasts expressing polysialated form of 
the neural cell adhesion molecule (PSA-NCAM). Type A 
cells are migratory in nature and course tangentially to 
the walls of the lateral ventricle. Type B cells are slow 
dividing astrocytes that enclose the migrating neuroblasts. 
These cells have different characteristics compared to type 
A cells[14]. Their nuclei is irregular and the cytoplasm is 
lighter stained. They are characterized by their abundant 
intermediate filaments and the dense bodies within their 
cytoplasm. A further subdivision of type B cells into type 
B1 and a type B2 has been reported[20]. Type B1 cells are 
larger, and contain more cytoplasm. It is believed that type 
B cells are the neural precursor cells and that they give rise 
to both type C and type A cells[22]. Type C cells are found 
only in the SVZ and they are rapidly dividing immature 
precursor cells arranged in clusters along the migrating 
chains. Type C cells are larger, more spherical, contain 
larger golgi apparatus than type B cells; however their 
size is similar to type B1 but they have fewer processes[20]. 

DG

SVZ RMS
OB

Mature neuron

Immature neuron

Neuron of SVZ

Figure 1  Different areas of neurogenesis in the adult rodent. The three 
areas of neurogenesis in the adult are the dentate gyrus of the hippocampus, 
the subventricular zone, and the olfactory bulb. Some progenitor cells are 
migrating from the SVZ to the OB, along a rostral migratory stream. DG: 
Dentate gyrus; SVZ: Subventricular zone; OB: Olfactory bulb; RMS: Rostral 
migratory stream.

SVZ LV

EC

A

B

Figure 2  Four different types of progenitor cells in the subventricular zone. 
Type-A cells are migrating towards the olfactory bulb along the rostral migratory 
stream. Type B cells are believed to be the neural precursor cells and will give 
rise to both type C and type A cells. Type C cells are rapidly dividing immature 
precursor cells arranged in clusters along the migrating chains, and they are 
found only in the SVZ. E cells belong to ependymocytes lineage. LV: Lateral 
ventricle; SVZ: Subventricular zone. 
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Type E cells belong to ependymocytes lineage (Figure 2). 
Cells in the SVZ that are originating from the lateral 

wall of the lateral ventricle migrate along the RMS 
pathway to be incorporated into the OB[14,23]. The rostral 
migratory stream pathway is constituted mainly of type 
A and type B cells[20]. There has been no evidence so 
far of type C cells within the RMS and studies suggest 
that this region is devoid of these cells. Type A cells 
are arranged in chains surrounded by type B cells 
within the RMS, similarly as within the SVZ. These cells 
reach the olfactory bulb and become interneurons. 
In addition, microglial cells and endothelial cells are 
also present in the RMS[24]. The division and migration 
of the neuroblasts within and to the olfactory bulb is 
independent of the process that takes place within the 
olfactory bulb[25].

SGZ of the DG is situated between the hilus and 
the granular cell layer of the DG in the hippocampus. 
This is one of the main areas where neurogenesis takes 
place[17,26] with an estimated 9000 new cells generated 
each day[27]. Not all of the neurons generated in the 
hippocampus will survive and become incorporated 
into the neuronal circuit of the brain. Approximately 
50% of the neurons born in the SGZ will die after birth 
without being incorporated in the neuronal circuit of 
the brain. Within the hippocampus, three types of cells 
are identified: (1) Type 1, radial cells, which give rise to 
type 2 cells; (2) Type 2, non-radial intermediate, neural 
progenitor cells; and (3) Neuroblasts, derived from 
type 2 cells[28]. Type 1 cells are found to be progenitor 
cells similar to type B cells found in SVZ and are slow 
dividing cells, whereas type 2 cells are rapidly dividing 
ones[29].

MOLECULAR MARKERS OF 
NEUROGENESIS
Adult neurogenesis involves a succession of events occu
rring in a specific order[30-32]. For example, hippocampal 
neurogenesis is thought to begin with stem cells located 
in the SGZ of the DG. There, these cells proliferate, 
differentiate and give rise to new neurons. Neurons at 
various stages of neurogenesis express different markers. 
Consequently, the fate, and differentiation, of cells during 
neurogenesis can be followed[33,34] (Figure 3 and Table 1). 

Different markers help to determine the cells in 
the stage of neurogenesis and their role during particular 
stages. Some of the most commonly used markers include 
glial fibrillary acidic protein (GFAP), nestin, Neuro D, Hu, 
TuJ1, doublecortin (DCX), PSA-NCAM, neuron specific 
enolase (NSE) and neuronal specific nuclear protein 
(NeuN). Markers are useful to distinguish cellular 
proliferation, early adult neurogenesis, later steps of 
adult neurogenesis, and mature stage. 

Different markers of proliferation can be used. The 
most utilized markers are proliferating cell nuclear 
antigen, and Ki-67, respectfully characterized by a 
long half-life, and a short half-life of about one hour. 
Ki-67 is rarely used in this application. Other markers 
include minichromosome maintenance protein 2 and 
phosphorylated form of histone 3[35]. Bromodeoxyuridine 
(BrdU) incorporates into DNA during S phase and is 
also used as a marker of proliferating cells. To conclude 
that BrdU-positive cells are of neuronal lineage, and to 
characterize the cell lineages involved, BrdU-labeling 
needs to be combined with markers of neurons at 
different stages of neurogenesis[33,35]. 

Cell types

Stages of 
neuronal 
development

Markers of 
neuronal 
development

GFAP, nestin, 
Sox-2, Pax-6, 
MSI-1

Ki-67, PCNA, PH3, 
MCM2, BrdU

Tbr2, Neuro-D

PSA-NCAM, DCX

NeuN

Tuj1, 
calretinin

Calbindin, 
Tuj1, MAP2, 
NSE, TH, 
parvalbumin

Mitotic cells

Putative 
stem 
cells

MigrationProliferation

Postmitotic cells

Transit 
amplifying 
cells

Mature 
neurons

Immature 
neurons

Targeting
Synaptic 
integration

Figure 3  Different markers of neuronal 
development in mitotic and postmitotic 
cells (modified from Ref. [21,35]). PSA-
NCAM: Polysialated form of the neural cell 
adhesion molecule; DCX: Doublecortin; 
GFAP: Glial f ibri l lary acidic protein; 
PCNA: Proliferating cell nuclear antigen; 
PH3: Phosphorylated form of histone 3; 
MCM2: Minichromosome maintenance 
protein 2; MSI-1: Musashi-1; MAP2: 
Microtubule-associated protein 2; NSE: 
Neuron specific enolase; TH: Tyrosine 
hydroxylase.
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Markers of early stages of adult neurogenesis include 
GFAP, which is an intermediate filament protein expressed 
by mature astrocytes within the adult brain[33,36,37]. Its 
expression has been described in type B progenitor cells 
present in the SVZ and type 1 cells described in the 
SGZ[21,36-38]. Nestin is a structural analog to intermediate 
filament protein, found to be positive in type B neural 
progenitor cells and transit amplifying type C cells in 
the SZV[21], in type 1 (radial glial cells) and 2 cells in the 
SGZ[29,39]. Nestin is thought to be a marker of precursor 
cells. Consequently, nestin synthesis decreases, as 
differentiation of nervous tissue progresses. Neurofilament 
and glial (e.g., GFAP) proteins begin to be expressed 
during the differentiation of neurons and astrocytes 
respectively when nestin expression starts to be reduced. 
Nestin expression declines during the postnatal period. 
However, rare cells expressing nestin are present in the 
adult DG and the SVZ[40]. Expression of nestin is abruptly 
terminated. Other early markers of adult neurogenesis are 
Sox-2, a SRY-related HMG-box gene 2, paired box gene 
6 (Pax-6), and musashi-1 (MSI-1), a RNA-binding protein 
preferentially expressed in the CNS. However, neuronal 
specificity of some of these markers is not absolute[35].

The markers of later stages of adult neurogenesis 
include DCX and PSA-NCAM, both markers of immature 
neurons. DCX is a protein positive in cells within the RMS 
and is present in migrating progenitor of neurons[41,42]. 
DCX induces polymerization of microtubules. DCX is a 
marker expressed by neuroblasts during their migration 
and immature neurons of the granular layer of the DG. 
It is also present in newly generated cells located at 
the border of the granular layer of the DG and in the 
SGZ. DCX is expressed in newly generated olfactory, 
hippocampal, and striatal neurons, but not in the cortex. 
DCX is a marker of late mitotic neuronal precursors and 
early postmitotic neurons. There is no overlap between 
the expression of DCX and nestin[33,34]. As such, DCX is 
a good marker for adult neurogenesis. Expression of the 
(PSA-NCAM) is observed at the same stage. Thus, both 
mitotic neuronal precursors and early postmitotic new 
neurons are positive for PSA-NCAM and DCX[35]. The 
basic helix-loop-helix protein NeuroD and T-box brain 
protein 2 (Tbr2) are also expressed during later steps 
of adult neurogenesis, and show some overlap with 
the expression of Pax-6. Neuro D is a protein inducing 
microtubule polymerization. NeuroD is expressed in 
proliferating neurons and in migrating neuroblasts[33]. 

Both Tbr2 and NeuroD are coexpressed with DCX and 
PSA-NCAM. Moreover, Tbr2 is downregulated when cells 
are committed to neuronal lineage[35]. 

Finally, NeuN is a soluble protein that is found in the 
nucleus and cytoplasm of postmitotic neurons. NeuN is 
expressed by mature neurons[33]. In the hippocampus 
(HC), postmitotic cells are immunopositive for NeuN. 
NeuN is a marker of both newly generated postmitotic 
neurons and “normal” postmitotic neurons. There is a 
correlation between the decreased expression of DCX and 
the beginning of NeuN expression[33]. Additional markers 
can be used to characterize mature neurons, and some of 
them can be specific of certain areas of the brain. Hu is a 
RNA binding protein from the elav family expressed from 
the early stages of neurogenesis to the end[43]. Tyrosine 
hydroxylase is the enzyme that catalyzes the formation of 
L-DOPA, precursor of dopamine. Several calcium-binding 
proteins can be expressed in mature neurons: Calbindin-
D28k is particularly abundant in the cerebellum; calretinin 
is a 29 k protein with 58% homologies to calbindin-D28k; 
parvalbumin is a small calcium-binding albumin protein 
involved in calcium signaling. Microtubule-associated 
protein 2 induces assembly of microtubules, an essential 
stage in neuritogenesis. NSE is often used as a marker of 
mature neurons. Neuron-specific class Ⅲ b-tubulin (Tuj1) 
contributes to axonal transport and provides stability to 
microtubules in axons and somas. However, the list of the 
markers for mature neurons is not exhaustive (Figure 3).

Markers expressed in the SVZ and the subgranular 
zone of the DG during adult neurogenesis are presented 
in Tables 2 and 3 respectively. 

MIGRATION OF BONE MARROW 
PROGENITORS TO THE BRAIN AND 
THEIR DIFFERENTIATION INTO CELLS OF 
DIFFERENT CNS LINEAGES
rSV40-transduced bone marrow progenitor cells migrate 
to the brain
Gene delivery to the brain has focused mainly on 
transducing neurons directly. However, an alternative 
approach may be to consider those areas of the brain 
where neurogenesis continues well into adult life: The 
DG of the HC, and the SVZ. New neurons are generate 
throughout life in the DG. These new neurons are involved 

Table 1  Markers of cells involved in neurogenesis with corresponding stages of neurogenesis

Marker Cells Stage of neurogenesis

Nestin Neuronal stem cells, radial glia cells, transit amplifying cells Proliferation, differentiation
GFAP Neuronal stem cell, mature astrocytes Proliferation, differentiation
PSA-NCAM Migrating neuroblast, immature neuron Differentiation, migration, targeting
Tuj1 Migrating neuroblast, immature neuron, mature neuron Differentiation, migration, targeting
Doublecortin Migrating neuroblast, immature neuron Differentiation, migration, targeting
NeuN Mature neuron Targeting, synaptic integration

GFAP: Glial fibrillary acidic protein; PSA-NCAM: Polysialated form of the neural cell adhesion molecule.
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in the repair of brain insults. Targeting endogenous brain 
cell progenitors in situ might be attempted in order to 
genetically engineer them. For example, proliferation of 
such engineered cells after injury or during disorder of 
the brain would lead to functional brain cells expressing a 
transgene of potential interest. However, this approach is 
limited by the low number of endogenous progenitors in 
the adult brain. Furthermore, the life span of endogenous 
stem cells might be not as long compared to pluripotent 
stem cells with different properties as well. 

Migration of BM stem cells to the brain and their 
differentiation into different types of brain cells has been 
reported in rodents[44,45] as well as in humans[46]. When 
they are injected intravascularly or intraperitoneally in 
rodents, adult BM progenitor cells are able to migrate to 
the adult CNS where they differentiate into neuronal[45,47], 
or non-neuronal cells[48]. In patients with transplantation 
of BM, the autopsy of brains demonstrated that human 
HSC can trans-differentiate into neurons, astrocytes, and 
microglia following long term marrow engraftment. These 
results were observed without fusion between cells. They 
suggest that human HSC coming from BM-transplantation 
could be used as a potential therapeutic source not only 
for long term regenerative neuropoiesis[46], but also for 
gene delivery in the brain. 

The potential of direct transduction of HSC in the BM 
has been raised. However, in situ in vivo gene delivery to 
HSC/progenitors by direct injection of viral vectors in the 
BM has been rarely described, despite the putative interest 
of this method. The fate of cells positive for the transgene 
in the body has never been studied in this context. Our 
group previously reported that the inoculation of a Tag-
deleted recombinant SV40 vector carrying a marker 
gene (FLAG epitope appended to HIV-1 Nef as a carrier 
protein) in the femoral BM of rats caused positive 
results[7]. Expression of the transgene in the blood lasted 
throughout the 16 mo of the study. Twenty-five percent 
of femoral marrow cells and between 4%-12% (average, 
5%) of blood nucleated cells of all lineages were positive 
for the transgene FLAG throughout the whole study. 
However, it remained to be determined if HSC could 
migrate to the brain in this experimental paradigm. The 

aim of the study was to determine the localization and 
the type of transgene-positive cells in the DG and in the 
SVZ. DG is composed of the hilus area surrounded by 
the granule cell layer (GCL), formed by an inner (upper) 
and outer (lower) blades. We therefore investigated by 
immunohistochemistry[49,50] if some BM progenitor cells, 
transduced in vivo by intramarrow injection of a rSV40 
vector, could migrate to the adult CNS and differentiate 
into different brain cell lineages[51,52].

Transgene expression was seen in cells with shape 
of neurons in the DG 16 mo after intramarrow injection 
of the vector. Transgene expression was not seen in the 
DG of control animals whose BM was either inoculated 
with a control vector [SB(BUGT)], or saline. Transgene-
positive cells were mostly observed in the DG and SVZ 
(Figure 4A). Transgene-positive cells were not seen before 
1 mo and few of them were detected at 4 mo. Numerous 
transgene-positive cells were observed in the DG and SVZ 
16 mo after intramarrow injection of the vector. Some 
of the transgene-expressing cells were also positive for 
NeuN, a marker of mature neurons, not only in the GCL 
but also in the hilus. Transgene-positive cells expressing 
NeuN had the shape of neurons of the DG. There were 
also some transgene-expressing cells that were not 
NeuN positive in the same areas, and some of these 
cells had the morphology of microglial cells and were 
immunopositive for CD11b-C3bi, and CD68, both markers 
of microglial cells. Very rare transgene-positive were 
astrocytes. Sixteen months after intramarrow injection of 
the vector, approximately 5% of DG cells were positive for 
the transgene. Forty-eight point six percent, 49.7% and 
1.6% of these transgene-positive cells were respectively 
expressing markers of neurons, microglia, and astrocytes, 
as assessed by double immunocytochemistry for the 
transgene and lineage markers. We also determined 
transgene expression in the SVZ. The pattern of FLAG 
expression in the SVZ was similar as in the DG. One and 
4 mo after intramarrow injection of the vector, no or few 
cells were expressing FLAG; numerous transgene-positive 
cells were observed in the SVZ 16 mo after intramarrow 
injection of SV(Nef-FLAG). About 50% of transgene-
positive cells were of neuronal lineage because stained 
by neurotrace (NT), a neuronal marker. This percentage 
is close to the one observed in the DG. Thus, transgene-
positive cells can be observed in areas of the CNS other 

Table 2  Markers expressed during neurogenesis originating in 
the subventricular zone

Neuronal 
lineage

Type B cells Type C cells Type A cells Neuronal cells

Cell 
identity 

SVZ 
Astrocytes

Transit 
amplifying 
progenitor 

cell

Migrating 
neuroblast

Mature and 
immature 

neuronPutative 
stem cells

Identifying 
marker

GFAP Nestin PSA-NCAM DCX
Nestin Tuj1 NeuN

Hu

SVZ: Subventricular zone; GFAP: Glial fibrillary acidic protein; PSA-
NCAM: Polysialated form of the neural cell adhesion molecule; DCX: 
Doublecortin; NeuN: Neuronal specific nuclear protein.

Table 3  Markers expressed during neurogenesis in the 
subgranular zone of the dentate gyrus

Mitotic cells Post mitotic cells

Stages of 
neuronal 
development

Putative 
stem cell

Transit 
amplifying 
progenitors

Immature 
neurons

Mature 
neurons

Markers for 
neuronal 
development

GFAP
Nestin

Nestin
Doublecortin

Doublecortin
Tuj1

Tuj1 
NeuN
NSE

GFAP: Glial fibrillary acidic protein; NeuN: Neuronal specific nuclear 
protein; NSE: Neuron specific enolase. 
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than the DG. Our results show that cells present in the 
adult BM can migrate to the CNS where they differentiate 
into cells of CNS lineages.

Consequently, it appears, that gene delivery to the BM 
induces transgene expression in brain cells of different 
lineages, in the DG and the SVZ. These results show that 
adult neurogenesis continues in the DG and SVZ during 
adult life, and that at least some of the cells generated 
that way derive from one or more populations of resident 
BM cells at the time of the administration.

Other hypotheses can explain these observations. 
rSV40 vectors can transduce CNS cells when directly 
administered into the brain[53]. However, DG cells would 
unlikely be transduced at the time of the injection of the 
vector in the BM. Only 16 mo after the injection were 
transgene-positive cells seen in the DG. Transgene-
positive cells were absent the first weeks after injection 
of the vector and were rare 4 mo after intramarrow 
injection of the vector. Moreover, transgene-positive 
cells were rarely detected in epithelial cells of other 

A

B

C

DAPI NeuN

SGZ

GCL

DAPI

DAPI + nestin

Nestin

DAPI + FLAG

FLAG

FLAG

DAPI FLAGDCX

SGZ

Figure 4  Bone marrow derived cells can migrate to the rat normal hippocampus. Sixteen months after injection of SV (Nef-FLAG) into the rat bone marrow 
(BM), transgene expressing cells were detected in the dentate gyrus (DG). A: FLAG-positive cells colocalized with NeuN, a marker of mature neurons. FLAG+/NeuN+ 
cells were located in the granular cell layer (GCL), as well as in the subgranular zone (SGZ) and the hilus. No FLAG-expressing cells were detected in the brain after 
injection of SV (BUGT), a control vector, in the BM; B: Nestin+/FLAG+ cells were detected mainly at the border SGZ/GCL, and more rarely in the GCL (arrows); C: 
DCX+ positive cells expressing FLAG were seen at the border SGZ/GCL and more rarely in the GCL (arrows). Note that some FLAG+ cells were DCX-, and were 
probably mature neurons (arrowheads). In all experiments, nuclei were stained in blue by Vectashield containing DAPI. 
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organs usually transduced by intravenous rSV40 
administration (e.g., liver, kidney), at all times after 
injection, suggesting that the vector did not diffuse 
significantly from the site of injection[54,55]. 

Others also suggested that BM progenitor cells 
might differentiate into mature brain cells. It has been 
shown that endogenous neural stem cells are present 
in the DG and SVZ, and can generate different types 
of brain cells[56]. These endogenous progenitor cells 
may be responsible for the constant remodeling taking 
place in the HC and OB[15,16]. The apparent maturation 
and differentiation of BM progenitors seen in the 
present study is likely a physiological process because 
no insult was caused to the brain. Various types of 
injury can lead the adult rodent brain to repair itself by 
neurogenesis[57-59]. Neurogenesis taking place in the HC 
and SVZ following such insults is based on the generation 
of new neurons that are able to migrate a considerable 
distance from their origin[57]. Moreover, these regenerated 
neurons can replace dying cortical ones[60,61]. 

It is still unclear if such process takes place in humans 
during physiologic or pathologic conditions. However, 
our results were observed without injury given to the 
CNS. Both experimental and human data showed that 
transplantation of male HSC coming from the BM into 
female recipients resulted in CNS neurons that were 
bearing Y chromosome[45,46]. Cogle et al[46] detected 
neurons in the HC of women recipients coming from 
male BM transplants. However, this process took several 
months to occur. These data are coherent with our 
results[46,62,63]. Similarly, BM progenitor cells from male 
mice, transplanted into immunocompromised female 
recipients, generated cells positive for Y-chromosome, 
that were detected in the brain and were positive for 
neuronal markers[45,46].

Studies using gene-marked BM cells have shown that 
BM-derived cells may transdifferentiate into CNS cells 
of one or more lineages[47]. Cell-cell fusion might support 
some of the reports[62-64]. However, when they are exposed 
to certain growth factors (i.e., brain-derived neurotrophic 
factor, epidermal growth factor), or when they are 
grown together with fetal mesencephalic or striatal cells, 
cultured BM stromal cells can express some glial and 
neuronal antigens[65]. Similarly, when they are admini
stered into brain ventricles of neonates, BM stromal cells 
can differentiate into cells immunopositive for astrocytic 
and neuronal markers[66]. It has been suggested that BM 
progenitor cells can trans-differentiate into brain cells of 
different lineages[45]. However, other reasons can explain 
these observations as well, and the mechanism(s) of 
such trans-differentiation are not clear as yet. 

The first step in the migration of BM progenitor cells 
to the brain would be the homing of the BM-derived 
population(s) to their target. The mobilization pathway 
of HSC towards the brain involves a complex and 
intimate collaboration between adhesion molecules, 
cytokines, proteolytic enzymes, stromal cells, and HSC. 
This process can explain the regulation of HSC release, 
migration, and homing from the BM to the brain[67]. 

Vascular and extracellular matrix molecules have an 
important role as well[22,45,68-70]. Numerous reports 
involve mechanisms and factors inducing or promoting 
mobilization of HSC from BM into peripheral blood (PB). 
Several cell membrane proteins, including CXCR4 and 
its ligand, α-chemokine stromal-derived growth factor-1 
(SDF-1), are involved in the mobilization of HSC to the 
PB[71-74]. Different factors can increase the number of 
HSC migrating to the PB. Among these factors, some 
are related to tissue or organ injury, strenuous exercise 
and stress, local or systemic inflammation, and finally 
pharmacological agents such as CXCR4 small-molecule 
antagonist AMD3100 and granulocyte colony-stimulating 
factor (G-CSF)[74-77]. Among these factors affecting HSC 
mobilization, G-CSF and SDF-1 are the best known. It 
must be noted that the activation of the complement 
cascade is activated by all these processes[74,76]. 

BM niches are retaining HSC through the interaction 
between the chemokine CXCR4 receptor and α4β1 
integrin. The respective ligands of CXCR4 and α4β1 
integrin are α-chemokine SDF-1 and vascular adhesion 
molecule-1 (VCAM-1, also known as CD106), and they 
are present on cells in the BM niches (e.g., fibroblasts 
and osteoblasts)[74-77]. One of the main factors affecting 
HSC mobilization, G-CSF, operates in two ways: First, 
it disrupts the anchoring relationship by decreasing the 
expression of SDF-1, thus reducing the binding of SDF-1 
to CXCR4. Secondly, G-CSF enhances serum levels of 
other cytokines and growth factors[67,78,79]. 

SDF-1 (chemokine CXCL12) is highly expressed 
in the BM where it is generated by osteoblasts in the 
endosteal region, as well as by endothelial cells and 
reticular cells located in the BM stroma. SDF-1 is a potent 
chemoattractant for HSC and it controls cell adhesion and 
survival as well. Synthesis of SDF-1 obeys to a circadian 
rhythm regulated by the sympathetic nervous system. 
Noradrenaline operates via β2-adrenoreceptors present 
on osteoblasts and via β3 adrenoreceptors expressed 
in nestin-positive stem cells in order to decrease their 
production of SDF-1[80,81]. 

CXCR4 and CXCR7 have been described as two 
chemokine receptors for SDF-1. The relationship between 
SDF-1 and CXCR4 in HSC is believed a key factor in the 
control of the traffic of HSC in the BM[82,83]. AMD3100 
is a powerful bicyclam CXCR4 antagonist that acts 
synergistically with G-CSF in humans. AMD3100 enhances 
mobilization of HSC in the BM[84]. Once mobilized, HSC 
express decreased levels of CXCR4. CXCR7 is a second 
high-affinity receptor for SDF-1. However, CXCR7 is not 
linked to signaling pathways for migration of HSC. SDF-1 
is internalized then degraded once bound to CXCR7; 
consequently, CXCR7 appears to act as a SDF-1 sink[67,78]. 
CXCR4 and CXCR7 interact, but CXCR4 inhibition does not 
seem to modify the role of CXCR7[67]. 

There are several factors influencing the interactions 
SDF-1-CXCR4 and α4β1 integrin-VCAM-1. For example, 
the sensitivity to SDF-1 depends on the incorporation 
of the CXCR4 receptor into membrane lipid rafts[67,85,86]. 
As a consequence, the migration of HSC is influenced 
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by gradients of the bioactive lipids sphingosine-1 
phosphate (S1P) and ceramide-1 phosphate (CP1). S1P 
and CP1 result from membrane lipid metabolism and 
are involved in stem cell trafficking. 

Other important molecules involved in HSC mobi
lization are proteolytic enzymes released from activated 
granulocytes and monocytes that are present in the 
BM. These enzymes operate by attenuating SDF-1-
CXCR4 and α4β1 integrin-VCAM-1 interactions in the BM 
microenvironment[74-77]. Another example of molecular 
intervention is the role of innate immunity in this process. 
One of the molecules involved in innate immunity, β2-
defensin (β2-D), influences the sensitivity of HSC to 
SDF-1[76]. Different proteolytic cascades such as the 
complement cascade, coagulation cascade, and fibrinolytic 
cascade, as well as several other proteolytic enzymes 
secreted by cells present in the BM might have a role 
as well[87]. Different stress situations, local or systemic 
inflammation, and administration of pharmacological 
mobilizing agents (e.g., G-CSF and AMD3100) can 
influence these proteolytic cascades[76].

Activated complement stimulates oxidative stress, 
activation of platelets, and injury of erythrocyte mem
branes, interacts with different proteolytic cascades 
in the BM, and consequently, triggers mobilization of 
HSC[67]. The third (C3a) and fifth protein components 
of complement (C5) have also an important role in the 
mobilization of HSC[88]. The first cells migrating from the 
BM are neutrophils[88]. C5b-C9 complex (or membrane 
attack complex) induces release of S1P, from red blood 
cells and platelets[89]. Thus, inflammatory process and 
innate immunity will induce the migration of HSC from 
BM into PB[76].

In another cascade involved in the mobilization of 
HSC, the fibrinolytic cascade, plasminogen binds to 
the BM extracellular matrix (ECM). Secondly, various 
proteins components of the ECM, including fibrin, laminin, 
are damaged by plasminogen after it converted into 
plasmin. Other proteases, such as metalloproteinases 
MMP-3, MMP-9, MMP-12 and MMP-13, are also activated 
by plasminogen in order to reduce the levels of other 
components of the ECM, such as collagen[90].

Heme oxygenase 1 (HO-1) is also involved in the 
mobilization process of the HSC[91]. Among other roles, HO-1 
mitigates the inflammation linked to the complement 
by increasing the expression of complement inhibitors 
CD55 and CD59 on endothelial cells[92]. HO-1 participates 
also in the regulation of the expression of SDF-1[93], a 
major factor in the retention of HSC in BM niches[74-77]. It 
has been shown recently that HO-1 influences actually 
negatively the adhesion and migration of neutrophils 
during acute inflammation[94]. It has been suggested that 
negative regulators of the mobilization of HSC from BM 
exist. But few results have been reported so far. Serine 
protease inhibitors (serpins)[95] and tissue inhibitors 
of metalloproteinases (TIMPs)[96] seem to have such 
inhibitory effects on mobilization of HSC. HO-1 seem to 
influence negatively the migration of HSC[74]. 

Concerning homing of progenitor cells to organs, 

and not PB, other factors can be involved. For example, 
resveratrol enhances migration of mesenchymal stem 
cells to injured liver[97].

After mobilization from the BM, the second step would 
be the differentiation into CNS cells of different lineages. 
However, mechanisms of differentiation are not totally 
clear yet[98]. Neural cell adhesion molecules (i.e., N-CAM), 
proteins regulating cell cycle transit[99] and transcription 
factors[100] have been implicated in this process, as well 
as molecules of the ECM[68,69]. Ectopic expression of a 
specific set of transcription factors (c-Myc, Sox2, Oct4 
and Klf4) can reprogram mouse embryonic and adult 
fibroblasts into embryonic stem-like cells[101]. These cells 
were called induced pluripotent stem (iPS) cells. It has 
been reported that stem cells can be reprogrammed 
into iPS cells more effectively than into mature cells. 
Other types of cells can demonstrate multipotency. 
Among these cells, multilineage-differentiating stress-
enduring (MUSE) cells[102] and mesenchymal stem cells 
(MSC) have been described[103,104]. MUSE cells are adult 
stem cells. They are characterized by differentiation 
into different lineage (mesodermal-, ectodermal- and 
endodermal) cells from a single cell. MUSE cells are 
tolerant to stress. They express markers of pluripotency, 
and are able of self renewal[102]. They can be obtained 
from fibroblasts. Properties of MUSE cells resemble those 
of iPS cells, but they are devoid of tumorigenicity[102]. 
MSC are a population of multipotent, self-renewing cells, 
mostly located in a bony niche, that regulate skeletal 
tissue and repair[105]. 

High levels of sonic hedgehog and induction of Wnt 
signaling induce derivation of floor plate from pluripotent 
stem cells, increasing the quantity and quality of dopa
minergic (DA) neurons consequently produced[106,107]. 
These results led to the development of protocols for 
differentiation of mouse iPSCs into DA neurons[108]. These 
newly generated cells expressed markers of DA neurons, 
such as the enzyme tyrosine hydroxylase, as well as the 
transcription factors Nurr1, and Pitx3. Once transplanted 
in a rat model of Parkinson’s disease, these DA cells could 
repair lesions seen in the animal model[108]. 

Transdifferentiation of fibroblasts to neurons has 
been reported. The introduction of three specific factors 
of neurodevelopment (Brn2, Ascl1 and Myth1l, or BAM) 
in mouse fibroblasts, directly generated neuronal cells, 
called induced neurons, or iNs[109]. Similar approach 
was used with the same results by using human fibro
blasts[110]. Mouse and human iNs were characterized by 
immunopositivity for neuronal markers such as Tuj1, 
Map2, Tau and synapsin. Moreover, the combination of the 
iN factors with Lmx1a and FoxA2[111] or a combination of 
Lmx1a and Nurr1[112] in fibroblasts can directly generate 
cells with DA neuronal characteristics, named iDA neurons. 
The combination of the three neurodevelopmental factors 
(Brn2, Ascl1 and Myth1l, or BAM) with other factors 
implicated in the embryonic development of DA neurons 
enhances the transdifferentiation towards cells presenting 
characteristics of DA neurons[113-118]. 

It is also possible to induce the transformation of 
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acinar exocrine cells from pancreas of cadavers into 
pancreatic b-cells. Cells generated that way can produce 
insulin, and are glucose-regulated. Once transplanted 
into immunocompromised diabetic mice, these cells can 
normalize glycemia[119].

In our experiments, we examined the brain and other 
organs[120] to assess the transgene expression outside 
of the BM in animals whose BM was injected with SV40-
derived vector. We found that CNS cells of different 
lineages expressed the transgene several months after 
intramarrow administration of the vector, suggesting that 
transgene-positive cells were likely to have migrated from 
the BM. About 5% of DG cells were transgene-positive. 
BM progenitor cells were also migrating towards other 
organs (i.e., spleen, lungs, liver). In the lungs, FLAG-
expressing cells were mainly seen in the alveoli and were 
coexpressing markers of progenitor cells (i.e., TTF-1) and 
of macrophages. Our studies do not determine the nature 
of the BM progenitors migrating to the CNS. These cells 
may be of hematopoietic, stromal or other origin. The 
hypothesis that BM cells can transdifferentiate into CNS 
cells of different lineages has been the topics of several 
conflicting reports. However, various animal models, 
different experimental paradigms and diverse methods 
have been used and could explain the discrepancies 
observed in these reports. In most of the studies against 
the hypothesis of BM to CNS transdifferentiation, the 
markers used are protein products of transgenes[121-123]. 
Transgene delivered by numerous vectors, integrating or 
not, may disappear with time, particularly if they are of 
protein origin. By contrast, rSV40 vectors lead to long-
term transgene expression[54,124]. In other studies, DNA 
markers have been used to assess the engraftment 
of stem cells and the differentiation of donor cells in 
to host cells[125,126]. DNA probes, such as the ones in 
FISH assays, were used in most studies sustaining the 
hypothesis of BM to CNS transdifferentiation. One of 
the important factors explaining the conflicting data 
appears to be the time between the transplantation of 
progenitor cells in the brain or in the periphery and their 
differentiation. Human cells transplanted into the mouse 
lateral ventricle differentiate into neurons in the OB 
only after several months[61]. The number of transgene-
positive neurons enumerated in the brain after injection 
of GFP-expressing HSC increases with age[62,63]. The 
brief time intervals between the injection of the animals 
with progenitor cells and the harvest of the tissues 
might explain some negative results[121]. However, these 
negative results might be due to the full maturity of the 
neurons, to the molecular marker used, and to the type 
of neurons as well. Our work suggest that BM-derived 
cells found in the DG are mature neurons, because 
expressing NeuN. They also have the shape of mature 
neurons in the considered area. However, we do not 
know at this point what is their physiological function 
and what type of synapses are established.

The settings of the experimental system might 
also explain the results observed. For example, some 
experiments include treating HSC in vitro with growth 

factors that might modify their properties before their 
administration. Such treatment could potentially influence 
the homing of transplanted cells towards the brain or 
their differentiation into cells of CNS lineages. These 
experimental settings do not reproduce physiological 
conditions. By avoiding some of these treatments, we 
were able to transduce the BM directly without perturbing 
the different BM populations of cells. Thus, we can 
suggest that BM resident cells can transdifferentiate into 
cells of CNS lineages. However, additional studies would 
be useful to explore the functions of these cells.

Bone marrow progenitor cells express different markers 
of neuronal differentiation in the brain
We reported above that permanent BM-directed gene 
transfer using recombinant SV40-derived vectors led to 
expression of the transgene in mature neurons, and thus 
without CNS lesion indicating that BM progenitor cells 
can differentiate into cells of different CNS lineages. Most 
of transgene-expresssing cells also expressed NeuN, a 
marker of mature neurons. However, it remained to be 
determined by what mechanism the cells from the BM 
come to be neurons. Although the observed gradual 
increase in transgene-expressing neurons over 16 mo 
suggested that the pathway involved differentiation of 
BM-resident cells into neurons, we could not rule out cell 
fusion as the principal route. Therefore, we tested here 
whether BM-derived progenitor cells migrating in the 
CNS could express markers of neuronal precursors or 
immature neurons. We injected SV40-derived vectors, 
carrying marker epitopes (FLAG or AU1), into the femoral 
cavities of rats or rabbits. Control animals received a 
control vector, SV (BUGT), injected into the BM as well. 
AU1- or FLAG-positive cells were seen in the DG 16 mo 
after injection of respectively SV (RevM10.AU1) or SV 
(Nef-FLAG) in the BM. In addition to cells expressing 
markers of mature neurons, transgene-positive cells 
were also positive for nestin and doublecortin, molecules 
expressed by developing neuronal cells. These cells 
were actively proliferating, as shown by short term BrdU 
incorporation studies (Figures 4B, 4C and 5). These 
results confirm that BM progenitors migrate to the CNS 
where they become neurons, by differentiating into 
neuron precursors and subsequently developing into 
mature neurons. Similar results were seen in the rat 
(Figures 4B, 4C and 5) and the rabbit (Figure 6).

This progression recapitulates the sequential stages 
of neurogenesis. Transgene-expressing cells positive 
for nestin and DCX were mainly localized at the border 
between SGZ and GCL, and less frequently in the GCL. 
This location is the one usually reported for immature 
neurons in the hippocampus. Cells in the SGZ have 
been shown to migrate into the GCL[30]. 

In assessing the studies that report support for, or 
evidence against, BM cell transdifferentiation into other 
lineages[121,122], the time between the administration 
of stem cells and harvest of the tissue is a critical 
factor[61-63,66]. Thus, a brief time interval between injecting 
animals and collecting tissue may not identify markers 
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belonging to the BM cells in the target organ studied. 
We have found that increases in neuronal and microglial 
cell populations expressing transgenes delivered to BM 
were gradual and protracted. No transgene-expressing 
neurons were seen 1 mo following BM injection, a few at 
4 mo and many were at 16 mo[51]. BM cells can undergo 
spontaneous fusion with other cell types, a process that is 
probably unlikely. Higher levels of transdifferentiation have 
been reported in some studies[127]. The results observed in 
physiological conditions, as here, should also be compared 
to the ones seen during brain damage[128-132] in order to 
determine the putative factors influencing the migration 
and differentiation of BM-derived cells in adult CNS.

FACTORS INFLUENCING NEUROGENESIS 
IN ADULT BRAIN AND ROLE OF 
SEIZURES
Factors influencing neurogenesis
Various physiological and pathological factors may increase 
neurogenesis in different areas of the brain. Neurogenesis 
is found to be increased in acute neurodegenerative 
disease[28,133]. Hippocampal neurogenesis is enhanced 
during Alzheimer’s disease[134]. Brain injury such as stroke 
also leads to an increase in neurogenesis in humans[135]. 
Neurogenesis may be increased following damage to 
the adult brain[57,59]. Different classes of molecules have 
affected the rate of neurogenesis, including growth factor, 
hormones[136] and neurotransmitters. Testosterone can 
increase generation of new neurons in the DG of adult 
male rodents[136]. Blockade of neuroinflammation can 
restore adult neurogenesis in the hippocampus[137].

Neuronal loss, inflammation, regeneration and gliosis 
following kainic acid-induced seizures
It has been reported that seizures can induce neuronal 
regeneration in the DG, but the extent of the process 
is hampered by the inflammation following the seizure. 
We first identified neuronal regeneration post kainic 
acid (KA)-induced seizure. For this purpose, we injected 
intraperitoneally 10 mg/kg KA in rats. KA causes tonic-
clonic seizures. After the animals recovered from these 
seizures, they were rested for 7 d and their brains were 
examined for neuron loss in the HC, using either NeuN or 
NT as neuronal markers. We observed that neuron loss 
was most prominent in the CA1 and CA2/CA3 regions 
of the hippocampus, but loss of neurons was statistically 
significant, compared to control rats receiving vehicle 
only, in the hilus, SGZ/GCL and in CA1, CA2 and CA3.

At the same time, we demonstrated an inflammatory 
infiltration in the HC by enumerating macrophage/
microglial cells using antibodies against Iba-1 (quiescent 
and activated cells) and CD68 (activated cells), and 
astrocytes using antibody against GFAP. Numbers of 
GFAP- and Iba-1-positive cells were increased in the HCs 
of KA recipients, compared to controls, indicating that 
brain injury related to KA administration led to infiltration 
of the affected area by macrophages and microglia, 
and to an astrocytic response. Neuroinflammation was 
associated with an increased expression of cytokines and 
chemokines, particularly regulated on activation, normal 
T cell expressed and secreted (RANTES) and macrophage 
inflammatory protein 1 a (MIP-1a), as well as C-C 
chemokine receptor type 5 (CCR5) itself. RANTES and 
MIP-1a are both ligands of CCR5 receptors. KA-induced 
increases in production of CCR5 ligands and ICAM-1 
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Figure 5  Transgene (AU1) expression in the hippocampus of rats whose bone marrow has been injected with SV (RevM10.AU1). A: Almost all DCX-positive 
cells were expressing AU1 (arrows); B: DCX+/AU1+ cells were of neuronal lineage, because they were stained by NT (arrows). No AU1 expression was seen after 
bone marrow injection of SV (BUGT), a control vector. DCX: Doublecortin; NT: Neurotrace.
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within blood vessels suggests that CCR5+ cells may be 
increased in the hippocampi of KA-treated rats, compared 
to control animals. We therefore enumerated CCR5+ cells 
in several areas of the HCs of rats treated with KA or 
saline. No CCR5+ cells were detected in control rat HCs. 
In contrast, CCR5+ cells were significantly more abundant 
throughout the hippocampi in KA recipients. In HCs of 
rats injected with KA, CCR5 was expressed mainly by 
lymphocytes, monocytes/macrophages, microglial cells, 
to a lesser extent by neurons, and rarely with astrocytes. 
This expression was seen not only in inflammatory cells in 
brain parenchyma, but in vessel walls as well.

KA-induced injury also elicits a regenerative response: 
Increased new neurons are formed following the insult. 
We assessed the level of cell proliferation and the 
populations of cells involved by labeling with BrdU. BrdU-
expressing cells were seen in the GCL and SGZ of HCs 
from rats injected with KA. Very rare cells positive for BrdU 
were seen in HCs of controls. In KA recipients, 80.2% of 
these cells were neurons. In addition, proliferation of both 

immature neurons and neural stem cells was involved, as 
evidenced by BrdU positivity in cells that also expressed 
doublecortin and nestin, respectively (Figure 7).

CCR5 regulates migration of bone marrow progenitors 
to the DG and limits neuroregeneration in response to 
injury
We reported above that KA elicits injury, inflammation 
and neuron regeneration in the HC. In the next step, we 
showed that decreasing CCR5 on bone marrow-derived 
cells reduces the number of KA-induced seizures, and 
related injury and inflammation. We used for that a 
bifunctional vector composed of a vector targeting CCR5 
(RNAiR5) and a vector carrying a protein tag, used to 
evaluate transgene expression. The effect of RNAiR5 gene 
(targeting CCR5) delivery to the BM on the migration of 
BM progenitors to the DG and their differentiation into 
neurons was assessed, with and without KA treatment. 

Intraperitoneal injection of 10 mg/kg KA causes 
grade 5 tonic-clonic seizures (range of seizure duration, 

Figure 6  Migration of bone marrow derived cells to the rabbit hippocampus. Sixteen months after injection of SV (RevM10.AU1) into the rabbit bone marrow (BM), 
transgene-positive cells were seen in the dentate gyrus. Numerous AU1-positive cells colocalized with NeuN, a marker of postmitotic neurons (not shown). A: Nestin+/
AU1+ cells were seen mainly at the border SGZ/GCL, and more rarely in the GCL (arrows); B: DCX+ positive cells expressing AU1 were detected at the border SGZ/
GCL and more rarely in the GCL (arrows). SGZ: Subgranular zone; GCL: Granular cell layer; DCX: Doublecortin.
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30-80 s) in normal rats beginning an average of 32.5 ± 
4.7 min post-injection (range, 20-45 min). The average 
number of such seizures within a 4 h period after KA 
administration was 23.6 ± 3.4 (range, 21-28). Rats were 
given SV (RNAiR5-RevM10.AU1), the monofunctional 
vectors SV (RevM10.AU1) or SV (RNAiR5) intrafemorally. 
SV (BUGT) was used as control vector. Animals were 
challenged 4 mo later by i.p. injection of KA. Rats given 
RNAiR5-containing vectors were significantly protected 
from KA-induced seizure activity compared to rats 
receiving either SV (BUGT) or SV (RevM10.AU1), by 
all criteria applied: Time of seizure onset, number and 
severity of seizures and recovery time. The two RNAiR5-
carrying vectors were comparable in protecting from KA-
induced seizure activity, and were highly significantly 
different from the two control vectors [SV (RevM10.AU1), 
SV (BUGT)].

Four months after injection of the SV40-derived vector 
that does not target CCR5, and without KA admini
stration, very few BM progenitors were seen in the DG. 
This is consistent with the observations reported about 
concerning the migration of BM-derived cells to the CNS. 
By contrast, in rats receiving a vector carrying the RNAi 

that targets CCR5, there was a significant increase in 
the numbers of bone marrow-derived cells expressing 
neuronal markers. Thus, decreasing CCR5 led to 
increased bone marrow cell migration to the brain and 
increased DG neurons derived from those cells. However, 
in the absence of KA treatment, the number of cells 
originating from the BM was low. After KA treatment, 
and notwithstanding the ability of RNAiR5 to mitigate 
KA-induced injury, numbers of DG cells derived from the 
bone marrow was far greater in recipients of the vector 
targeting CCR5 than in recipients of an unrelated vector.

We examined, further, the influence of bone marrow-
directed gene delivery of RNAiR5 on DG neuroregeneration. 
Proliferating cells were visualized using BrdU, and 
immature neurons were identified using doublecortin 
and nestin as markers. Again, despite the mitigating 
effect of bone marrow-directed RNAiR5 on DG injury and 
neuroinflammation, proliferation of neuronal precursors 
in response to KA treatment was approximately 3-fold 
that seen in recipients of the control vector only. Moreover, 
72.2% ± 7.4% of BrdU-positive cells were also transgene-
positive, and 79.8% ± 6.9% of transgene-positive cells 
were positive for BrdU. Most of these cells were of neuronal 

Control no KA                                                                                             Control KA 

A

B

DAPI BRDU

Nestin

NT + BRDU

DAPI BRDU

BRDUNT

BRDU BRDU + nestin

Figure 7  Kainic acid-induced regeneration in the hippocampus. Rats were injected with kainic acid (KA) intraperitoneally (i.p.), 10 mg/kg, and their hippocampi 
(HCs) analyzed by immunomicroscopy 7 d thereafter. A: Neurogenesis following KA treatment. Rats given KA or saline were injected with BrdU. Then, at 7 d post-KA, 
their DGs were immunostained for BrdU to visualize proliferating cells. DAPI counterstain is shown to facilitate interpretation. Arrows show neurons positive for BrDU. 
Double staining with Neurotrace (NT) for neurons is shown below; B: Double staining for nestin, a marker of proliferating and migrating neural cells (modified from Ref. 
[132]).
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lineage, as demonstrated by immunopositivity for nestin 
and/or doublecortin or NeuN (Figure 8).

We reported that bone marrow-directed gene delivery 
of RNAi targeting CCR5 using a recombinant SV40-
derived vector results in high levels of gene modification 
of bone marrow-derived cells, particularly Sca-1+ cells. 
As a consequence of the effectiveness of this approach 
to downregulating CCR5, our data suggest that the cell 
membrane chemokine receptor, CCR5, influences greatly 
the regulation of the traffic of BM progenitors towards the 
CNS, both in the basal state and in response to injury. 
Furthermore, reduction in CCR5 expression in circulating 
cells provides profound neuroprotection from, in this 
case, excitotoxic neuronal injury. CCR5 and its ligands 
enhance CNS inflammation and seizure activity, and may 
result in increased CNS injury as a result. 

Inflammatory cell infiltration of the CNS entails 
adhesion of lymphocytes and monocytes in the blood to 
cerebrovascular endothelium, mediated by endothelial 
cell production of chemokines, clustering of integrins 
and migration of peripheral blood mononuclear cells 

(PBMC) through the vascular endothelium into the 
brain. CCR5 and its ligands, RANTES and MIP-1a, are 
known to be involved in this process[138-144]. Thus, such 
transmigration is stimulated by RANTES but decreased 
by anti-CCR5 antibodies[142,143]. Our data are consistent 
with these findings. Expression of MIP-1a and RANTES 
on brain microvessels and endothelial cells is greatly 
increased after KA administration, and we showed that 
reducing cell membrane CCR5 probably decreases 
PBMC adhesion to CCR5 ligands[145]. Lower levels of 
CCR5 on PBMC membranes following BM-directed 
gene delivery also decreases production of those 
chemokines by brain vascular endothelium. Migration of 
CCR5+ microglia and monocyte-derived macrophages 
is stimulated by CCR5 ligands and these cells, in turn, 
stimulate both endothelial activation and production 
of proinflammatory cytokines[141]. Our results show 
also that the initial production of CCR5 ligands after KA 
administration is unaltered in rats injected with both 
control and rSV40s vectors targeting CCR5, but this 
changed over time between the recipients of control 

BrdU AU1

AU1

AU1 + BrdU

NT NT + AU1

Nestin + AU1Nestin AU1

AU1NeuN NeuN + AU1

Figure 8  RNAiR5 gene delivery to the bone marrow increases numbers of bone marrow-derived cells in the hippocampus and neuroproliferative activity in 
the hippocampus, in the resting state and in response to kainic acid treatment. Bone marrow-derived cells in the hippocampus (HC) were all neurons, and most 
proliferating cells in the HC were bone marrow-derived. Double immunostaining for AU1 plus BrdU (upper row) and nestin (lower row), and neuron identification using 
Neurotrace (NT) and NeuN (middle row) was performed. Shown are HC sections from kainic acid-treated rats, transduced with SV (RNAiR5-RevM10.AU1). Most 
of the AU1+ cells were also positive for BrdU (79.8%, ± 6.9%) as a marker of cell proliferation, and most BrdU+ cells were also AU1+ (72.2%, ± 7.4%). Numerous 
AU1+ cells were also positive for nestin, a marker of proliferating and migrating neurons, although there were as well many nestin-positive cells that did not express 
AU1. The equivalence of NT identification of neurons and NeuN immunostaining of neurons is illustrated in the insets in the middle row. Data are representative of 3 
independent experiments (modified from Ref. [132]).
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vector and rSV40 vectors reducing CCR5. Thus, CCR5 
is involved in a multiplicative effect of chemotaxis, 
stimulation of chemotaxis and then more chemotaxis. 
Altering this cycle by reductions in PBMC CCR5 may 
thus have neuroprotective and antiinflammatory effects 
that are disproportionate to the magnitude of the 
decrease in CCR5. 

These results showing the interaction between CCR5 on 
PBMC and its ligands at the vascular level emphasize the 
role of vascular inflammation in KA-induced seizures. It has 
been reported that vascular inflammation and leukocyte-
endothelial adhesion can participate in the development 
of seizures. a4 integrin and VCAM-1 antibodies can 
mitigate leukocyte-vascular interaction and prevent 
pilocarpine-induced seizures[146]. It has been recently 
suggested that blood-brain barrier (BBB) breakdown can 
induce epileptiform activity[147,148]. BBB disruption has 
been described after KA administration[149-151]. During KA-
induced seizures, disruption of the BBB is characterized 
by disappearance of tight junction ZO-1 and occludin, 
recruitment of neutrophils[149], increase in the production 
of tissue plasminogen activator and NO[150]. Activation 
of astrocytes, for example by glutamate agonists, can 
influence vessel permeability[149]. Another chemokine, 
MCP-1 (CCL2), can induce BBB opening and KA-
induced upregulation of MCP-1 mediates recruitment of 
macrophages and granulocytes[151]. Increase of MCP-1 
in blood vessels of HCs after seizures might lead to 
modifications of permeability of the BBB[152]. Enhanced 
permeability of BBB can increase the access of KA to the 
parenchyma[146]. In the pilocarpine model, it has been 
suggested that the effect of the drug can be to allow focal 
BBB leakage, which then synergizes with the CNS effects 
of pilocarpine to induce seizures. Leukocyte adhesion 
blockade prevented BBB opening in the pilocarpine 
model[146]. In the present results, much less leakage of 
vascular contents from blood vessels was seen in HCs of 
rats given rSV40s vectors targeting CCR5, suggesting that 
the experimental reduction of the interaction between 
CCR5 on PBMC and CCR5 ligands on vessels limited BBB 
leakage.

BBB leakage is partly mediated by leukocytes through 
different mechanisms: Generation of oxygen free radicals, 
enhanced production of cytokines and chemokines, 
vascular alterations, release of cytotoxic enzymes. 
Adhesion of leukocytes to endothelium produces changes 
in small GTPases involved in cytoskeletal organization, 
and in calcium signaling, as well as in activation of 
kinases[146,153]. Our demonstration that inhibition of 
interactions between CCR5 on PBMC and CCR5 ligands 
in vessels prevents BBB disruption after KA is consistent 
with prior observations about the effects of leukocyte 
adhesion on vascular permeability[146]. Thus, our results 
show that CCR5 influences the synergistic interactions 
between leukocyte adhesion, endothelial activation, BBB 
leakage and seizure activity.

CCL3 (MIP-1a)[154,155] and CCL5 (RANTES)[156,157] 

can be expressed by brain endothelial cells. Different 
mechanisms can be responsible for the induction of 

CCL5 and CCL3 in the endothelium. Several studies 
have demonstrated the involvement of TNF-a and 
IL1-β in seizure activity[129,158-160]. TNF-a and IL1-b 
can be rapidly produced by microglial cells[161]. TNF-a 
and IL1-β stimulate expression of CCL5 in endothelial 
cells[156,157,162]. TNF-a can also activate NF kappaB, the 
role of which has been underscored in seizure activity, 
including KA-induced neurotoxicity[163]. TNF-a-induced 
CCL5 transcription involves cis-regulatory promoter 
elements, i.e., NF-kB, C/EBPb, NF-IL-6, NF-AT and the 
cAMP response element, CRE[164]. TNF-a can induce 
NF-kB, but apparently not AP-1, activity in endothelial 
cells[165]. Other mechanisms upregulating CCL5 in 
endothelial cells involve HIF-1a, JNK-2 and AP-1 (JunD). 
Lysophosphatidylcholine can induce rapid expression 
of CCL5 in endothelial cells by activating of multiple 
kinases[166]. Increase of PLA2 activity has been reported 
in different models of epilepsy[167] including kainic acid 
treatment[168-170]. 

The type of benefit from decreasing CCR5 described 
in the present study has been seen in studies in which 
TAK-779, an inhibitor of CCR5, mitigates CNS damage 
due to ischemia[171]. Targeting MIP-1a may also protect 
from experimental autoimmune encephalomyelitis[172] 
and other types of CNS injury[173-176]. Another important 
consequence of BM-delivered, RNAi-mediated, decrease 
in CCR5 expression in blood cells is increased migration of 
BM progenitors to the DG, where they become neurons. 
These new neurons are generated in absence of lesions, 
but also can assist in repairing insults to the CNS[177-179]. 
BM progenitors can migrate to the brain and become 
neurons by transdifferentiation or other processes[44-48]. 
Inflammation may limit the ability of the brain to repair 
itself by neurogenesis, as the generation and survival of 
new neurons is inversely proportional to the magnitude of 
the inflammation[128,180], and is facilitated by administration 
of inflammation inhibitors such as indomethacin[137].

Our results underscore the relationship between 
ongoing neurogenesis and BM-derived cells. In those 
studies, we found almost no such cells in the DG at 4 mo 
after gene delivery to the BM, but numerous cells 15 mo 
after intramarrow inoculation of the vector. Our current 
data show that decreasing CCR5 expression on bone 
marrow-derived cells both increased the basal level of 
neurogenesis from BM-derived progenitors and greatly 
amplified the regenerative response to excitotoxic injury. 
This observation is even more striking in light of the fact 
that recipients of the vectors targeting CCR5 had much 
less severe neuron loss than did controls. Furthermore, 
the level of neuron proliferation, as measured by BrdU 
incorporation, was also several-fold higher in recipients 
of vectors that contained RNAiR5 than in controls. It is 
likely, therefore, that targeting CCR5 by gene transfer or 
pharmacologic means may promote ongoing neurogenesis 
and neuroregenerative responses to injury. It might be 
due to an inhibition of inflammation, known for limiting 
neurogenesis[128,137,180]. However, a direct role of CCR5 in 
regulating neuron regeneration cannot be excluded. It 
is not known whether the cell population(s) in the bone 
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marrow that provide these neuron precursors are of 
hematopoietic or other origin.

Thus, the consequences of acquired deficiency in 
CCR5 highlights the role of CCR5 in neuroinflammation, 
excitotoxic injury, chemotaxis and astrocyte proliferation, 
and decreases in CCR5 may provide pronounced neuro
protection from such injury. In the present study, cells 
in the treated animals expressed less CCR5 (molecule 
per cell) than those from control animals. Even if the 
cells have not become negative for CCR5, the decreased 
expression of this receptor did affect their function. 
The distinction between a complete shutdown of CCR5 
and reduced expression due to the RNAi is important, 
because if marginal reductions in a target can result 
in a disproportionate loss of function (due for example 
to reduced total avidity at the cell surface) there is 
greater hope for the use of such vectors in other in vivo 
applications.

In conclusion, our data demonstrate the centrality 
of CCR5 and its ligands in mediating injury-induced 
inflammation, and suggest that decreasing levels of 
CCR5 may have as its consequences neuroprotection and 
enhanced neuroregeneration. We confirm here that BM 
progenitor cells participate in neurogenesis in the adult 
brain, and migrate towards the DG and SVZ (Figure 9). 
SV40-based gene delivery of RNAi targeting CCR5 to the 
BM results in downregulating CCR5 in circulating cells. 
Consequently, the inhibition of interactions between CCR5 
on peripheral blood mononuclear cells and CCR5 ligands 
in vessels prevents BBB disruption after KA treatment. 
The decrease of leukocyte-vascular interaction affects 
vascular permeability, thus, infiltration of parenchyma 
by inflammatory cells, and reduces neuroinflammation. 
Subsequently, our results imply that CCR5 influences 
the interactions between leukocyte adhesion, endothelial 
activation, BBB leakage and seizure activity. However, 
given the redundancy of cytokines and chemokines, 
CCR5 might be just one of the components implicated 
in the interaction between leukocytes and vessels, and 

other chemokines, or other molecules, might be involved 
as well. For example, receptors for IL-1 and TNF-a are 
upregulated rapidly during seizures[160]. The magnitude 
of seizure activity impacts on the inflammatory 
responses that follow seizures[181-183]. Microglial activation, 
and production of IL-1b, IL6, TNF-a and free radical 
species, directly affect the process of post-seizure 
neurogenesis[181-184] and the survival of the neurons that 
are produced as a result[159,182,185,186]. 
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