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Abstract

The use of chemical flame-retardants (FR) in consumer products has steadily increased over the 

last 30 years. Toxicity data exist for legacy FRs such as pentabromodiphenyl ether (pentaBDE), 

but less is known about effects of new formulations. To address this issue, the toxicity of seven FR 

chemicals and formulations was assessed on the freshwater crustacean Daphnia magna. Acute 48-

h nominal LC50 values for penta- and octabromodiphenyl ether (pentaBDE, octaBDE), Firemaster 

550 (FM550), Firemaster BZ-54 (BZ54), bis(2-ethylhexyl) tetrabromophthalate (BEH-TEBP), 

triphenyl phosphate (TPhP), and nonbrominated BEH-TEBP analog bis(2-ethylhexyl) phthalate 

(BEHP) ranged from 0.058 mg/L (pentaBDE) to 3.96 mg/L (octaBDE). mRNA expression, 1H 

NMR-based metabolomic and lipidomic profiling at 1/10 LC50 revealed distinct patterns of 

molecular response for each exposure, suggesting pentaPBDE affects transcription and translation, 

octaBDE and BEH-TEBP affect glycosphingolipid biosynthesis and BZ54 affects Wnt and 
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Hedgehog signal pathways as well as glycosaminoglycan degradation. Brominated components of 

FM550 (i.e., BZ54) were significantly higher in Daphnia after 48 h following 1/10 LC50 exposure. 

FM550 elicited significant mRNA changes at five concentrations across a range from 1/106 LC50 

to 1/2 LC50. Analyses suggest FM550 impairs nutrient utilization or uptake in Daphnia.

Graphical Abstract

INTRODUCTION

The use of chemical flame-retardants (FR) in furniture became common in the United States 

and around the world in the 1970s. The state of California, for example, passed TB117, a 

mandate requiring the use of FR chemicals in all upholstered furniture. FRs such as 

polybrominated diphenyl ethers (PBDE) were used to meet this requirement.1,2 Recent laws 

amended decades-old flammability standards,3 but FR chemicals are still used in consumer 

products and are present in homes and the environment. Leaching of PBDEs from consumer 

products led to global contamination in soil,4 sewage sludge,5 costal sediments,6 the 

atmosphere,7 and the arctic.8 PBDEs have been detected in biota including sea turtle eggs,9 

lake trout, Chinook salmon,10 humpback dolphins,11 and frogs.12 Humans can be exposed to 

PBDEs through dietary sources and from inadvertent ingestion of contaminated house dust 

particles.13,14 Toxicity data for PBDEs and other FRs exist for humans and terrestrial 

animals (see Dishaw et al. 2014 for a recent review15).

PBDEs can accumulate in marine copepods,16,17 affect molting and cause toxicity in aquatic 

invertebrates,18 and biomagnify in aquatic food chains.19 Studies on Daphnia manga show 

that hexaBDE affects reproduction in the µg/L range.20 Tetra- and triBDE can delay molting 

in adult daphnids,21 while pentaBDE changes retinoid status in zebrafish.22 PBDEs induce 

many adverse effects, but specific molecular mechanisms of toxicity are not fully 

understood.23

PBDEs are found globally and therefore have the potential to affect terrestrial and aquatic 

organisms. As persistent and bioaccumulative chemicals prone to long-range global 

transport,24,25 pentaBDE and octaBDE were banned from use in the European Union, added 

to the Stockholm Convention as Annex A chemicals slated for elimination, and voluntarily 

phased-out of use in the United States.24,26–28 As a result, levels of PBDEs are decreasing in 

homes, and there is a corresponding increase in a pentaBDE replacement chemical, 

Firemaster 550 (FM550).29
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FM550 was first used as a pentaBDE replacement in 2004.2 It is a mixture of four different 

chemicals: two brominated components, bis (2-ethylhexyl) tetrabromophthalate (BEH-

TEBP, 8%) and 2-ethylhexyl-2,3,4,5-tetrabromobenzoate (EH-TBB, 30%), and two aryl 

phosphate ester compounds, triphenyl phosphate (TPhP, 17%) and isopropylated triaryl 

phosphates (ITP, 45%). ITP is a mixture of ortho-, meta-, and para-substituted isomers of 

mono-, di-, tri-, and tetra-ITPs.30–32 Related mixture Firemaster BZ54 consists of BEH-

TEBP (30%) and EH-TBB (70%).33

FM550 is applied to polyurethane foam in furniture34 and some infant products.35 The 

brominated components BEH-TEBP and EH-TBB have been detected in house dust,31,36 

marine biota,11 mysid shrimp,37 a bivalve, and a gastropod.38 FM550 component triphenyl 

phosphate (TPhP, also called TPP) is a EU high-production volume plasticizer and flame-

retardant that can enter the environment by diffusive volatilization, leaching, and abrasion.39 

It has been detected in sewage treatment plant influent and effluent,40 air, water, house dust, 

and sediment.41

In fathead minnow liver cells, EH-TBB and BEH-TEBP caused a significant increase in 

DNA strand breaks during exposure but not after a recovery period.42 Fathead minnow and 

carp hepatic subcellular fractions metabolize EH-TBB and BEH-TEBP in vitro.33 EH-TBB 

and BEH-TEBP affect fecundity, perhaps through an endocrine effect, in Japanese 

medaka.43 TPhP and monoITP exposures affect zebra fish embryo heart development 

through AhR-independent (TPhP, monoITP) and AhR-dependent (monoITP) pathways.32,44 

96-h LC50 values for TPhP on fish species range from 0.3 to 1.2 mg/L, but can be as high as 

300 mg/L; LC50 values for TPhP on Daphnia range from 1 to 1.35 mg/L.45 The present 

study is the first to look at mechanistic effects of FM550 to the lower-level trophic species 

Daphnia magna.

Aquatic toxicants are commonly divided into categories based on chemical properties and 

presumed mechanism of action: nonpolar hydrophobic chemicals causing Type I narcosis, 

polar hydrophobic chemicals causing Type II narcosis, unselective reactive chemicals, and 

chemicals with specific modes of action.46 Hydrophobic chemicals with a log Kow ≥ 2.7 are 

often considered narcotics. Toxicity attributed to narcosis is postulated to result from 

chemical disruption of lipid-based cellular membranes.47,48 Type I molecules are believed to 

move three-dimensionally through membranes, while Type II molecules interact with 

charged phospholipid headgroups;49 but toxicity is attributed to a shared mechanism.48 

Some hydrophobic chemicals cause greater toxicity than is predicted from Kow,49 which 

cannot be attributed to narcosis.46

Daphnia are parthenogenetic filter feeders used to evaluate invertebrate response to 

environmental pollutants.50,51 Exposure of biota to FRs may occur through disposal of 

consumer goods containing FRs and subsequent leaching, and it is therefore important to 

understand the effects of FRs on environmentally relevant Daphnia manga. This work 

represents the first comprehensive analysis of the acute toxicity of seven emerging and 

legacy chemical FR formulations: PentaBDE, octaBDE, FM550, BZ54, BEH-TEBP, TPhP, 

and BEHP. Our goals were to determine LC50 values for each chemical and formulation and 

to investigate molecular mechanisms of toxicity by assessing effects on mRNA with 
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microarrays, metabolic changes by 1H NMR-based metabolomics and lipidomic profiling. In 

addition, we determined if the bromine-containing FM550 components accumulate in 

Daphnia, and identified potential biomarkers of exposure for FM550.

MATERIALS AND METHODS

Daphnia Culture

Daphnia magna were cultured asexually in a growth chamber (Conviron) at 21 ± 1 °C with 

16 h of light and 8 h of dark per day in COMBO52 media. They were fed 1 mL/L 

Pseudokirchneriella subcapitata (formerly Selenastrum capricornutum) from a 3.0 × 107 

cells/mL stock and 1 mL/L yeast cereal-leaf and trout chow mix (YCT) three times per week 

following renewal of media. Media was aerated overnight to increase dissolved oxygen 

levels. pH was maintained at 7.4–7.8. Media chemical composition is described in 

Supporting Information (SI) Table S1. All chemical exposures were done in glass beakers 

(acute: 50 mL, for RNA extraction: 1 L, for absorption: 4 L). Animals and feed were 

obtained from Aquatic Research Organisms.

Toxicity Assays

Acute toxicity assays were similar to U.S. EPA Whole Effluent Toxicity guidelines.53 Five 

first instar (<24 h old) daphnids were added to 35 mL COMBO media. Chemical FRs were 

dissolved in 0.05–0.1% dimethyl sulfoxide (DMSO) (EMD Chemicals, Inc.). Typically, four 

replicates of five daphnids were exposed to five different concentrations of FR or DMSO-

control simultaneously. Concentrations tested can be found in SI Table S2. At least three sets 

of four replicates each were conducted per FR, with the exception of BZ54, for which a 

significant LC50 was determined after fewer exposures. Animals were fed algae after 24 h, 

and lethality was measured after 48 h. Acute LC50 values were determined using probit53 or 

Spearman–Karber method.54 Three statistical methods were used to investigate correlation 

between log Kow and log LC50 for each compound (SI). Briefly, log Kow values were taken 

from published studies and, for PBDEs, log Kow values were weighted by congener 

abundance (SI Table S3).32,55–58 Chemicals were manufactured by Chemtura (FM550 and 

BZ54), Unitex (BEH-TEBP), Aldrich (TPhP), Larodan Chemicals (pentaBDE), Bromine 

Compounds Ltd. (octaBDE), and Aldrich (BEHP). Chemical abbreviation nomenclature is 

from Bergman et. al 2012.59 Chemical structures are shown in Figure 1. All subsequent 

assays were done at 1/10 LC50 (1/10 of one toxic unit) or dilutions thereof.

Uptake of FM550

100 adult (14 day old) daphnids were exposed in 4 L COMBO media to 1/10 LC50, 1/10 000 

of the LC50 (0.0486 mg/L, 0.0486 µg/L), or to a DMSO control. Exposure concentrations 

are based on LC50 values and are not necessarily environmentally relevant. Animals were 

fed algae after 24 h, removed from exposure media at 48 h and put in chemical-free media 

with food for 24 h to clear the alimentary canal. Animals were removed and frozen at –80 °C 

for analytical analyses, or, for microarray analyses, RNA was extracted immediately with 

methods described below. Exposures were repeated until a total of four biological replicates 

of ~400 daphnids were collected per concentration. Samples were analyzed for EH-TBB and 

BEH-TEBP concentration using gas chromatography mass spectrometry operated in 
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negative chemical ionization mode (GC/ECNI-MS).31 Detailed methods are in the SI. A 

Welch two-sample t test was performed to determine significant differences in concentration 

of FRs between exposure groups. Samples with p-value <0.05 were considered significant. 

EH-TBB was not detected in laboratory blanks (<0.5 ng) but was detected in the control 

samples (83.6 ±22.8 ng). BEH-TEBP was not detected in laboratory blanks (1.2 ± 1.1 ng) 

and was above the method detection limit (MDL) in one control sample.

BEH-TEBP and EH-TBB were also measured in the YCT daphnia food. One L YCT was 

centrifuged in 250 mL aliquots at 3000 rpm for 20 min. The aqueous supernatant was 

removed and samples were dried at 80 °C for 4 h. Dried samples were then analyzed with 

the above analytical and computational methods.

mRNA Microarray

Effects of exposure to each chemical (pentaBDE, octaBDE, FM550, BZ54, BEH-TEBP, 

TPhP, or BEHP) was assayed via mRNA microarray. For each chemical, 15–20 adult (14 

day old) daphnids were exposed to 1/10 LC50 or to an equal-volume DMSO control in 800 

mL COMBO media. Animals were fed algae after 24 h, and after 48 h RNA was extracted in 

Trizol reagent (Invitrogen) with a hand-held homogenizer (Biospec Products Inc.). RNA 

quality was assessed with spectrophotometry and agarose gel electrophoresis. 200 ng RNA 

was then reverse-transcribed, amplified and hybridized onto a custom Agilent 

Oligonucleotide DNA microarray (AMADID #023710) with the Agilent Low-Input Quick-

Amp one-color array kit and protocol (Santa Clara, CA). Four exposed and three or four 

control arrays were done for each condition. Arrays were scanned with a 16-bit GenePix 

4000B Microarray Scanner with 5-µm resolution. Features were edited and regression 

analysis was performed with GenePix Pro, and the resultant data were processed as in 

Loguinov et al.60 Detailed statistical analysis methods are available in the SI. Array data are 

available at http://www.ncbi.nlm.nih.gov/geo.

Quantitative Reverse Transcription PCR

To independently verify microarray results, transcription of nine genes in ten conditions was 

analyzed with qPCR. Genes were chosen based on q-value, degree of differential 

transcription or potential mode of toxicity. One µg RNA (from independent biological 

replicates) was reverse transcribed and amplified as in Scanlan et al.61 Actin and GAPDH 

were used as housekeeping genes. Primer sequences are shown in SI Table S4. Detailed 

methods are available in the SI.

Gene Ontology, Pathway Enrichment and Cluster Analysis

The Daphnia magna array was annotated with a protein blast as in Antczak et al. 2013,62 

which identified 4958 Daphnia pulex homologues with an expect (E) value less than or equal 

to 10−4. The list was matched with the Kyoto Encyclopedia of Genes and Genomes (KEGG) 

database annotation (www.genome.jp/kegg) and genes were sorted into respective pathways. 

Of these, 1425 mapped onto 114 Daphnia pulex KEGG pathways. Pathways representing 

less than five genes in the array were removed, leaving 95 pathways and 1402 genes total in 

an unbiased sample of the original 371 KEGG pathways. Significance was calculated using 

a modified Fisher Exact Probability p-value.63,64
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The R package hopach (implementation of Hierarchical Ordered Partitioning And 

Collapsing Hybrid algorithm65) from bioconductor.org was applied to data to compute 

ordered distance matrices using the cosangle-based distance metric65 as a measure of 

similarity. HOPACH is considered superior to standard hierarchical clustering because it 

applies nonparametric bootstrap resampling to determine the probability of “cluster 

membership” for each gene or chemical. Nonparametric strapping (resampling with 

replacement) analyses were run 1000 times to determine cluster membership probability for 

each gene and each main cluster. Further methodological and statistical details are in the SI.

Blast2GO66 (B2G) gene ontology enrichment analysis was performed on mRNA data to 

determine gene functions affected in each exposure. Microarray gene probes and EST 

sequences were annotated with B2G (default parameters) to create a reference gene set. Data 

for each chemical was compared to the reference set via Enrichment Analysis (default, two-

tailed settings). Enrichment was performed with 0.01, 0.05, and 0.15 False Discovery Rates 

(FDR, measure of significance).

Metabolomics of FM550 and pentaBDE-exposed Daphnia

For instrument optimization, hemolymph from 80 unexposed adult (14 day old) daphnids 

was collected from daphnids incubated in 800 mL COMBO media with feeding after 24 h. 

After 48 h, hemolymph was extracted by piercing the carapace with a needle and aspirating 

hemolymph with a small pipet.52 For metabolomics analysis, animals were exposed to 1/10 

LC50 FM550 or pentaBDE or DMSO control (with equal volume chemical), fed after 24 h 

and frozen on dry ice after 48 h. Seven biological replicates of 40 animals each were 

collected for each condition and stored at −80 °C. Hemolymph was extracted using a dual 

phase extraction. Detailed extraction, analysis and statistical methods are available in the SI. 

Briefly, a mixture of methanol, chloroform and water in the volume ratio of 4:4:2.85 was 

used to generate a two-phase extract.67 1H NMR spectra were acquired at 20 °C on an 

Agilent Inova 600 MHz NMR spectrometer with a cryogenic triple-resonance flow probe 

using direct-injection NMR analysis.68,69 Multivariate data analysis, principal components 

analysis and partial least-squares discriminant analysis were performed with SIMCA-P+ 

(Umetrics Inc., Umea, Sweden); univariate analysis of the binned spectra was conducted 

using Excel. Results were further analyzed with MetaboAnalyst 2.0 (http://

www.metaboanalyst.ca)70,71 to determine overrepresentation of biological function groups 

and biological pathways.

Lipidomics of FM550 and pentaBDE-exposed Daphnia

Daphnids were exposed to 1/10 LC50 FM550 or pentaBDE or DMSO control, as described 

above for mRNA assays. After 48 h, animals were removed from culture, flash-frozen on 

dry ice, ground in 1.6 mL ultrapure water with a hand-held homogenizer (Biospec Products 

Inc.) and frozen at −80 °C. Lipids were extracted and analyzed by the Kansas State 

University Lipidomics Research Center. Five replicates of 10–11 animals were collected for 

each condition. Data were log transformed and significance was determined with a standard 

two-sample t test and a Wilcox rank sum test for two sample data. Additional details on 

extraction methods and statistical analyses are available in SI.
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RESULTS

Flame-Retardant Toxicity in Daphnia magna

LC50 values were determined for each FR after a 48 h exposure (SI Table S5 and Figure 2) 

and are reported as milligrams chemical per liter COMBO media (mg/L). PentaBDE was 

significantly more toxic than any other FR (LC50 = 0.058 mg/L); the second most toxic 

chemical was 1 order of magnitude less toxic (FM550, 0.0486 mg/L). Significance was 

determined by binary comparison of LC50 values and corresponding confidence intervals.72 

OctaBDE and BEHP were the least toxic (3.96 and 3.31 mg/L). Of note, BEHP was 

significantly less toxic to Daphnia than its brominated homologue BEH-TEBP. No 

correlation was found between the log Kow and the log LC50 for each compound (SI), 

although sample size precludes robust statistical confidence.

FM550 Detected in Daphnia magna after a 48-h Exposure to 1/10 LC50

Daphnids exposed to the higher concentration (0.0486 mg/L) for 48 h showed a significant 

increase in both BEH-TEBP and EH-TBB as compared to control (Figure 3). Exposure at 

the lower concentration (0.0486 µg/L) was not significantly higher than control. Daphnid 

food YCT had an average of 0.625 ng/g (dry) EH-TBB and 0.629 ng/g BEH-TEBP (n = 3). 

Measured concentrations are reported in SI Table S6.

Each Flame-Retardant Caused Distinct Patterns of Change in mRNA levels at 1/10 LC50

mRNA microarray, qPCR and computational analyses were used to investigate and compare 

biological effects of FR exposure. SI Table S7a lists the number of differentially expressed 

genes in each condition. qPCR independently verified microarray results for 25 out of 29 

genes tested (SI Table S8). HOPACH cluster analysis of differential mRNA levels grouped 

BEH-TEBP and BZ54 together, while all other FRs clustered individually (Figure 4). KEGG 

pathway enrichment analysis found a total of 12 pathways overrepresented (Table 1), four in 

common to two conditions.

FM550 Dose Response: All Concentrations Changed mRNA

Microarrays analysis was performed with RNA from daphnids exposed to five FM550 

concentrations (N = four replicates of ~20 animals each). Concentrations were: 1/2 LC50 

(0.243 mg/L), 1/10 LC50 (0.0486 mg/L), and three additional dilutions: 0.243 µg/L, 0.0486 

µg/L, and 0.0486 ng/L. Exposure at 1/10,000 LC50 (0.0486 µg/L) resulted in the largest 

number of differentially expressed genes when compared to the untreated control. All 

concentrations caused differential mRNA levels; the no-observed transcriptional effect 

level73,74 was not reached (SI Table S7b). Three genes (a trichohyalin-like protein, 

peroxidase and an unknown protein) were differentially expressed at each concentration 

(Table 2a). When compared to other FRs, HOPACH clustered all concentrations together, 

with three concentrations significantly similar to each other (SI Figure S1). KEGG pathway 

enrichment found significant enhancement of pathways (p-value ≤0.1) for three 

concentrations (0.0486 mg/L, 0.0486 µg/L, and 0.0486 ng/L). A total of seven pathways 

were affected; each was unique to one concentration (SI Table S9). Analyses for linear 

trend75–77 found three genes significantly, negatively associated with concentration (Table 
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2b) and a large decrease in gene response at the highest concentrations (not shown). 

Clustering based on mRNA levels found 44 clusters (not shown). B2G66 gene ontology 

analysis with GOSSIP78 on the largest cluster indicated overexpression of functions related 

to oxygen binding, oxygen transporter activity and the hemoglobin complex (SI Table S10).

FM550 Metabolite Profiles Are Distinguishable from Control, while PentaBDE Profiles Are 
Not

1H NMR was used to investigate changes in hemolymph metabolomic profiles between 

control and 1/10 LC50-exposed Daphnia (Figure 5). PLS-DA scores plots (SI Figure S2) 

show considerable separation between control and FM550-exposed daphnids (validated with 

ANOVA, p-value = 0.04). FM550 exposure changed levels of 14 small-molecule metabolites 

(Table 3). Pathway analysis with MetaboAnalyst showed an increase in nitrogen 

metabolism, arginine and proline metabolism, a decrease in valine, leucine, and isoleucine 

degradation and changes in aminoacyl-tRNA biosynthesis (Table 4). Enrichment analysis 

with MetaboAnalyst showed an increase in ammonia recycling, a decrease in valine, leucine, 

and isoleucine degradation, and changes in protein biosynthesis (Table 5). There was no 

significant difference between pentaBDE-exposed and control groups (Figure 5 and SI 

Figure S2).

Changes in Lipidome Were Detected after Exposure to both FM550 and PentaBDE

To complement transcriptomic and metabolomic studies, changes in the lipidome of FM550 

and pentaBDE-exposed animals were analyzed. Both pentaBDE and FM550 significantly 

changed the level of two fats out of 352 tested (p-value ≤0.04, Table 6). FM550 increased a 

phosphatidylcholine with 42 carbons and seven double bonds (PC 42:7), while pentaBDE 

increased lysophosphatidylcholine (LPC 20:0). Both increased phosphatidylcholine (PC 

44:9).

DISCUSSION

Flame-Retardants Are Toxic to Daphnia magna

LC50 values show that FM550 and its components are highly toxic to aquatic organisms as 

defined by the U.S. EPA (LC50 values of 0.1–1 mg/L). In situ toxicity to Daphnia magna 
could cause ecologically relevant physiological disruptions and results in wide-reaching 

effects in freshwater ecosystems.79 PentaBDE was one to 2 orders of magnitude more toxic 

than any other FR; octaBDE was one of the least toxic. The phenomenon of increased 

toxicity with less-brominated PBDEs has been seen in other organisms,80–82 but the trend is 

not always true in Daphnia magna.21 BZ54, which contains BEH-TEBP and EH-TBB, was 

significantly more toxic than BEH-TEBP alone. TPhP, BEHP, and BZ54 LC50 values agree 

with those previously derived.32,83–85 Actual dissolved chemical concentrations for each FR 

are unknown as quantification in aqueous media is difficult and inaccurate. This work 

establishes for the first time nominal LC50 values for the FM550 mixture, BEH-TEBP, and 

octaBDE on Daphnia magna.
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Molecular Effects May Be Unique for Each Chemical and Formulation

HOPACH analysis (Figure 4) showed that BEH-TEBP and BZ54 were the only exposures to 

cause similar effects, which is not surprising as BZ54 contains 30% BEH-TEBP and 70% 

BEH-TBB.33 Three of the five FM550 concentrations grouped into one cluster, indicating 

similar but not identical effects. Analyses with KEGG suggest distinct molecular effects by 

each chemical (Table 1). For example, octaBDE and BEH-TEBP increased the 

glycosphingolipid biosynthesis pathway, which is involved in growth factor signaling and 

morphogenesis in arthropods.86 Glycosphingolipid function is not comprehensively 

understood,87 but changes in function or abundance could affect cell proliferation, apoptosis, 

necrosis, senescence, and differentiation, as well as inflammation and autophagy and the 

stress response.88 BZ54, on the other hand, affected Wnt signal transduction (active during 

developmental processes89), Hedgehog signal transduction and glycosaminoglycan 

degradation (the latter two are largely unstudied in Daphnia). Changes to Wnt signaling 

could affect embryonic patterning and morphogenesis, and result in population effects. 

Results for pentaBDE suggest an effect on transcription and translation. In mammals, 

pentaBDE affect thyroid hormone homeostasis.15 Thyroid hormone acts as a translation 

factor that promotes differentiation and maturation of various tissues in vertebrates.90 In 

Daphnia, thyroid hormone has been shown to cause an increased growth rate.90 If pentaBDE 

causes increased growth in Daphnia, natural daphnid populations could be affected (reduced 

food availability, overcrowding, etc.). It is important to note that the microarray does not 

represent the entire Daphnia transcriptome and Daphnia gene-functions are not well 

characterized, so additional mechanisms may be involved.

Hydrophobic chemicals with a log Kow ≥ 2.7 are often considered “narcotic.” If chemicals 

are more toxic than predicted by Kow, then effects cannot be attributed to narcosis 

alone.46,49 To investigate narcosis, we compared the log Kow and log LC50 of each 

chemical,91 and did not find a relationship between the two variables (SI). This work is 

limited because we were not able to measure actual aquatic FR concentrations. Previous 

work by Vandenbrouck et al. in Daphnia on two presumed narcotics (pyrene and 

fluoranthene) did not find clear separation between gene transcription profiles.92 However, 

in the present work, clear differences were seen at the mRNA, metabolomic, and lipidomic 

levels. Taken together, these results suggest that the traditional definitions of Type I and 

Type II narcosis48,49 may not sufficiently encompass the biological effects of hydrophobic 

chemicals.

FM550 May Cause Nutritional Dysregulation in Daphnia magna

Transcriptomic, metabolomic, and lipidomic data indicate general xenobiotic response and 

effects related to nutritional status in Daphnia after exposure to FM550 (Figure 6). Specific 

metabolites with the largest changes (Table 3) are histidine, glucose, and lysine. 

Histaminergic signaling in the Daphnia central nervous system controls phototactic behavior 

(response to UV light) and is moderated by food abundance and quality.93 Changes to the 

system can effect Daphnia populations and ecosystems.93

Glucose is used as fuel as well as conjugate for Phase II metabolism, to increase xenobiotic 

excretion.94 Daphnia have genes that encode enzymes for gluconeogenesis and for 

Scanlan et al. Page 9

Environ Sci Technol. Author manuscript; available in PMC 2016 June 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



breakdown of glycogen, to maintain the minimal glucose levels for survival.95 Increased 

glucose levels, detected by metabolomics, could be caused by reduced Phase II metabolism, 

or by glycogen breakdown. However, changes to the related enzymes and pathways were not 

detected with microarray analysis.

Enrichment analysis of 1H NMR metabolomic data (Table 5) shows changes in ammonia 

recycling, protein biosynthesis, and amino acid degradation. Daphnia has two main forms of 

nitrogen: amino acids (AAs) and ammonia (NH3).96 Essential AAs are highly correlated to 

changes in nitrogen status and occur during fasting and growth.97 During starvation, NH3 

excretion increases; NH3 is primarily sourced from amino acids and secondarily from 

nucleic acids.98 Ammonia cycling is related to protein catabolism in Daphnia99 and can 

increase along with the rate of ammonia excretion when Cladocern are starving.100,101

Daphnia growth is primarily associated with AA abundance.102 Pathway analysis (Table 4) 

detected effects on valine, leucine, and arginine metabolism and changes in aminoacyl-

tRNA. Valine, leucine, proline, and arginine are three of the most common Daphnia AAs.97 

Proline is an antioxidant in Daphnia.94 Aminoacyl-tRNA is used by the ribosome to make 

peptide chains, and aminoacyl-tRNA synthase activity is correlated with somatic growth in 

Daphnia.102 Together, the results indicate a clear effect on metabolites mediating growth.

KEGG analysis complements the metabolomics data. While the KEGG findings were not 

the same for each of the five FM550 concentrations tested, all results indicate changes to 

nutritional status and growth (ribosome, fatty acid metabolism, valine, leucine and 

isoleucine degradation, amino sugar, and nucleotide sugar metabolism) or xenobiotic 

metabolism (peroxisome and glutathione metabolism). Glycosphingolipid is involved in 

growth and in the stress response.88 Transcripomic data also show possible effects on 

oxygen transport (SI Table S10). One differentially expressed gene common to all FM550 

exposure concentrations (translation initiation factor) decreased as the concentration of 

FM550 increased, again indicating effects on protein synthesis and growth. Lipidomic 

analysis showed an increase in one highly unsaturated fatty acid (HUFA) (42:7, 

Phosphatidly choline). Growth in Daphnia is secondarily associated with HUFA 

availability.102 HUFA are important for cell membrane support and are conserved during 

starvation.94

Three genes differentially expressed in all five concentrations may be useful biomarkers of 

exposure to FM550. Validation of biomarkers would require further studies to identify and 

verify gene products in Daphnia and in other organisms.

The brominated compounds in FM550 and BZ54, BEH-TBPH, and EH-TBB, are detected in 

marine mammals,11 accumulate in fathead minnows,42 and have potential to accumulate in 

other aquatic organisms. We found the compounds in D. magna after 48 h (Figure 3), 

suggesting the possibility for trophic transfer. Low levels of the compounds were also 

detected in YCT daphnid food (BEH-TBB: 0.625 ± 0.198 ng/g; BEH-TEBP: 0.629 ± 0.018 

ng/g), which is made from yeast, fermented trout chow and cereal leaves. YCT 

contamination is the probable source of detected FRs in control animals (SI Table S6) and 

illuminates the broader problem of global FR contamination.
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Figure 1. 
Molecular structures of chemical flame-retardants. A. Polybromodiphenyl ether. B. 

Triphenyl phosphate (TPhP). C. bis(2-ethylhexyl) tetrabromophthalate (BEH-TEBP). D. 

bis(2-ethylhexyl) tetrabromobenzoate (EH-TBB). E. Isopropylated triaryl phosphates (ITP). 

F. bis(2-ethylhexyl) phthalate (BEHP). B–E are components of Firemaster 550. C and D are 

components of Firemaster BZ-54. E contains a mixture of molecules with one, two or three 

isopropyl-substituted phenol rings.
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Figure 2. 
Acute, 48-h LC50 values for flame-retardants on Daphnia magna. LC50 values were 

determined with probit or Spearman–Karber statistical programs. Error bars represent 95% 

confidence interval.
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Figure 3. 
Absorption of BEH-TEBP and EH-TBB was measured after 48-h exposure to 0.0486 µg/L 

(1/10 LC50) or 0.0486 mg/L FM550. Concentrations: nanograms chemical per gram 

daphnid, dry weight (ng/g).
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Figure 4. 
HOPACH cluster analysis of chemical profiles shows visual representation of the 

corresponding ordered distance matrix. Darker colored squares indicate more similarity. 

Clusters are numbered 1–8 on the y-axis. Three FM550 concentrations were significantly 

similar (cluster 3), as were BZ54 and BEH-TEBP (cluster 8).
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Figure 5. 
1H NMR t test filtered difference spectra showing metabolomics changes in Daphnia 

exposed to 1/10 LC50 FM550 (F–C) or pentaBDE (P–C) as compared to control. The t test 

filtered difference spectra were obtained using 7 replicates for each class. Abbreviations: 

acetate (Ace), alanine (Ala), choline (Cho), creatine (Cr), glucose (Glc), glutamate (Glu), 

glutamine (Gln), histidine (His), isoleucine (Ile), leucine (Leu), lysine (Lys), malate (Mal), 

phosphocholine (PCho), and valine (Val). Spectra were t test filtered difference and include 

the p-values (less than 0.05).
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Figure 6. 
Schematic showing proposed toxic effects of chemical flame-retardant formulation FM550 

on Daphnia magna. Omic techniques picked up changes related to nutritional status.
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Table 3

Small Molecule Metabolomics Changes in FM550-Exposed Daphnidsa

metabolite abbreviation % change p-value (t test)

Histidine His 37 0.0140

Glucose Glc 24 0.0010

Phosphocholine PCho 17 0.0020

Glutamine Gln 11 0.0005

Creatine Cre 10 0.0110

Acetate Ace 7 0.0470

Alanine Ala 6 0.0043

Valine Val −12 0.0280

Glutamate Glu −14 0.0007

Choline Cho −16 0.0070

Leucine Leu −16 0.0120

Isoleucine Ile −17 0.0240

Malate Mal −23 0.0030

Lysine Lys −24 0.0004

aAnalysis was done with HNMR and subsequent statistical analyses. Data is from seven exposed and control biological replicates of 40 daphnids 
each.
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Table 6

Changes in Daphnia magna Lipidomea

lipidome changes after flame-retardant exposure

mass of lipid formula name exposure fold change

552.4 C28H58O7PN LPC(20:0) pentaBDE 6.60

884.6 C52H86O8PN PC(44:9) pentaBDE 2.18

860.6 C50H86O8PN PC(42:7) FM550 1.36

884.6 C52H86O8PN PC(44:9) FM550 2.91

aEndogenous lipids were measured after 48 h exposure to 1/10 LC50 pentaBDE or 1/10 LC50 FM550 or to solvent-exposed controls.

p-value ≤0.04.

LPC: lysophosphatidylcholine, PC: phosphatidylcholine.
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