Skip to main content
. 2016 Apr 18;15:53. doi: 10.1186/s12940-016-0137-9

Table 3.

Alpine, non-alpine and area-specific LUR models for NO2

Area(s) N Model Model Measures of spatial autocorrelation LOOCV
Adj R2 R2 RMSE P-value of association of residuals with areaa Moran’s I (p-value) R2 RMSE
Alpineb 78 NO2 = 7.97 + BUILDINGS_25 * 0.0124 + POP_500 * 0.00658 + TRAFNEAR * 0.000871 + URBGREEN_2000 * -0.00000497 0.50 0.53 6.6 0.1593 0.011 (0.8387) 0.46 7.0
Non-alpinec 234 NO2 = −0.83 + NO2_2010 * 0.855 + MAJROADLENGTH_25 * 0.201 + HDRES_250 * 0.0000266 0.64 0.65 6.3 0.0010 0.0658 (0.2217) 0.63 6.4
Aarau 40 NO2 = 2.29 + TRAFLOAD_25 * 0.0000139 + BUILDINGS_75 * 0.0012 + INDUSTRY_5000 * 0.00000332 + MAJROADLENGTH_500 * 0.00179 0.87 0.88 2.7 - −0.149 (0.1524) 0.84 3.0
Basel 40 NO2 = −1.86 + NO2_2010 * 0.738 + HEAVYTRAFLOAD_25 * 0.0019 + HEAVYTRAFLOAD_500 * 0.00000136 + WATER_500 * 0.0000329 0.76 0.78 3.3 - −0.154 (0.0913) 0.64 4.0
Davos 38 NO2 = −6.19 + TRAFLOAD_150 * 0.00000604 + NO2_2010 * 1.63 + ROADLENGTH_50 * 0.0552 + BUILDINGS_25 * 0.0102 0.69 0.73 6.1 - −0.296 (0.1211) 0.62 6.9
Geneva 38 NO2 = 14.2 + POP_2000 * 0.0000987 + MAJROADLENGTH_25 * 0.234 + HDRES_250 * 0.0000619 0.49 0.53 8.3 - −0.0393 (0.8908) 0.43 8.9
Lugano 37 NO2 = 14.1 + TRAFMAJORLOAD_25 * 0.0000293 + TRAFMAJORLOAD_500 * 0.000000331 + WATER_500 * 0.0000436 + INTINVDIST * 0.00357 + INDUSTRY_1000 * 0.0000167 0.64 0.69 5.7 - −0.0804 (0.4878) 0.57 6.3
Montana 40 NO2 = 20.9 + TRAFLOAD_25 * 0.0000183 + LDRES_300 * 0.0000315 + ALT * -0.0143 + BUILDINGS_1000 * 0.000024 0.46 0.52 4.3 - 0.0414 (0.5248) 0.39 4.6
Payerne 40 NO2 = 44 + BUILDINGS_50 * 0.00289 + TRAFLOAD_50 * 0.0000126 + ALT * -0.0749 0.61 0.64 3.1 - 0.218 (0.0639) 0.49 3.6
Wald 39 NO2 = −10.3 + HEAVYINTINVDIST * 1.35 + NO2_2010 * 1.15 + POP_100 * 0.029 0.89 0.89 3.5 - −0.00939 (0.8613) 0.86 3.9

aBold = significant association of residuals with study area; bAlpine areas are Davos (n = 38) and Montana (n = 40); cNon-alpine areas are Aarau (n = 40), Basel (n = 40), Geneva (n = 38), Lugano (n = 37), Payerne (n = 40) and Wald (n = 39)

HHS Vulnerability Disclosure