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Nanoaerosols reduce required 
effective dose of liposomal levofloxacin 
against pulmonary murine Francisella tularensis 
subsp. novicida infection
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Abstract 

Background:  The Institute of Theoretical and Experimental Biophysics in Moscow recently developed a new 
nanoaerosol generator. This study evaluated this novel technology, which has the potential to enhance therapeutic 
delivery, with the goal of using the generator to treat pulmonary Francisella tularensis subsp. novicida (F. novicida) 
infections in BALB/c mice.

Results:  First, the analysis of quantum dots distribution in cryosections of murine lungs demonstrated that 
nanoaerosols penetrate the alveoli and spread more homogenously in the lungs than upon intranasal delivery. 
Second, the generator was used to aerosolize the antibiotic levofloxacin to determine the effectiveness of nanoaero-
solized levofloxacin as treatment against F. novicida. The generator was capable of delivering a sufficient dose of 
nanoaerosolized liposome-encapsulated levofloxacin to rescue mice against 100LD50 of F. novicida.

Conclusions:  The nanoaerosol-delivered dosage of liposome-encapsulated levofloxacin required to rescue mice 
is approximately 94× lower than the oral required dose and approximately 8× lower than the intraperitoneal 
dose required for rescue. In addition, treatment with nanoaerosols consumes less total volume of therapeutic solu-
tions and is gentler on sprayed material than the aerosolization by a conventional three-jet Collison nebulizer as seen 
by the preservation of liposomes. This could represent a significant advance for the use of expensive therapeutics and 
lung directed therapies.
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Background
Aerosolized therapeutics improve upon traditional deliv-
ery methods in cases of pulmonary infection due to their 
ease of administration, access to the large lung surface 
area, and limited systemic distribution [1]. It has been 
found that the delivery of therapeutics via the pulmonary 
route bypasses digestive destruction in the stomach and 
first-pass metabolism in the liver, thus potentially greatly 

reducing required doses and resulting side effects. The 
merits of inhalational therapies have been well established 
in the treatment of cystic fibrosis patients where the high 
local concentration but low systemic effects are ideal [2].

Nanoaerosols are defined here as being aerosols com-
prised of particles that are less than 200 nm in diameter 
[3]. In comparison, aerosol particles created by a stand-
ard 3-jet Collison nebulizer are usually between 1 and 
5  μm in diameter [4]. New technology in the produc-
tion of nanoaerosols may allow for further improvement 
on the treatment of lung-based infections due to the 
enhanced deposition of therapeutic aerosol in the lower 
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respiratory tract and appropriate localization in the alve-
oli, which may result in a lower necessary dose.

The Institute of Theoretical and Experimental Biophysics 
(ITEB) in Moscow has developed a new technology for the 
generation of nanoaerosolized biological materials, which 
can retain structural and functional properties of the mol-
ecules [5, 6]. This technology is based on the electrohydro-
dynamic atomization of a solution followed by gas-phase 
neutralization of the electrospray–generated ions and 
nanoclusters with oppositely charged ions generated via the 
same technique. It provides a new avenue in the fabrication 
of a variety of nanoproducts based on the fact that oppo-
sitely charged species are forced to form complexes upon 
neutralization, while collisions between similarly charged 
products are inhibited. Unlike the current methods of neu-
tralization with corona, which generates highly reactive 
radicals, the electrospray-neutralization (ESN) technology 
employs less reactive ions and induces less damage to the 
sprayed material [7]. It has been demonstrated that ESN 
can produce protein nanoaerosols with almost complete 
retention of the functional properties of protein molecules, 
which speaks to its gentle aerosolization process and suita-
bility for use with biologics and therapeutics [3, 8]. The size 
of the nanoaerosolized particles depends on a variety of 
parameters, the most important of which are drug concen-
tration and flow rate. The full list of parameters and their 
effects are discussed in the references presented above.

Nanoaerosols generated by other methods have been 
shown to be an effective way to deliver anti-inflamma-
tory and anti-hypertensive drugs to mice [9–11]. Due to 
these results, it seems logical and potentially beneficial to 
extend these studies to other therapeutics. In this respect, 
the new electrospray neutralization (ESN) aerosolization 
technology has an advantage over the harsh sublimation–
condensation technique used in the anti-inflammatory 
and anti- hypertensive drug studies because it enables 
the generation of nanoaerosols from virtually any soluble 
substance. To demonstrate the ability to nanoaerosolize 
useful antibiotic therapeutics and compare treatment 
efficiency to traditional delivery methods, a mouse model 
of pulmonary Francisella tularensis subsp. novicida  
(F. novicida) infection was used.

The Francisella species are gram-negative, facultatively 
intracellular, pathogenic bacteria readily found in nature 
that can lead to a lethal infection in humans when as few 
as ten bacteria are inhaled [12]. Respiratory tularemia has 
been reported to result from traditional farming meth-
ods, lawn mowing, or otherwise aerosolizing contami-
nated materials [13]. However, the intentional exposure 
of humans to respiratory tularemia is a matter of great 
concern in the field of bioterrorism [13]. The United 
States’ Department of Health and Human Services has 
listed F. tularensis as a select agent due to its severe 

threat to both human and animal health, high degree of 
infectiousness, ability to be aerosolized, and the lack of 
a viable vaccine. In addition, F. tularensis has an addi-
tional notation as a Tier 1 Select Agent due to its history 
of being developed as a biological weapon by the United 
States and Soviet Union.

Levofloxacin is a third generation fluoroquinolone anti-
biotic shown to be highly effective in treating Francisella 
infections (MIC90 =  0.012 mg/L), despite not being con-
sidered the standard treatment [14–17]. Levofloxacin is 
well tolerated by most individuals, able to reach high blood 
levels and required MIC  levels, capable of intracellular 
penetration, and has a lower relapse rate than standard 
treatments [16]. Due to the increasing number of cases of 
naturally acquired antibiotic resistance among pathogens, 
including Francisella species, and the possibility of the cre-
ation of genetically modified bacterial strains, it is critical 
that the scientific community investigate new or improved 
treatments against potential threat agents [18–20].

Wong et  al. reported an increase in survival against 
10LD50F. tularensis subsp. LVS by encapsulating cip-
rofloxacin in liposomes and delivering them via stand-
ard aerosol. The act of encapsulating ciprofloxacin in 
liposomes brought the survival from 0  % with a mean 
time to death of 8.2 days to 100 % [21]. Similarly, Hamb-
lin et al. reported that aerosolized liposome-encapsulated 
ciprofloxacin was capable of rescuing mice from a lethal 
F. tularensis subsp. Schu S4 infection with as little as a 
single aerosol treatment [22]. Levofloxacin encapsulated 
in liposomes could enhance treatments against tularemia 
compared to levofloxacin alone.

This study investigated the utility of a nanoaerosol-
based therapeutic approach using levofloxacin against a 
murine pulmonary Francisella infection as a model. Fur-
thermore, this therapeutic approach was compared in 
the same animal model to traditional delivery methods: 
intraperitoneal injection, oral administration, and 3-jet 
Collison nebulizer generated aerosols.

Results and discussion
MPPD 3.0 software models the deposition of various 
sized aerosolized particles within a mouse respiratory 
tract based on extensive data from previously published 
studies [23]. As seen in Fig. 1, large particle aerosols have 
the highest total deposition in the lungs but a very small 
percentage of that is deposited in the lower respiratory 
tract. Small particle aerosols have a lower total deposi-
tion but a large portion of these particles is retained in 
the alveoli. In an effort to maximally target the alveoli 
for the purpose of increasing treatment efficiency, nano-
sized particles should be used.

Based on this data, it can be seen that particles gener-
ated by the 3-jet Collison nebulizer, which range from 1 
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to 5  μm [4], have a high total deposition but that those 
particles mostly deposit in the nasal cavity, as there is an 
extremely low percentage of alveolar and tracheobron-
chial deposition for particles of that size. Particles gener-
ated by the ESN generator fit the nano-size range that is 
predicted to have less total deposition but a significantly 
higher deposition percentage in the alveolar and tracheo-
bronchial regions. It is hypothesized that the increased 
deposition of therapeutics in the lower respiratory tract 
through the use of the ESN generator will contribute 
to an improved outcome against pulmonary infections 
despite the low overall deposition.

Previous studies show that Francisella targets alveo-
lar type II epithelial cells and macrophages during pul-
monary infections so the ability to deliver therapeutics 
directly to the alveoli would be beneficial [24–26]. Intra-
nasal delivery of F. novicida to the lungs was verified to 
result in localization of bacteria in the alveoli (Fig.  2a). 
According to MPPD, the small size of nanoaerosols allow 
for deeper penetration into the lung, specifically to the 
alveoli. To evaluate this claim, quantum dots were used 
to trace deposition in the lungs following nanoaerosol 
exposure and intranasal instillation. Quantum dots are 
nanocrystals made of semiconducting material ~20  nm 
in diameter that fluoresce at specified wavelengths and 
are frequently used as labels [27]. As seen in Fig. 2b, the 
nanoaerosol generator produced nanoaerosolized par-
ticles with a geometric mean diameter of 39 nm, which 
confirms that the generator is capable of producing parti-
cles in the nano-sized range. As predicted, sections of the 
lungs treated with nanoaerosolized quantum dots show 
that, when compared to intranasal delivery, particles 

homogenously penetrate deeper into the lower respira-
tory tract, including the alveoli and lung parenchyma, 
instead of mostly being deposited in the bronchioles and 
mucus (Fig. 2c, d).

While quantum dots are a good demonstrative tool, 
this data is only qualitative in nature and the use of 
nanoaerosols as therapeutics still requires detailed evalu-
ation. F. tularensis is a biothreat agent that is known to be 
susceptible to treatment with levofloxacin, among other 
antibiotics [14–17]. Figure 3a shows that the ESN genera-
tor is capable of nanoaerosolizing a 4 mg/mL levofloxacin 
solution in water, producing particles with a geometric 
mean diameter of 56  nm. The MPPD model predicts a 
total deposition of 43.5 % for particles of this size: 17.8 % 
alveolar, 10.3  % tracheobronchial, and 15.4  % nasal 
(Fig. 1). Since deposition is a physical process that relies 
on diffusion and impaction, the size of the nanoaero-
solized particles will have a similar regional deposition 
pattern despite the substance or the presence of a com-
plex internal structure being delivered. Since the deposi-
tion of the nanoaerosolized quantum dots in the previous 
experiment supported the MPPD model, a traceable anti-
biotic was not used. Two additional small peaks with the 
mode diameters of 150 and 280 nm are present in the size 
distribution histogram and are most likely the result of 
particle coagulation.

To determine if the ESN nanoaerosol  generator is an 
effective therapeutic delivery tool, mice were infected 
with 100LD50F. novicida and subsequently treated with 
nanoaerosolized aqueous levofloxacin (4  mg/mL) in a 
conductive whole-body exposure chamber (described 
in “Methods”) for 4 h a day for 5 days. Despite all mice 
succumbing to infection, the treated mice showed a sig-
nificant increase in mean time to death (p < 0.005) com-
pared to the controls: from 3.6 to 8.7 days. The daily total 
deposited dose, which includes all drug deposited in the 
respiratory tract regardless of location, was estimated to 
be approximately 0.42 mg/kg through the use of sample 
collection PVP filters and the MPPD deposition predic-
tions. For an example calculation from one treatment 
session, see Additional file 1: Equation S1.

The deposition fractions modeled by the MPPD pro-
gram were used to estimate deposition here; however, 
additional characterization of nanoaerosols is necessary 
to fully understand and accurately calculate the deposi-
tion of the particles. Further analysis must account for 
numerous unknowns, such as the physical properties of 
the sprayed material within the aerosol and the effect of 
charge on aerosol deposition, but such experiments are 
not within the scope of this study.

The Baiera-driven 3-jet Collison nebulizer creates 
“standard aerosols” composed of particles between 1 
and 5  µm in diameter [4]. In this experiment, the time 
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Fig. 1  Predicted respiratory deposition of various sized particles. 
This MPPD 3.0 simulation shows deposition fraction of particles in 
the total (black, solid), nasal (blue, dashed) tracheobronchial (green, 
dotted), and alveolar (red, alternating) regions based on diameter. 
The vertical dotted line signifies mean diameter of nanoaerosolized 
levofloxacin and the vertical dashed line signifies mean diameter of 
nanoaerosolized liposome-encapsulated levofloxacin
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of exposure was altered to change the delivered dose in 
order to model the nanoaerosol experiment. The stand-
ard aerosol of aqueous levofloxacin (4 mg/mL) deposited 
approximately 0.98 mg/kg/day to the entirety of the res-
piratory tract during the 2-h treatment group, estimated 
through the use of an AGI sampler and the MPPD depo-
sition predictions. Of the mice that died in the 2  h per 
day treatment group, the mean time to death of 10.8 days 
was significantly longer (p  <  0.005) than the 6.8  days 
mean time to death of the 1 h per day treatment group. 

The 30 min per day treatment group had a mean time to 
death of 4.2 days and the control group had a mean time 
to death of 3.8 days (Fig. 3c). In addition, it was found by 
histological examination that particles delivered by the 
ESN nanoaerosol generator do not cause damage to the 
lungs upon pathologic examination (Additional file  1: 
Table S1).

For comparison purposes, the lowest effective dose of 
levofloxacin delivered via intraperitoneal injection and 
oral administration against 100LD50 of F. novicida was 
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Fig. 2  Bacterial and quantum dot deposition. a Murine lung section showing intranasal F. novicida (red) in alveoli. b Size distribution of nanoaero-
solized quantum dots. c Quantum dots delivered intranasally are mainly deposited in the bronchioles and lining mucus. d Quantum dot delivered 
via nanoaerosol penetrate the alveoli and deposit throughout the lung
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Fig. 3  Levofloxacin delivered as nanoaerosol and standard aerosol. a Size distribution of nanoaerosolized levofloxacin generated from a 4 mg/mL 
levofloxacin solution in water. b Survival curve of mice treated with nanoaerosolized levofloxacin (blue) against 100LD50 intranasal F. novicida infec-
tion. c Survival curve of mice treated with 3-jet Collison nebulizer aerosolized levofloxacin (30 min—red, 1 h—green, 2 h—blue) against 100LD50 
intranasal F. novicida infection
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determined to be 3 and 33  mg/kg, respectively (Addi-
tional file 1: Figure S1). A dose of approximately 0.42 mg/
kg of nanoaerosolized levofloxacin leads to a mean time 
to death of 8.7 days compared to the 6.5 days mean time 
to death of the approximately 0.63 mg/kg dose given via 
intraperitoneal injection, despite delivering a lower dose. 
Thus, nanoaerosolized levofloxacin delivered to the lung 
has more therapeutic value than a higher dose of levo-
floxacin delivered via intraperitoneal injection.

The 2-h standard aerosol treatment group that received 
approximately 0.98  mg/kg was not statistically different 
than the nanoaerosolized treatment group’s, which deliv-
ered half the dose at ~0.42 mg/kg (p > 0.05). These results 
suggest that the use of nanoaerosols significantly decreases 
the required  effective dose of levofloxacin required to 
rescue mice from a pulmonary F. novicida infection by 
approximately twofold compared to a standard aerosol 
treatment. Additionally, the amount of solution required 
to deliver these doses differs significantly. The generation 
of nanoaerosol in these experiments requires 40 times less 
volume of sprayed material (~0.5 ml) than what is needed 
for the generation of standard aerosol (~10 ml). This con-
servation of material would be particularly useful for oth-
erwise cost prohibitive therapeutics, such as peptides.

Despite these promising results in regard to dose 
reduction, the therapy is ultimately not viable unless mice 
can be rescued from a lethal pulmonary Francisella infec-
tion. Previous reports suggest that liposomes can be used 
to improve treatments delivered to the respiratory tract 
and pulmonary delivery of liposome-encapsulated cip-
rofloxacin enhanced the treatment of Francisella infec-
tions compared to ciprofloxacin alone [21, 22, 28]. This 
concept was explored in an attempt to increase survival 
using nanoaerosol delivery.

In order to apply this improvement to the study, 
liposomes containing levofloxacin were prepared from 
DPPC, DPPG, and cholesterol precursors (2:1:2 molar 
ratio) using the well-established thin film dehydra-
tion/rehydration technique, including sonication and 

extrusion, to produce small unilamellar vesicles [29]. As 
seen in Fig. 4a, the ESN nanoaerosol generator produced 
nanoaerosolized particles with a geometric mean diam-
eter of 153 nm, which is larger than the nanoaerosolized 
levofloxacin but still small enough to deliver material to 
the alveoli. The MPPD model predicts a total deposi-
tion of 30.2  % for particles of this size: 8.69  % alveolar, 
4.91  % tracheobronchial, and 16.6  % nasal (Fig.  1). The 
nanoaerosolization of a 4 mg/mL liposome-encapsulated 
levofloxacin solution increased the percentage of surviv-
ing mice to 80  % (4/5 mice rescued) and decreased the 
estimated delivered dose of levofloxacin to the entire res-
piratory tract to approximately 0.35 mg/kg per day using 
the same exposure time of 4 h per day for 5 days (Fig. 4b). 
The lower delivered dose and decreased percentage deliv-
ered to the alveoli compared to the nanoaerosolized 
levofloxacin suggests that the liposomes themselves may 
assist with delivery and uptake.

The dose-survival curves were repeated using liposome-
encapsulated levofloxacin for the intraperitoneal, oral, and 
aerosol delivery methods (Fig. 4c; Additional file 1: Figure 
S1). These curves were not significantly different from 
those obtained via treatment with naked levofloxacin 
despite the fact that the 2-h aerosol treatment increased 
the daily delivered dose from ~0.98 mg/kg per day of levo-
floxacin to ~1.3 mg/kg per day of liposome-encapsulated 
levofloxacin. The lowest effective doses for intraperitoneal 
injection and oral administration of liposome-encapsu-
lated levofloxacin remained about the same as with naked 
levofloxacin: 3 and 33 mg/kg per day, respectively. These 
findings are inconsistent with the literature, which asserts 
that liposomes enhance intraperitoneal and oral treat-
ments; however, perhaps delivering the minimal, barely- 
effective doses of liposome-encapsulated levofloxacin 
does not make a significant difference when administering 
this particular treatment by intraperitoneal or oral routes 
against pulmonary Francisella infections.

The lack of a significant change in the standard aero-
sol dose survival curve between unencapsulated and 
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Fig. 4  Liposome-encapsulated levofloxacin nanoaerosol and standard aerosol. a Size distribution of nanoaerosolized liposome-encapsulated 
levofloxacin. b Survival curve of mice treated with nanoaerosolized liposome-encapsulated levofloxacin (blue) against 100LD50 intranasal F. novicida 
infection. c Survival curve of mice treated with aerosolized levofloxacin (30 min—red, 1 h—green, 2 h—blue) against 100LD50 intranasal F. novicida 
infection
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liposome-encapsulated levofloxacin seemed to contradict 
the results reported by Wong et al. [21, 30]. To begin to 
address this, further investigation showed that over 50 % 
of the liposomes had burst and a significant portion of 
the levofloxacin had reverted back to the unencapsulated 
form as a result of the 3-jet Collison nebulizer aerosoliza-
tion process. This is consistent with previous reports as 
to the membrane disruption caused by this type of nebu-
lizer [30, 31]. Since the Collison nebulizer aerosolization 
process resulted in such a large reduction in the concen-
tration of intact liposomes, the nanoaerosolized lipo-
somal levofloxacin dose cannot be accurately compared 
to the dose of liposomes aerosolized by this particular 
aerosolization process. However, this finding supports 
the notion that the ESN nanoaerosol generator is gentler 
on sprayed material than a Collison jet nebulizer, as seen 
by the preservation of liposomes, and would be useful 
in delivering fragile biological substances. Finally, it can 
be concluded from the survival curves that ~0.35  mg/
kg of nanoaerosolized liposomal levofloxacin is statisti-
cally equivalent in terms of survival to 3  mg/kg liposo-
mal levofloxacin delivered via intraperitoneal injection 
and 33  mg/kg liposomal levofloxacin by oral delivery 
(p > 0.005). This data is equivalent to an 8-fold reduction 
in the minimum effective treatment dose compared to 
the intraperitoneal delivery method and 94-fold reduc-
tion compared to the oral delivery method.

Conclusion
It has previously been established that aerosolized thera-
peutics can improve upon the traditional delivery meth-
ods of oral and intraperitoneal injection. However, this 
study demonstrates that nanoaerosols (less than 200 nm) 
are potentially the next phase of improvement in drug 
delivery.

One significant benefit of nanoaerosolized therapeutic 
agents is the very small total volume required for each 
treatment. Through the method of ESN aerosol genera-
tion alone, nanoaerosols require 40 times less initial vol-
ume to spray than traditional nebulizers. This could be 
a significant boon for treatments in which the required 
therapeutics are extremely expensive, such as peptides 
or biologics. Due to the difficulty in delivering high 
doses of therapeutics via nanoaerosols because of the 
small amount of drug mass contained in the nanometer-
sized particles, liposomes are a useful tool in enhancing 
deposition and uptake of the delivered therapeutic in 
the lungs. Nanoaerosol generation is gentler on sprayed 
therapeutic compounds than the Collison jet nebulizer, 
as seen by the preservation of liposomes, and therefore is 
compatible with the use of liposome-encapsulated thera-
peutics or other fragile materials.

Nanoaerosols have proven to reduce the required 
effective dose of levofloxacin to rescue mice from a 
pulmonary F. novicida infection. Nanoaerosolized lipo-
some- encapsulated levofloxacin results in an 8-fold 
reduction compared to the intraperitoneal delivery 
method and 94-fold reduction compared to the oral 
delivery method. Nanoaerosolized levofloxacin is also 
as effective as twice the dose of levofloxacin aerosolized 
via a 3-jet Collison nebulizer. This result is most likely 
due to the direct delivery some fraction of the anti-
biotic to the lower respiratory tract and the alveolar 
space, which is the initial site of Francisella infection 
in this model. These results illustrate the significant 
benefit of direct delivery to the site of infection in the 
alveoli. In addition, the delivery of nanoaerosols to the 
lung showed no evidence of causing tissue damage in 
mice. These results are highly encouraging to pursue 
the further development of nanoaerosol-based thera-
peutic delivery, especially for its ability to achieve a 
therapeutic resolution of infection with a significantly 
reduced dose and the small net amount of therapeutic 
used. This technology could assist patients suffering 
from pneumonia, cystic fibrosis, and potentially other 
systemic diseases, such as diabetes, by enabling pulmo-
nary delivery of medication at a significantly reduced 
dose, which could lead to a reduction in cost and the 
number or severity of side effects. Future studies could 
explore the range of therapeutics that can be delivered 
via the nanoaerosol generator and other applications 
to which the technology can be applied. More detailed 
studies of the biophysical characteristics of the parti-
cles and their deposition could also be performed. In 
addition, the pharmacokinetics and pharmacodynam-
ics of delivered nanoaerosolized therapeutics should be 
further investigated in order to fully develop the ben-
efits demonstrated in this study.

Methods
Deposition modeling
Respiratory deposition probabilities for aerosolized par-
ticles in BALB/c mice were calculated using the Multi-
ple Path Particle Dosimetry (MPPD) model, version 3.0 
(Chemical Industry Institute of Toxicology, Research 
Triangle Park, NC). MPPD 3.0 software models the 
deposition of various sized aerosolized particles within 
a mouse respiratory tract based on extensive data from 
previously published studies [23, 32]. The parameters 
of mouse model, MMAD and a size range from 0.01 to 
1 μm were used. Estimated respiratory values of BALB/c 
mice determined by Flandre et al. were entered into the 
program for modeling purposes (Additional file 1: Equa-
tion S1) [33].
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Nanoaerosol generation
The ESN nanoaerosol generator was used in this study as 
previously described [3, 5]. Briefly, a sample suspended or 
dissolved in water with a conductivity of less than 200 μS/
cm was sprayed at a positive potential while ethanol was 
sprayed at a negative potential. Conductivity was meas-
ured with a conductivity meter (Oakton Con 11 Series, 
Thermo Scientific, Waltham, MA) possessing a modified 
probe to allow for the measurement of low volume sam-
ples. To accelerate atomization, the positively charged 
capillary had a pressure of between 7 and 9 cm H2O and a 
current of 95 nA applied. The pressure and current in the 
negatively charged capillary were 3.6 cm H2O and 40 nA, 
respectively. The volumetric yield of nanoaerosol was 2 L 
per minute. Mice were exposed to nanoaerosols for 4 h in 
a conductive whole body exposure unit (described below) 
attached to the generator output by conductive tubing.

Whole body exposure unit
This specialized chamber was developed at GMU to ena-
ble the delivery of nanoaerosols to five mice at a time. The 
chamber was produced by taking a 1  L acrylic, latched 
induction chamber (Vetequip, Inc, 941443), with the 
dimensions 3.75″ × 4.5″ × 3.75″, and drilling out the plas-
tic inlet and outlet ports to be replaced with brass fittings 
as shown in Additional file 1: Figure S2. Then, taping off a 
“window” on each side to allow for observation of the mice, 
the inside of the box was coated with Total Ground Carbon 
Conductive Coating (MG Chemicals, 838–340  g), includ-
ing the floor and lid, to reduce the deposition of nanoaero-
sol particles. The outside of the box was coated with Super 
Shield Silver Coated Copper Conductive Coating (MG 
Chemicals, 843–140 g). Using a piece of copper tape, the 
lid was connected to the base of the box to ensure connec-
tion (not shown). This box can comfortably hold five mice 
for whole body exposure to nanoaerosols, which are deliv-
ered to the box via conductive tubing to the inlet port. Post 
chamber sampling can be done from the outlet port.

Aerosol sizing
Nanoaerosol particles were sized using a Scanning 
Mobility Particle Sizer (SMPS, TSI Incorporated, Shor-
eview, MN) to measure air particle size distribution in 
the range of 20–1000 nm. The SMPS is composed of an 
Ultrafine Water-based Condensation Particle Counter 
(model 3786), an Electrostatic Classifier (model 3080), a 
Long Differential Mobility Analyzer (model 3081), and 
the Aerosol Instrument Manager® software (TSI Incor-
porated, Shoreview, MN).

Quantum dots deposition
Six to eight week old female BALB/c mice (Harlan, Fred-
erick, MD) were given a 46  nM quantum dot (20  nm 

Qdot 705, Life Technologies, Grand Island, NY) solution 
by either a 4-h nanoaerosol spray or a single 40 μL intra-
nasal dose. Controls received 40  μL of PBS intranasally. 
Mice rested for 2  h before being administered a keta-
mine–xylazine cocktail. While under anesthesia, mice 
were euthanized and lungs were perfused in  situ with 
10 mL of PBS followed by 20 mL of 4 % depolymerized 
paraformaldehyde. Lungs were harvested and underwent 
cryosectioning (10 μm thick sections with Thermo Scien-
tific HM550 cryostat, Waltham, MA) and imaged using a 
confocal microscope (Nikon Eclipse TE2000-U, Melville, 
NY).

Bacterial strains
Francisella novicida (ATCC 15482) was obtained from 
American Type Culture Collection (Manassas, VA). All 
bacteria were streaked onto tryptic soy agar with 0.1  % 
cysteine (TSAC) or Chocolate Agar (GC Agar II with Iso-
vitalex, BD Biosciences, Franklin Lakes, NJ) plates and 
single colonies were inoculated into tryptic soy broth 
with 0.1  % cysteine (TSBC) or Brain Heart Infusion, 
pH 6.8 (BHI) broth (TekNova, Hollister, CA). Cultures 
were incubated at 37 °C overnight with liquid cultures at 
250 rpm.

Francisella in alveoli
Six to eight week old female BALB/c mice (Harlan, Fred-
erick, MD) were infected with F. novicida intranasally. 
Following euthanasia, lung sections were stained with 
DAPI to observe the nuclei, FITC phalloidin (green) 
to observe the cellular actin, and goat anti-Francisella 
tularensis affinity purified polyclonal antiserum (DD-33, 
AB-AG-FTUL, Department of Defense Critical Reagents 
Program) was used as the primary antibody. The pri-
mary antibody was detected using donkey anti-goat IgG 
(H + L) secondary antibody, Alexa Fluor 594 (red) con-
jugate (Life Technologies, Fredrick, MD). The blue, green 
and red images were merged together to produce a com-
posite image.

Murine infection
Six to eight week old female BALB/c mice (Harlan, 
Frederick, MD) were infected intranasally with 50  μL 
of PBS containing 100LD50 of F. novicida (approxi-
mately 1000  CFU)  following IACUC approved proto-
cols. Bacterial inoculum concentrations were verified 
retrospectively via plating on chocolate agar. Mice were 
monitored twice daily for the duration of the study 
and assigned health scores according to institutional 
standards. Human-equivalent   endpoints were used at 
a designated health score cut off which corresponds 
to significant weight loss, dehydration, lethargy, and 
lack of responsiveness. Mice were euthanized via CO2 
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asphyxiation followed by cervical dislocation. Occasional 
mice declined rapidly between health checks and suc-
cumbed to infection prior to euthanasia.

Antibiotic treatments
Three hours post infection treatment was initiated and 
continued once a day for 5 days by (i) a 100 µL intraperi-
toneal injection, (ii) a 100  µL orally administered dose, 
(iii) a 0.5–2  h aerosol treatment in a whole body expo-
sure chamber (utilizing approximately 20  mL to create 
aerosol), or (iv) a 4 h nanoaerosol treatment in a whole 
body exposure (utilizing approximately 500 µL to create 
nanoaerosol). Aerosol treatment was administered via a 
three-jet Collison nebulizer provided as part of the Biaera 
whole body exposure system (Biaera Technologies, Hag-
erstown, MD). Nanoaerosol treatment was administered 
as described above. Dosages were based on the average 
weight of all mice in the experimental run. Estimated res-
piratory values of mice determined by Flandre et al. were 
used in conjuction with MPPD to calculate approximate 
deposition in lungs (Additional file 1: Equation S1) [33].

Aerosol sampling
Aerosol samples from the Biaera aerosol generator were 
collected in distilled water contained within an all-
glass impinger (AGI). Nanoaerosol samples from the 
ESN  nanoaerosol generator were collected on polyvi-
nylpyrrolidone (PVP) filters that were dissolved in 100 µL 
of distilled water for measurements. PVP filters provide 
high capturing efficiency and are ideal for sample analy-
sis because they are chemically inert [34, 35]. Collected 
levofloxacin samples from both methods were diluted 
with distilled water and the antibiotic concentration was 
measured at a wavelength of 288  nm on a NanoDrop 
spectrophotometer (Thermo Scientific, Waltham, MA) 
against a standard curve. Liposome-encapsulated levo-
floxacin samples were diluted in ethanol as opposed to 
distilled water to disrupt the liposome membranes prior 
to measurements and were measured at 300 nm.

Liposome preparation
1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) 
and 1,2-dipalmitoyl-sn-glycero-3-phosphoglycerol 
(DPPG) was acquired from Echelon Biosciences Incor-
porated (Salt Lake City, UT). Cholesterol was acquired 
from Sigma-Aldrich (St. Louis, MO). Liposomes con-
taining a saturated solution of levofloxacin in water were 
prepared from DPPC, DPPG, and cholesterol precursors 
(2:1:2 molar ratio) using the well-established thin film 
dehydration/rehydration technique followed by sonica-
tion and extrusion to produce small unilamellar vesicles 
[29, 36]. Liposomes were sized using a qNano particle 
analyzer (iZon, Oxford, United Kingdom) and shown to 

have a mean and mode diameter of approximately 172.1 
and 124  nm, respectively (Additional file  1: Figure S3). 
Levofloxacin concentration within liposomes was meas-
ured using a NanoDrop spectrophotometer (Thermo 
Scientific, Waltham, MA) as described above. Liposomes 
were burst with ethanol to determine final levofloxacin 
concentration and diluted to a concentration of 4 mg/mL 
for administration.

Histopathologic examination
Lungs, livers, and spleens were harvested from four dif-
ferent mice: (1) an uninfected, untreated naïve mouse; 
(2) an uninfected, naïve mouse treated with liposome-
encapsulated water; (3) an infected mouse treated with 
liposome- encapsulated levofloxacin; and (4) an infected, 
untreated mouse. Formalin fixed organs were submit-
ted to Experimental Pathology Laboratories, Inc. (Ster-
ling, VA) for processing, hematoxylin and eosin staining, 
and histopathologic evaluation. Samples were ran-
domly assigned numbers to ensure blind scoring by the 
pathologist.

Ethics statement
All animal experiments included in this manuscript were 
approved by and conducted in compliance with regula-
tions of the Institutional Animal Care and Use Commit-
tee (protocol #0253) of George Mason University. All 
experiments were carried out in accordance with the 
National Research Council’s Guide for the Care and Use 
of Laboratory Animals (2011) and the Public Health Ser-
vice Policy on Humane Care and Use of Laboratory Ani-
mals (2002).

Statistical analysis
The survival curves were analyzed using the Mantel-
Cox test, which is used to test the null hypothesis that 
survival curves are not different between groups. Low p 
values correspond with a rejection of the null hypothesis, 
which means that there is a statistical difference between 
the survival data of different treatment groups. This 
test does not assume a normal distribution, allows for 
censored data, and is based off of the Chi squared test, 
which allows for a minimum of five samples. Each experi-
mental group contained five mice and experiments were 
repeated to confirm results.

Additional file

Additional file 1: Equation S1. Example Dosing Calculation. This calcu-
lation shows the equation for estimating the nanoaerosolized levofloxacin 
dose deposited in each mouse during one spray session and the general 
principle behind all of the dosing calculations in this study. The spray 
variable was determined through the use of PVP filters for nanoaerosol 
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