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Autophagy interaction with herpes simplex virus type-1 infection

Douglas O’Connell and Chengyu Liang

Department of Molecular Microbiology and Immunology, Keck Medical School, University of Southern California, Los Angeles, CA, USA

ARTICLE HISTORY
Received 19 May 2015
Revised 26 December 2015
Accepted 1 January 2016

ABSTRACT
More than 50% of the U.S. population is infected with herpes simplex virus type-I (HSV-1) and global
infectious estimates are nearly 90%. HSV-1 is normally seen as a harmless virus but debilitating diseases
can arise, including encephalitis and ocular diseases. HSV-1 is unique in that it can undermine host
defenses and establish lifelong infection in neurons. Viral reactivation from latency may allow HSV-1 to lay
siege to the brain (Herpes encephalitis). Recent advances maintain that HSV-1 proteins act to suppress
and/or control the lysosome-dependent degradation pathway of macroautophagy (hereafter autophagy)
and consequently, in neurons, may be coupled with the advancement of HSV-1-associated pathogenesis.
Furthermore, increasing evidence suggests that HSV-1 infection may constitute a gradual risk factor for
neurodegenerative disorders. The relationship between HSV-1 infection and autophagy manipulation
combined with neuropathogenesis may be intimately intertwined demanding further investigation.
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Introduction

Herpes simplex virus type-1 (HSV-1), the prototype virus of
the family Herpesviridae, has a high prevalence rate around the
world, nearly 90%, while in the United States seroprevalence is
around 54%.1,2 Similar to all Herpesviridae members, HSV-1
has a profound ability to infect due to a special ability to cause
latent infection. HSV-1 is normally of mild consequence, but
infrequently can lead to disastrous clinical outcomes. Upon pri-
mary infection of the oral or genital regions, herpes simplex
retreats to nearby neurons to reside indefinitely.3 Latency may
lead to recurrent lytic infections that could ultimately dissemi-
nate to the immune privileged regions of the brain, causing
deadly encephalitis or an array of ocular diseases that may lead
to blindness.4 Although the global impact of HSV-1 on neural
functions has not been envisioned, growing evidence suggests
that HSV-1 infection may represent a risk factor for Alzheimer
disease (AD).5-7 As we unveil the molecular mechanisms
underlying HSV-1 interaction with neurodegenerative pro-
cesses, our understanding of seemingly different cellular pro-
cesses may move a step further.

Herpes simplex virus Type-1 primary infection

HSV-1 gains entrance to the body through an abrasion in the
skin or mucosa, where it initiates cytolytic infection in epithe-
lial cells.4 Initial tegument proteins begin to interact with host
factors and in doing so practically take over the cellular replica-
tion machinery. While viral-host interactions occur in the cyto-
sol, the nucleocapsid attaches to the nuclear pore via the capsid
portal created by UL6 portal proteins.8 Viral DNA is then

injected into the nucleus. When this occurs, host sensors alert
innate immune responses, which will be discussed below.

Expression of viral protein is initialized by tegument protein
VP16/Vmw65, which transactivates viral a-gene transcrip-
tion.4,9 Other important tegument proteins, e.g., ICP0, ICP4,
and vhs/UL41 (virion-associated host shut off protein) help
ensure a robust expression of viral proteins.9 vhs plays a crucial
role in degrading routine and stress response mRNAs that
encourage further immune consequences.10 While these pro-
teins prevent host cellular protein synthesis, VP16 is able to
complex with 2 host factors, POU2F1 (POU class 2 homeobox
1) and HCFC1 (host cell factor C1), forming a transcriptional
regulatory complex that turns on the viral gene expression cas-
cade.11 The initial group of genes promoted by VP16 complex
is termed the a-genes, and each subsequent grouping b1, b2,
g1, g2, has its own transcriptional regulator. The a-proteins
ICP0, ICP4, and ICP27 play a crucial role in establishing the
remaining gene cascade.12-14 During active lytic infection fever
blisters or cold sores may form on the lips and areas around
the mouth. The clinical name is herpes simplex labialis (HSL),
also known as oral herpes. Although there is no cure, HSL is of
little clinical risk and usually spontaneously goes away within
10 d.15 The displeasing blistery rash may warrant patients to
seek treatment, such as acyclovir, to reduce the pain and
shorten the length of illness.16 When symptoms subside, HSV-
1 retreats to nearby neurons, most commonly the trigeminal
ganglia, for permanent residence, and to our knowledge is
never eradicated.17 Periodically, dormant HSV-1 may reactivate
from latency, and virus particles are then transported along
sensory neurons to the skin or other mucosa, causing recurrent
HSL.18 Although HSV-1 allows itself to be silenced in neurons,
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reactivated virus may prevail by overcoming various host
defenses19 to cause disseminated disease,18,20 which will be dis-
cussed later. An important cellular defense mechanism against
HSV-1 infection is the lysosome degradation pathway of
autophagy, which constitutes a quality control of intracellular
entities of eukaryotic cells.21 The interplay between the herpes
pathogen and host cell autophagy reflects a constant battle for
control.21,22

Autophagy restriction of HSV-1 infection

Autophagy is a fundamentally important mechanism to
maintain cellular homeostasis.23 One striking aspect of
autophagy in anti-microbial infection is achieved by its
selective capture of foreign contents, such as bacterial or
viral proteins, into phagophores, which subsequently mature
into autophagosomes, allowing for their degradation, a pro-
cess termed xenophagy,24 to differentiate it from the degra-
dation of self-constituents. HSV-1 infection of cells activates
the interferon (IFN) response and EIF2AK2 (eukaryotic
translation initiation factor 2 a kinase 2).21 EIF2AK2 is a
host-defense molecule that phosphorylates EIF2S1/eIF2a
(translation initiation factor 2 subunit a) and promotes the
induction of autophagy.25 Phosphorylation of EIF2S1 inhib-
its its function and shuts off protein synthesis in infected
cells, thereby impeding viral replication (Fig. 1).26,27 As a
countermeasure, the HSV-1 encoded neurovirulence factor
ICP34.5 is expressed to recruit a host phosphatase,
PPP1CA/PP1a (protein phosphatase 1, catalytic subunit, a
isozyme), which dephosphorylates EIF2S1 and, thus,
reverses EIF2AK2 effects in host-cell translational shut-
off.26,27 Furthermore, ICP34.5 targets BECN1 and inhibits
BECN1-mediated autophagy.28 Accordingly, mutant HSV-1
deficient in ICP34.5 elicits higher levels of autophagic
response in permissive cells compared to wild-type virus,
which disrupts autophagy; ICP34.5-null HSV-1 virions are
sequestered within autophagosome-like membrane struc-
tures, leading to the consumption or xenophagic degrada-
tion of virions.29,30 However, it remains uncertain whether
autophagy machinery contributes to HSV-1 induced auto-
phagosome-like structures. If so, one would expect that
elimination of the autophagic pathway in cells would rescue
the infectivity of ICP34.5-null HSV-1, at least to a certain
extent. Surprisingly, removing autophagy appears not to
affect the replication of ICP34.5-null virus in cell culture,30

suggesting that xenophagy may not represent a predomi-
nant anti-HSV-1 mechanism in de novo HSV-1 infection in
vitro. In contrast to this view, a recent report from Yakoub
et al.31 demonstrates that inducing autophagy activity of
host cells can indeed limit HSV-1 infection in vitro, and
that autophagy manipulation may serve as a powerful
means for the disease control of HSV-1. Despite seemingly
discrepant findings, it is plausible to speculate that an alter-
native mechanism other than xenophagic degradation might
be involved in the immune control by autophagy, especially
considering the well-accepted fact that HSV-1 suppresses
cellular autophagy in a multitude of ways.28,29,32,33

Other than the controversial xenophagic degradation,
autophagic influence is observed in both major

histocompatibility complex class I (MHC-I) and class II
(MHC-II) antigen presentation pathways, which aids adap-
tive immune activation.33,34 Infection with mutant HSV-1,
which is defective in BECN1 binding and therefore in coun-
teracting autophagy, stimulates a more robust HSV-1-spe-
cific CD4C T cell response in vivo, as compared to its
marker-rescued wild-type counterpart.35 This viral-unleashed
autophagy response enables more rapid removal of virion
from all tissues compared to wild-type HSV-1 infection. In
addition to boosting CD4C T cell immunity, autophagy also
facilitates CD8C T cell response.33,36 Recent studies of
murine macrophage infected with HSV-1 provided a mecha-
nistic view of how autophagy assists in the processing and
loading of viral antigen gB (glycoprotein B) onto MHC-I
molecules.33,36 In this case, unlike the conventional double-
membrane-bound autophagosome, a novel form of autopha-
gosome originates from coiling of the inner and outer
nuclear membranes, which creates a 4-layered structure.36 A
recent study by Radtke et al.,37 further showed that this
nuclear envelope-derived autophagy (NEDA) response is
triggered by late viral protein production. This unique auto-
phagosome was observed to be able to ‘cross-present’ endog-
enous HSV-1 antigens within the MHC-I pathway, enabling
responses from CD8C T cells.33,36 In line with these findings,
mutant HSV-1, unable to suppress autophagy, causes
increased proliferation of CD8C T cells responding to virally
infected cells compared to the outcome with wild-type
virus.38 Given the broad involvement of autophagy in anti-
gen presentation, it may serve as a target for the host to
boost adaptive immunity against HSV-1 infection.

HSV-1 inhibition of cellular autophagy

HSV-1 neurovirulence factor ICP34.5 is critical for fatal
encephalitis both in mice and in human.28,40,41 As noted above,
ICP34.5 directly targets BECN1 to block BECN1-mediated
autophagy execution, independent of its interaction with
PPP1CA (Fig. 1).28,42 Of note, a mutant HSV-1 virus that
retains PPP1CA interaction but lacks BECN1 binding of
ICP34.5 fails to inhibit autophagy in neurons and demonstrates
impaired ability to cause lethal encephalitis in mice.28 Intrigu-
ingly, the attenuated neurovirulence of mutant HSV-1 deficient
in BECN1 inhibition is fully rescued in mice genetically lacking
EIF2AK2, suggesting that HSV-1-induced EIF2AK2 activation
is epistatic to BECN1-mediated autophagy in vivo.28,42 In addi-
tion to PPP1CA and BECN1, TBK1 (TANK-binding kinase 1)
serves as a more recently discovered target of HSV-1 ICP34.5.43

ICP34.5 interaction with TBK1 inhibits the induction of antivi-
ral signaling exerted by TBK1, facilitating viral replication and
neuroinvasion.43,44 Given that TBK1 is a necessary factor for
autophagic maturation, which can phosphorylate the autopha-
gic receptors SQSTM1/p62 (sequestosome 1) and OPTN (opti-
neurin) to regulate cargo recruitment into phagophores for
degradation,45,46 direct inhibition of TBK1 may represent an
additional way that ICP34.5 suppresses autophagic function,
yet this conclusion awaits further investigation. In addition to
ICP34.5, tegument protein Us11 has also been implicated in
the regulation of the autophagy pathway.32 Us11 is an abun-
dant viral protein produced in the late stage of the viral life
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cycle, which physically interacts with EIF2AK2 to prevent
EIF2AK2-mediated phosphorylation of EIF2S1 (Fig. 1).47,48 A
recent study by Lussignol et al., showed that immediate-early
expression of Us11 renders cells infected with ICP34.5-null
HSV-1 resistant to EIF2AK2-elicited autophagy.32 Moreover,
ectopic expression of Us11 fails to block autophagy in
EIF2AK2-deficient cells in vitro,32 suggestive of a EIF2AK2-
dependent effect of Us11 on autophagy regulation. However,
the in vivo relevance of this finding and the underlying mecha-
nism of Us11-mediated inhibition of cellular autophagy need
to be further investigated. Given the conventional role of
autophagy in extraneous and aggregated protein degradation, it
is plausible to speculate that this late onset of autophagy inhibi-
tion allows for the more efficient production of viral progeny
by keeping levels of protein degradation low. Furthermore, late
inhibition of autophagy will limit antigen presentation by help-
ing prevent the delivery of viral peptides to the immune system.
More insight into the mechanisms of these autophagy

inhibitors of HSV-1 can help to decipher how these events act
synergistically during infection and how they contribute to viral
life cycle and pathogenesis.

Besides epithelial infection, presenting as herpes simplex
labialis or genital herpes, HSV-1 can further infect and
reside latent within neurons. Autophagic mechanisms to
prevent viral spread and replication may have more pro-
found effects in neuronal infection as opposed to epithelial
infection.49 Before discussing the neurovirulent control of
HSV-1 infection by autophagy, it is important to note some
specific features of autophagy in neurons, especially since
the most debilitating HSV-1 clinical manifestations (e.g.,
encephalitis) arise through neural infection.

Neuronal autophagy

It is important to reiterate that neurons are specialized for cel-
lular communication, being composed of cell body, axon,

Figure 1. The autophagy pathway and its interaction with HSV-1. Upon HSV-1 infection, autophagy is stimulated through the activation of an IFN-inducible EIF2AK2/PKR-
EIF2S1/eIF2a signaling cascade, which shuts off host protein synthesis and concomitantly turns on autophagy by hitherto unclear mechanisms (indicated by the question
mark). Autophagy induction sequesters cytoplasmic contents, forming autophagosomes characterized by the LC3-I ! LC3-II conversion and ATG12–ATG5-ATG16L1
supercomplex association. As lysosomes and/or endosomes fuse, many factors contribute to the formation of the autolysosome, enabling degradation of contents by
hydrolytic enzymes. Digested materials can be recycled back into the cytosol for use in energy production, protein manufacturing or be delivered to antigen presentation
pathways in response to infection. As such, autophagy is shown to be able to directly capture the neuroattenuated ICP34.5-mutant HSV-1 virions or viral components,
delivering them for lysosomal degradation and/or for the antigen presentation of viral peptides to the MHC-I/-II pathway for adaptive immune activation. To counteract
the antiviral role of EIF2AK2 and cellular autophagy, viral protein Us11 prevents EIF2AK2-mediated EIF2S1 phosphorylation. Interestingly, ICP34.5 acts to reverse phos-
phorylated EIF2S1 by recruiting of host phosphatase PPP1CA/PP1a. In addition, ICP34.5 restricts autophagic initiation and maturation by targeting BECN1, preventing
BECN1 autophagy complex formation. ICP34.5 also engages TBK1 to inhibit TBK1-mediated antiviral signaling, and may also prevent autophagic cargo recruitment
through TBK1-mediated SQSTM1 phosphorylation. Although the response of nuclear envelope-derived autophagosomes (NEDA) can be triggered by ICP34.5-associated
active protein translation or independently by expression of abundant viral late proteins (e.g., gH [glycoprotein H]), ICP34.5 can restrict the NEDA maturation that engages
in viral antigen presentation. The interplay between the herpes pathogen and its host cell reflects a constant battle for control. RUBCN, RUN domain and cysteine-rich
domain containing, Beclin 1-interacting protein; VPS, vacuolar protein sorting.
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dendrites and synapses. Long processes that relay signals from
individual synapses to neuron cell bodies drastically increase
the jurisdiction of autophagy.50 Presumably, autophagy may be
more robust in neurons due to the increased size and the fact
that neurons are terminally differentiated. However, basal
autophagy levels in healthy neurons have been observed to be
lower than other bodily tissues, as manifested by decreased
numbers of autophagosomes.51,52 This may be due to neurons’
rapacious attitude toward nutrients, limiting the need to induce
autophagic recycling mechanisms. Despite a lower quantity of
autophagosomes, higher efficiency and faster turnover of auto-
phagosomes has been observed in neuronal cells than non-neu-
ral counterparts, which may explain the need for less
autophagosomes but tighter regulation.53,54 Interestingly, the
main regulatory factor in non-neural cells, the mechanistic tar-
get of rapamycin (serine/threonine kinase) complex 1
(MTORC1), seems to play a less dominant role in neurons.55

Rapamycin, a potent stimulator of autophagy by inhibiting
MTORC1 activity, fails to upregulate autophagy in primary
neural cells.55 Moreover, Mizushima et al., showed that
although mice exhibit reduced activity of MTORC1 after a 48-
h fast, accumulation of GFP-LC3 or GFP-ATG5 puncta is not
observed in hypothalamic neurons.51 Thus, even the inhibition
of MTORC1 in neurons may not actually be sufficient to allow
an autophagic response. There must be other MTORC1-inde-
pendent signaling mechanisms to induce autophagy. One such
pathway through Ca2C-CAPN/calpain-GNAS/Gsa and cAMP–
RAPGEF3/Epac-PLCE1/PLCe (phospholipase C epsilon 1)-IP3
(inositol 1,4,5-triphosphate) signaling has been revealed to con-
tribute to upregulation of autophagy in neurons.56

Although the dynamics of autophagy initiation are unclear,
other differences exist involving the trafficking of autophago-
somes throughout the cell body to nerve terminals and synap-
ses.50,57,58 During axonal damage, autophagosomes accumulate
near damage sites and actually assist in axon remodeling.59

Autophagic recycling is observed at the far reaches of dendritic
terminals, where synapses are constantly involved in the re-
uptake of cleft proteins.60 Therefore, it is crucial to maintain
the bidirectional transportation through long axons, and highly
effective regulation of autophagosomes may be a result of this
requirement. In developing new synaptic connections,
increased levels of autophagy correlate with increased synaptic
size. This is exemplified by Atg1 overexpression in Drosophila,
which induces higher levels of autophagy, and concomitantly,
displays increased synaptic size.61,62 Reduction or mutating of
autophagy proteins leads to developmental defects of the syn-
apse.63 Moreover, knockdown of crucial autophagy proteins in
mice, ATG5 and ATG7, causes debilitating neurodegenera-
tion.64-66 It seems certain that proper basal autophagy main-
tains the neuronal equilibrium and prevents
neurodegeneration.67 In this context, HSV-1 inhibition of
autophagy in neurons may contribute to the malfunctions of
the nervous system as described below.

HSV-1-infected neurons and autophagy

HSV-1 latency has mostly been found in trigeminal ganglia
but also in geniculate and vestibular ganglia.68,69 Latency
contributes greatly to HSV-1 pathogenesis, because it can

appear one day and reappear decades later, and manifest in
advanced clinical diseases. In addition to causing mucosal
lesions, reactivated HSV-1 in neurons can relocate to ulti-
mately reach the central nervous system (CNS), where acute
encephalitis may occur; or under certain circumstances a
latent infection may be established in CNS neurons, as
shown in HSV-1 latently infected mice and humans.70-77

The type I-IFN response to HSV-1 infection in neurons is
not as robust as that in epithelial cells, presumably to pre-
vent IFN-associated cell toxicity in nonrenewable neu-
rons.49,78,79 While neural infection continues, an increasing
amount of HSV-1 latency-associated transcripts accumulate,
which limits lytic gene infection and maintains latency.80-82

Notably, low levels of lytic genes are constantly being tran-
scribed yet viral progeny are not produced.83-86 Although
the neural transcription of HSV-1 ICP34.5 is not profound,
HSV-1 ICP34.5-deficient viruses are more neuroattenuated
than wild-type counterparts,87 suggesting that ICP34.5-
mediated autophagy inhibition and/or other functionalities
may be involved in the neuropathogenesis of HSV-1. How-
ever, functional importance regarding the specific role of
autophagy in the context of HSV-1 latency is still lacking.

In the neuron, autophagy plays a larger role interacting with
replicating or re-activated viruses than in epithelial cells.28,88

Neonatal infection of HSV-1 is particularly predisposed to dis-
seminated disease or encephalitis.89 Reactivated HSV-1 is
thought to cause encephalitis by retrograde transport of virus
through nerve axons to the CNS.20 Upon viral reactivation,
expression of ICP34.5 is necessary for fatal encephalitis in mice
and humans.28,40,41 In fact, wild-type ICP34.5 in comparison to
ICP34.5-mutant or -knockout HSV-1 strains causes nearly a
107-fold increase in neurovirulence.90 How does ICP34.5 cause
neurovirulence? As previously mentioned, ICP34.5 recruitment
of PPP1CA causes a reverse of host translational shutoff, and
direct BECN1 binding manifests as inhibition of autophagy.28

In fact, mutant ICP34.5 HSV-1 deficient in BECN1-binding
only, but capable of PPP1CA-binding is highly neuroattenuated
in vivo,28 indicating that neuropathogenesis may stem from the
disruption of autophagy through ICP34.5 binding to BECN1.
In support of this view, Yordy et al. 49 showed that nearly 50%
of mice develop advanced clinical symptoms (e.g., neuropatho-
genesis) upon infection with wild-type HSV-1 (rescued strain),
whereas no advanced symptoms result upon infection with an
ICP34.5-mutant HSV-1 strain defective in autophagy inhibi-
tion.49 By contrast, no difference is detected between the wild-
type and mutant strain in viremia and viral clearance in the
genital mucosa, suggesting a minimal role of autophagy in con-
trolling HSV-1 disease in epithelial cells in vivo.49 Interestingly,
unlike in adults, autophagy is not stimulated by type-I IFN
response in newborns, nor is autophagy inhibition by ICP34.5
required for the progression of HSV-1 encephalitis.91 In fact,
activated autophagy is associated with increased apoptosis in
the HSV-infected newborn brain, which may even aggravate
neonatal HSV encephalitis,89 highlighting an age-dependent
difference in autophagy functionality in HSV-associated neuro-
pathogenesis. Taken together, ICP34.5 inhibition of BECN1-
mediated autophagy is, at least in part, the neurovirulent
mechanism that has important implications in HSV-1 disease
progression from infected neurons.
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HSV-1-associated autophagy dysfunction: A risk factor
for neurodegeneration?

There has been mounting evidence suggesting the involvement
of HSV-1 in the pathogenesis of neurodegneration.92-94 While
patients rarely exhibit signs of encephalitis, many postmortem
studies find a high prevalence of HSV-1 in the brain.95-98 Strik-
ingly, Alzheimer disease brains contain a high localization of
HSV-1 DNA within amyloid plaques, 72% in AD patients,
whereas only 24% of the DNA associates with plaques in age-
matched non-AD patients, who accumulate plaques at a much
lower rate.7 Furthermore, animal models and acute HSV-1
encephaltitis patients show that the virus targets brain regions
overlapping with AD: frontal and temporal cortices and the
hippocampus.99-102 Although HSV-1 preferentially lies dor-
mant in neurons, the detection of HSV-1 DNA in the cerebro-
spinal fluid suggests that asymptomatic replication of HSV-1
may occur in the CNS under certain cirucumstances.103,104

Given the intense interplay between HSV-1 and host cells, it is
likely that recurrent HSV-1 reactivation may cumulatively
arouse neuronal dysfunction, as demonstrated recently by Mar-
tin et al.,105 which shows that HSV-1 reactivation from latency
induces neuroinflammation and the appearance of early neuro-
degenerative markers including MAPT/Tau phosphorylation.
In line with this, independent analyses of large cohorts of sub-
jects revealed a significantly increased risk for AD in patients
with anti-HSV-1 IgM, a marker of viral primary infection or
reactivation.106,107 Another study by Mancuso et al.108 revealed
that elevated HSV-1-antibody titers are significantly more fre-
quent in patients with mild AD than in healthy controls, and
that they are positively correlated with cortical gray matter,
suggesting a protective role of HSV-1-specific antibody in the
early stages of AD. Despite these advancements, the mecha-
nisms underlying AD association with HSV-1 infection remain
incompletely explored.

As noted above, HSV-1 has developed strategies to sabotage
autophagy activation, degradation, and antigen presentation.
Recurrent HSV-1 replication in CNS and its jeopardizing of the
autophagy machinery may act, in a step-by-step fashion, to has-
ten disease progression of neurodegeneration. On the one hand,
as immune systems decline in advancing age, the chance of
HSV-1 penetration into the brain from an earlier latent infec-
tion might increase, causing gradual local damage through
recurrent reactivation. On the other hand, aging declines
autophagy function, which may be hastened via HSV-1 replica-
tion, especially through neurovirulence factor ICP34.5. The
reduction of autophagy not only assists the viral lifecycle but
also lessens the degradation of both viral and host protein
aggregates.109 Aggregation of b-amyloid protein fragments
accumulate to ultimately cause synapse destruction, a hallmark
of Alzheimer disease.110,111 Neural cell death may also occur in
these circumstances. Although autophagy serves as a direct
response to the accumulation of b-amyloid aggregates, reduced
expression of BECN1 found in prodromal Alzheimer disease
patients indicates autophagy falters before severe disease.112

Furthermore, Becn1-heterozygous mice exhibit aggravation of
Alzheimer pathology by increased and rapid accumulation of
b-amyloid plaques.112 All these studies point to the direction
of necessity of autophagy in clearing the accumulation of

pathogenic b-amyloid aggregates.113,114 In line with this, the
reversal of neurodegeneration is observed in PC12 cells upon
stimulation of autophagy through rapamycin or the novel small
molecule AR-12 (small molecule OSU-03012; likely to be inde-
pendent of MTOR).115 Another hallmark of Alzheimer disease
is the accumulation of autophagic vesicles filled with incom-
pletely digested proteins in axons, suggesting abnormalities in
axonal transport or a consequence of jammed vesicles and/or
not enough space to transport.116 Notably, neuronal communi-
cation is dependent upon the robustness of synaptic size and
response, which is positively correlated with autophagy. In this
specific context, autophagy’s role in synaptic viability may also
serve the underlying cause in promoting the development of
neurodegenerative disorders. Hence, autophagy rehabilitation
may hold the key to prevent neurodegeneration from early on.
Interestingly, It is unclear whether autophagy abnormalities are
a direct cause or consequence of these specific diseases, but
recent evidence is mounting that points to its crucial role.117 It
further stands to reason if HSV-1 infection has such a profound
effect on influencing autophagic processes that the three, HSV-
1 infection, autophagy, and neuropathogenesis, are uniquely
intertwined.118

Conclusion

HSV-1 plays an integral role in debilitating autophagy in epi-
thelial cells, local neurons, and in the central nervous system.
Autophagy abnormalities hold the key in the disruption of neu-
ron homeostasis, and likely contribute to the development of
neurodegeneration. Despite many unanswered questions about
HSV-1 in neurons, HSV-1 infection along with the age-related
decline of autophagy may explain the consequences behind a
gradual disease progression spanning decades.118 Many studies
point toward HSV-1 being a prime candidate as a neural gene
vector.119-121 Delivery of autophagy-promoting factors using
recombinant HSV-1 may be a step forward in order to decipher
the exact mechanism of pathogenesis and prevent or slow the
decline of neurodegenerative diseases. Nevertheless, although
the correlation of HSV-1 and AD remains controversial,
autophagy may be an interesting therapeutic facet between the
two.

Abbreviations

AD Alzheimer disease
BECN1 Beclin 1, autophagy related
CNS central nervous system
EIF2AK2/PKR eukaryotic translation initiation factor 2 a kinase 2
EIF2S1 eukaryotic translation initiation factor 2 subunit a
ER endoplasmic reticulum
HSV-1 herpes simplex virus type-1
ICP34.5 infected cell protein 34.5
IFN interferon
MHC-I major histocompatibility complex class I
MHC-II major histocompatibility complex class II
MTORC1 mechanistic target of rapamycin (serine/threonine

kinase) complex 1
PNS peripheral nervous system
PPP1CA protein phosphatase 1, catalytic subunit, a isozyme
TBK1 TANK-binding kinase 1
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