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ABSTRACT

Herpes simplex virus 1 (HSV-1) establishes lifelong infection in the neurons of trigeminal ganglia (TG), cycling between produc-
tive infection and latency. Neuronal antiviral responses are driven by type I interferon (IFN) and are crucial to controlling
HSV-1 virulence. Autophagy also plays a role in this neuronal antiviral response, but the mechanism remains obscure. In this
study, HSV-1 infection of murine TG neurons triggered unusual clusters of autophagosomes, predominantly in neurons lacking
detectable HSV-1 antigen. Treatment of neurons with IFN-� induced a similar response, and cluster formation by infection or
IFN treatment was dependent upon an intact IFN-signaling pathway. The autophagic clusters were decorated with both ISG15,
an essential effecter of the antiviral response, and p62, a selective autophagy receptor. The autophagic clusters were not induced
by rapamycin or starvation, consistent with a process of selective autophagy. While clusters were triggered by other neurotropic
herpesviruses, infection with unrelated viruses failed to induce this response. Following ocular infection in vivo, clusters formed
exclusively in the infected ophthalmic branch of the TG. Taken together, our results show that infection with HSV and antiviral
signaling in TG neurons produce an unorthodox autophagic response. This autophagic clustering is associated with antiviral
signaling, the presence of viral genome, and the absence of HSV protein expression and may therefore represent an important
neuronal response to HSV infection and the establishment of latency.

IMPORTANCE

Herpes simplex virus type 1 (HSV-1) is a ubiquitous virus and a significant cause of morbidity and some mortality. It is the caus-
ative agent of benign cold sores, but it can also cause blindness and life-threatening encephalitis. The success of HSV-1 is largely
due to its ability to establish lifelong latent infections in neurons and to occasionally reactivate. The exact mechanisms by which
neurons defend against virus infection is poorly understood, but such defense is at least partially mediated by autophagy, an in-
tracellular pathway by which pathogens and other unwanted cargoes are degraded. The study demonstrates and investigates a
new autophagic structure that appears to be specific to the interaction between neurotropic herpesviruses and murine primary
sensory neurons. This work may therefore have important implications for our understanding of latency and reactivation.

Herpes simplex virus 1 (HSV-1) is a highly prevalent human
pathogen that establishes lifelong infection in the neurons of

sensory and autonomic ganglia (1, 2). Initial infection and lytic
replication at mucosal sites are followed by infection of innervat-
ing axonal termini of sensory neurons. Virions then travel in a
retrograde direction to the soma, where they may replicate or
immediately establish latency, depending partly on the infected
neuronal subtype (3). Virions resulting from periodic reactivation
events travel in an anterograde direction along the axon, allowing
reinfection of the oral epithelium, thereby facilitating viral shed-
ding and host-to-host transmission (2).

Innate immune responses are critical in controlling virulence
of HSV-1 and many other viruses through a variety of antiviral
pathways (4–12), and viruses have coevolved to counter these host
responses (13–20). Cells detect the presence of incoming virus
through pattern recognition receptors (21, 22) that, in turn, lead
to the activation of pivotal transcription factors such as IRF (5, 23)
and NF-�B (24). These factors subsequently induce the produc-
tion of type I interferon (IFN), which drives IFN-stimulated gene
(ISG) expression (25) through a JAK-STAT-dependent pathway
(26, 27). This further stimulates production of type I IFN and ISGs
to establish an antiviral state that consists of transcriptional and
translational arrest, cytokine production, and apoptosis (28, 29).

Defects in innate immunity are often associated with increased
susceptibility to HSV infection in both mice and humans, with

frequent neurological sequelae (8, 12, 30–32). That said, the IFN-
driven responses of neurons themselves are muted and atypical
(12, 33). Nondestructive clearance is especially critical for postmi-
totic adult neurons, a population of irreplaceable cells that is es-
sential for both the success and survival of the host. Indeed, there
is mounting evidence that neurons depend on autophagy rather
than inflammatory or cell-destructive responses for the control of
intracellular pathogens (34–37). Autophagy is a highly conserved
response to starvation, during which a portion of the cytosol is
engulfed in a double-walled membrane vesicle termed an au-
tophagosome. The autophagosome then fuses with the lysosome,
and its contents are degraded by lysosomal enzymes (38). Au-
tophagosomes can also selectively target/engulf ubiquitinated
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cargo (selective autophagy [39]) such as aggresomes (aggrephagy
[40, 41]), mitochondria (mitophagy [42–44]), or pathogens (xe-
nophagy [45–47]).

Autophagy has several key functions in neurons. Constitutive
autophagy is necessary for neural pathway formation during de-
velopment, neuronal differentiation, and homeostasis (48), and it
is essential for facilitating the clearance of misfolded proteins. In-
deed, loss of neuronal autophagy leads to neuronal death and
development of neurodegenerative disease (49, 50). There are also
multiple lines of evidence for the involvement of neuronal au-
tophagy in control of HSV infection. First, HSV-1 was observed
within autophagosomes in sympathetic neurons with evidence of
xenophagic degradation (34). Second, at least 2 HSV-1 genes
(�34.5 and US11) antagonize autophagy (34, 51), and viruses
lacking �34.5 accumulate within maturing xenophagosomes (34).
Third, viruses lacking either the entire �34.5 gene (�34.5) or the
domain that binds the essential autophagy protein beclin 1
(�bbd) exhibit significant neuroattenuation in vivo (13, 35, 52).
Finally, �bbd virus replicates poorly in neurons from the dorsal
root ganglia (DRG), and this replication defect is restored in au-
tophagy-deficient neurons (37). While these data support the idea
that autophagy is a critical component of the neuronal antiviral
response, several aspects of this process remain obscure. For ex-
ample, it is not known how autophagy is induced in HSV-infected
neurons and whether neuronal xenophagic clearance of the virus
actually mediates the antiviral effect. Furthermore, the precise im-
pact of neuronal autophagy on balancing the lytic-latent viral sta-
tus in neurons remains unknown.

To elucidate these aspects of autophagy and neuronal defense,
we cultured neurons from the trigeminal ganglia (TG) of adult
mice (32), allowing us to examine neuron-intrinsic antiviral re-
sponses in mature neurons. We based our in vivo studies on the
ocular infection model (53), to examine neuronal autophagy in a
physiologically relevant setting. As expected, in both in vitro neu-
ronal cultures and intact TG in vivo, many neurons contained
conventional (0.5- to 1.5-�m) autophagosomes. Unexpectedly,
however, a small subset of neurons presented with an atypical
structure consisting of a �4-�m cluster of several autophago-
somes. Cluster frequency and abundance were increased by infec-
tion with HSV-1, and clusters predominated in neurons that did
not express detectable viral antigen. Accumulation of autophagic
clusters was also induced by IFN-� and was dependent upon an
intact IFN signaling pathway. Moreover, clusters colocalized with
ISG15, an essential mediator of the antiviral response (28). Clus-
ters strongly colocalized with the selective autophagy receptor p62
and were not induced by starvation or rapamycin treatment, sug-
gesting a process of selective autophagy. In vivo, clusters were con-
fined to infected areas of the TG. The mutual exclusivity of au-
tophagosomal clustering and HSV protein expression suggests
that these clusters are novel markers of the neuronal antiviral re-
sponse or may accumulate in neurons that are nonpermissive for
lytic infection. These studies are consistent with the hypothesis
that clusters are either markers or mediators of neuronal re-
sponses to HSV that may tilt the lytic-latent balance.

MATERIALS AND METHODS
Neuron isolation and culture. Neurons were isolated and cultured as
previously reported (3, 33). Coverslips (12 mm) were coated with poly-D-
lysine (BD Biosciences) at 20 �g/ml in Hanks balanced salt solution lack-
ing calcium and magnesium (HBSS; Cellgro) for a minimum of 3 h. Cov-

erslips were then washed three times with sterile distilled water and coated
with natural mouse laminin (Invitrogen) at a concentration of 18 �g/ml
in HBSS overnight. TG neurons were isolated as described previously,
with a few modifications (3). Mice 6 to 10 weeks old were euthanized by
CO2 and transcardially perfused with phosphate-buffered saline (PBS;
HyClone). TG were harvested and enzymatically digested in a solution
consisting of 40 U/ml of papain (Worthington) in HBSS with 2.75 mM
L-cysteine (Sigma) and saturated NaHCO3 diluted 1:1,000 (Sigma) for 20
min at 37°C on a rotator. This was followed by a similar incubation in a
solution of 5 mg/ml of collagenase type II (Invitrogen) and 5.5 mg/ml of
neutral protease (Worthington) dissolved in HBSS. TG were then tritu-
rated in Neurobasal-A (NB-A) working medium (Neurobasal-A [Invitro-
gen], 2% B27 [StemCell], and 1% penicillin-streptomycin [pen-strep;
HyClone]). The resulting homogenate was spun over a four-layer density
gradient made with Optiprep and NB-A working medium. Optiprep
(Sigma) was first diluted to 50.5% with 0.8% sodium chloride and then
combined with NB-A working medium to obtain the following 1-ml-
volume gradient layers (Optiprep/NB-A working medium ratios): 0.45:
0.55, 0.35:0.65, 0.25:0.75, and 0.15:0.85. After a 20-min centrifugation at
800 � g, two bands of lower density were collected and washed three
times. Neurons were counted and seeded at a density of 3,600 in a volume
of 60 �l onto 12-mm coated coverslips. After 1 to 2 h, coverslips were
transferred to 24-well plates and neurons were cultured in NB-A complete
medium with the antimitotic 5=-fluoro-2=-deoxyuridine (FUDR; Sigma)
for a minimum of 3 days prior to use. NB-A complete medium consisted
of Neurobasal-A, 2% SM1, 1% GlutaMAX (Invitrogen), 1% pen-strep, 50
ng/ml of Neurturin (R&D Systems), 50 ng/ml of neuronal growth factor
(NGF; Invitrogen), and 50 ng/ml of glial cell-derived neurotrophic factor
(GDNF; R&D Systems). Neurons were initially identified in culture by
�-III-tubulin or NeuN staining and later by morphology.

Viruses and mice. HSV-1 strain 17 syn	 (54) (GenBank accession no.
NC_001806), the �bbd strain (35), the �34.5 strain (55), the �34.5
�US11 strain (56), dlLAT1.8 (57), pseudorabies virus strain Becker (PrV)
(58), and vesicular stomatitis virus (VSV) (33) were grown as previously
described. Several investigators provided viruses as follows: Neal DeLuca,
HSV-1 d92 (59); Todd Margolis, HSV-1 KOS-58 and KOS-62 (3); Lynda
Morrison, HSV-2 strain 333 (60); Edward Usherwood, murine gamma-
herpesvirus 68 (MHV-68) and vaccinia virus (VACV) (61); Andrew Pach-
ner, Theiler’s murine encephalomyocarditis virus (TMEV) (62); and
Charles Rice, yellow fever virus strain 17D (YFV) (63). Noboru Miz-
ushima provided green fluorescent protein (GFP)-LC3 mice (64, 65), and
Joan Durbin provided STAT1
/
 mice (26). IFNR-���
/
 (66) and
IRF3
/
 (67) mice were described previously. This study was carried out
in strict accordance with the recommendations in the Guide for the Care
and Use of Laboratory Animals of the National Research Council (68). The
protocol was approved by the Dartmouth IACUC (5 June 2012, permit
number leib.da.1). No surgery was performed, and all efforts were made
to minimize suffering.

In vitro infection. Neurons cultured on coverslips were infected in
NB-A working medium in a volume of 250 �l for 1 h. They were then
washed in NB-A working medium and refed with NB-A complete me-
dium. Neurons were infected with HSV-1 strain 17 or HSV-1 mutants at
a multiplicity of infection (MOI) of 25, 5, 1, or 0.2, as indicated below. For
infection with other virus types, the MOI was set to result in �30% anti-
gen-positive neurons, similar to that observed with HSV-1. The MOIs
used were as follows: HSV-2, 5; PrV, 2; MHV-68, 2; VACV, 4; TMEV, 2;
YFV, 10; and VSV, 2. For viral growth assays, culture supernatant was
sampled at 24 or 48 h postinfection (hpi), frozen, and thawed, and then
titers were determined via plaque assay on Vero cells as described previ-
ously (53).

Drug treatments. When noted, cells were treated for 18 h with the
following drugs: IFN-� (PBL Assay Science) at 100 U/ml, IFN-� (PBL
Interferon Source) at 12.5 U/ml, IFN-� (Miltenyi Biotec) at 100 ng/ml,
IFN- (Peprotech) at 100 ng/ml, and rapamycin (Calbiochem) at 0.5 �M.
Alternatively, cells were treated by nutrient deprivation comprising NB-A

HSV and Autophagy in Neurons

May 2016 Volume 90 Number 9 jvi.asm.org 4707Journal of Virology

http://www.ncbi.nlm.nih.gov/nuccore?term=NC_001806
http://jvi.asm.org


only. For Tat-beclin 1 peptide treatments, cells were treated for 3 h at 10
�M, washed with NB-A working medium, and then infected or incubated
in NB-A complete medium. Bafilomycin 1 (Sigma) was used at 0.5 �M for
1 to 4 h. Nocodazole (Sigma) was used at 20 �g/ml for 1 to 4 h.

Immunocytochemistry. Cells were fixed in 4% paraformaldehyde
and then permeabilized by a 5-min incubation with 0.1% Triton X-100
(Sigma) in PBS containing 0.2% fish skin gelatin (FSG; Sigma). Alterna-
tively, for LC3 immunostaining, after fixation cells were permeabilized
with 
20°C MeOH for 10 min and then blocked in PBS containing 0.2%
FSG for 30 min at room temperature. Primary and secondary antibody
incubations were carried out in 0.1% FSG for 1 h and 30 min, respectively,
at room temperature. Primary antibodies used were rabbit anti-�-III-
tubulin (Abcam; ab18207), mouse anti-NeuN (Millipore; MAB377), rab-
bit anti-HSV-1 (Dako; B0114), rabbit anti-MHV-68 (kindly provided by
Edward Usherwood), mouse anti-vaccinia virus (Thermo Scientific;
MA1-7484), mouse anti-TMEV (kindly provided by Andrew Pachner),
mouse anti-YFV (Santa Cruz; 3576), mouse anti-VSV-G (Santa Cruz;
P5D4), rabbit anti-�-galactosidase (anti-�-Gal; Rockland; 100-4136),
mouse anti-ICP0 (Virusys; H1A027), mouse anti-VP16 (Santa Cruz;
7545), mouse anti-ICP5 (Abcam; ab6508), rabbit anti-LC3 (MBL
[PD014] and Cell Signaling [12741]), rabbit anti-p62 (Novus; NBP1-
48320), rat anti-LAMP1 (Santa Cruz; 1D4B), rabbit anti-PABP (Abcam;
ab21060), goat anti-TIA (Santa Cruz; 1751), rabbit anti-HDAC6 (Assay
Biotech; B0941), rabbit anti-�-tubulin (Bioss; bs-1322R), and rabbit anti-
ISG15 (Abgent; AP1150a). Secondary antibodies were goat or donkey
anti-mouse, -rabbit, or -rat, conjugated to Alexa 405, 488, 555, or 647
(Invitrogen). Slides were mounted in medium containing 2% n-propyl-
gallate and 75% glycerol. Images were acquired on an automated AxioVi-
sion microscope and analyzed using ZEN2012 or FIJI software. Virus
staining was scored as positive or negative. LC3 patterns were scored as
none, 0.5 to 1 �m, or �4 �m and later as cluster positive or cluster
negative. Neurons were binned according to virus stain, and the number
of cluster-positive neurons within each binning category was expressed as
percentage of all neurons within that category. This was done for a mini-
mum of 3 repeats on 200 to 1,500 cells per sample.

Live imaging. Neurons were seeded on glass-bottomed dishes (Mat-
Tek Corporation), cultured in phenol red-free NB-A complete medium,
and imaged using an Olympus IX83 TIRF-4 microscope equipped with a
controlled environment stage. Images were acquired at 1- to 3-min inter-
vals over the course of �2 h. Alternatively, images were acquired at 15-
min intervals over the course of 5 h.

qPCR. Neuron cultures were treated with 10 U/ml of IFN-� or in-
fected with HSV-1 strain 17 at an MOI of 5. After 3 to 6 h (as indicated
below), RNA was isolated by TRIzol extraction (Thermo Fisher) accord-
ing to the manufacturer’s instructions. RNA was treated with DNA-free
kit (Ambion), and cDNA was synthesized using the SuperScriptIII reverse
transcriptase kit (Invitrogen) with random primers (Promgea). For quan-
titative PCR (qPCR), SYBR Select master mix (Life Technologies) was
used with primers for IFIT1 (forward [Fw], TGC TTT GCG AAG GCT
CTG AAA GTG; reverse [Rv], TGG ATT TAA CCG GAC AGC CTT
CCT), ISG15 (Fw, TGA GCA TCC TGG TGA GGA ACG AAA; Rv, AGC
CAG AAC TGG TCT TCG TGA CTT), Atg5 (Fw, TTG CTT TTG CCA
AGA GTC AGC; Rv, ATG CCA TTT CAG GGG TGT GC), p62 (Fw, GCC
AGA GGA ACA GAT GGA GTC; Rv, AGC TTG GCC CTT CCG ATT C),
and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) (Fw, CAT
CTT CCA GGA GCG AGA TCC C; Rv, CAA ATG AGC CCC AGC CTT
CTC C). IFIT1, ISG15, p62, and ATG5 values were calculated by the
threshold cycle (2
��CT) method (69) and normalized to that for
GAPDH, and values for infected or IFN-treated cells were normalized to
that for mock-infected cells.

In vivo infections. For corneal infection, 6- to 10-week-old male or
female mice were anesthetized intraperitoneally with ketamine (87 mg/kg
of body weight) and xylazine (13 mg/kg). Corneas were bilaterally scari-
fied with a 25-gauge syringe needle, and virus was inoculated by adding
2 � 106 PFU in a 5-�l volume (54). Four days postinfection, mice were

euthanized by CO2 and transcardially perfused first with PBS and then
with 4% formaldehyde (Fisher Scientific). The TG were harvested, incu-
bated in 30% sucrose overnight at 4°C, and embedded in Tissue-Tek OCT
compound (Sakura). The tissue was then cut on the transverse plane into
5-�m sections, which were mounted directly onto charged glass slides
(Thermo Scientific).

Immunohistochemistry. Tissue sections were rehydrated, blocked,
and permeabilized in PBS containing 5% normal goat serum (NGS; Vec-
tor Laboratories) and 0.1% Triton X-100 for 1 h at room temperature. All
subsequent stains and washes were done in PBS containing 1% NGS.
Primary antibodies (as described above) were incubated ON at 4°C. Sec-
ondary antibodies (as described above) were incubated for 1 h at room
temperature. Samples were mounted in Vectashield (Hardset with 4=,6-
diamidino-2-phenylindole [DAPI]; Vector Laboratories). Images were
acquired and analyzed as described above. Each experiment was repeated
in triplicate; one representative slice from each mouse was analyzed.

RESULTS
HSV-1 replication in TG neurons induces atypical autophagic
patterns. We initially examined the steady-state profile of au-
tophagy in untreated cultured TG neurons derived from GFP-LC3
transgenic mice (64, 65). In these mice, soluble GFP-LC3 pro-
duces a nondescript cytoplasmic GFP haze (70), while autopha-
gosome-bound GFP-LC3 manifests as distinct GFP puncta. These
transgenic mice thus facilitate visualization of autophagic vesicles.
TG neurons were cultured from adult GFP-LC3 mice and imaged
after 4 days of growth in vitro (Fig. 1a). The majority of neurons
(�50%) had one or more GFP-LC3	 puncta (0.5 to 1 �m), while
the remainder had none (Fig. 1b). These puncta partially colocal-
ized with the lysosomal markers LAMP1 and LysoTracker, sug-
gesting that they represent an ongoing autophagic process (71). A
small number of neurons (�4%) contained a larger GFP-LC3	

structure of irregular shape, measuring �4 �m in area (Fig. 1b).
To determine whether neuronal autophagy was changed fol-

lowing infection with HSV, we infected GFP-LC3 TG neurons
with HSV-1 at an MOI of 25 for 24 h. We observed an increase in
the percentage of neurons containing the larger (�4 �m) GFP-
LC3	 structures (Fig. 1c and d). We hypothesized that HSV anti-
gens were disrupting normal autophagy in these neurons. To test
this, we performed immunofluorescence testing for the presence
of HSV antigen (Fig. 1c). Unexpectedly, neurons containing the
large LC3-positive structures did not express detectable viral an-
tigen (P � 0.01) (Fig. 1d).

Previous characterization of this infection model shows that
while �90% of neurons are infected, only �10% express detect-
able HSV antigens (3). It was therefore unclear whether the HSV
antigen-negative neurons were HSV naive or harboring the HSV
genome. To test this, we repeated the experiment using HSV-1
KOS-58 (Fig. 2a), which expresses �-galactosidase (�-Gal) specif-
ically in neurons under the control of the neurofilament promoter
in both lytically and latently infected cells (3). Infection with
KOS-58 induced the formation of clusters in �11% of neurons,
and clusters were found predominantly in HSV antigen-negative
cells (Fig. 2a and b), thus recapitulating the effects of strain 17
infection. As previously reported (3), �90% of neurons in KOS-
58-infected cultures express �-Gal (Fig. 2a and c). Moreover, most
of the cluster-positive neurons were also �-Gal	 (Fig. 2a and c),
indicating that these cells harbor HSV genome yet do not express
detectable HSV antigen. Taken together, these findings demon-
strate that TG neurons have atypical autophagic responses to
HSV-1 infection and that large LC3-positive structures form pre-
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FIG 1 TG neurons present atypical autophagic structures. (a) Overview image of TG neuron cultures isolated from GFP-LC3 mice and stained with �-III-
tubulin (red). Bar � 200 �m. (b) Untreated TG neurons showing profiles of the three autophagic phenotypes observed (no discernible puncta, “none”; one or
more puncta 0.5 to 1 �m in diameter, “canonical”; one or more GFP	 structures �4 �m in diameter, “cluster”). The graph shows the percentage of neurons
presenting each phenotype, relative to all neurons counted (3 experiments; �200 neurons counted per experiment). Bar � 10 �m. (c) Representative image of
TG neurons from GFP-LC3 mice infected with HSV-1 for 24 h. The left image shows GFP-LC3 (green), the middle image shows HSV-1 antigen (red), and the
right image shows merged image. Bar � 10 �m. (d) Quantification of cultures described for panel c. The left bars show percentages of neurons with the cluster
GFP-LC3 phenotype following mock or HSV-1 infection. Neurons in infected cultures were then categorized as either HSV antigen negative or HSV antigen
positive, based on HSV staining. The right bars show percentages of neurons with the cluster GFP-LC3 phenotype in HSV antigen-negative or HSV antigen-
positive categories. Four experiments were performed, with 200 to 800 neurons scored per experiment. Error bars represent standard errors of the means (SEM).
Significance was evaluated by one-way analysis of variance (ANOVA) with Bonferroni posttests. **, P � 0.01.
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dominantly in HSV genome-positive neurons that do not express
HSV protein.

We next examined the GFP-LC3	 structures at higher resolu-
tion using deconvolution microscopy. We found that the large
GFP-LC3	 structures consisted of clusters of smaller (0.5 to 1.5
�m) GFP-LC3	 puncta (Fig. 3a). Immunofluorescence staining
for LC3 revealed comparable structures in TG neurons derived
from C57BL/6J mice (Fig. 3b). This demonstrates that the LC3	

clusters were not artifacts arising from the GFP-LC3 fusion con-
struct. To confirm that the GFP-LC3	 clusters represented an
autophagic process, we stained the cultures with LysoTracker dye
and performed immunocytochemistry for the lysosomal resident
protein LAMP1 and the autophagosome cargo protein p62 (Fig.
3c). When colocalization was quantified, we found that �50% of
the clusters colocalized with lysosomal compartments, and almost
100% colocalized with p62 (Fig. 3d), supporting the notion that
these structures represent an autophagic process.

Autophagosomal clustering is induced by IFN-� and re-
quires antiviral signaling. Based on our findings, we hypoth-
esized that HSV-1 infection triggers antiviral signaling in TG
neurons, which, in turn, induces autophagosomal clustering. Ac-
cordingly, TG neurons derived from mice deficient in IRF3,
IFNR-���, or STAT1 were unable to form the larger clusters in
response to infection (Fig. 4a). In contrast, they did form typical
0.5- to 1.5-�m autophagosomes in response to starvation (Fig.
4b), ruling out a general deficit in their autophagic responses.
Thus, antiviral signaling was necessary for cluster formation. In-
deed, IFN-� efficiently induced cluster formation in the absence
of viral infection (Fig. 4c). In contrast, IFN-�, IFN-�, IFN-, or

the STING agonist cGAMP did not trigger this response (Fig. 4c).
This shows that IFN-�-mediated antiviral signaling is sufficient
for cluster formation. The response to IFN-� was dose dependent,
reaching significance at low dose (Fig. 4d), underscoring the sen-
sitivity of neuronal autophagy to this signal. Importantly, ca-
nonical inducers of autophagy (starvation, rapamycin, and
Tat-beclin peptide (70, 72) did not increase the prevalence of
clusters (Fig. 4c).

Based on these findings, we hypothesized that TG cultures ex-
press IFN-� in response to HSV infection and that this was the
cause of cluster formation after infection. qPCR analysis revealed
that the ISGs IFIT1 and ISG15 (28) are upregulated in HSV-1-
infected cultures (Fig. 4e). Consistent with this idea, an IFN-�
receptor-blocking antibody inhibited cluster formation in HSV-
infected neuronal cultures (Fig. 4f). Taken together, these data
support the hypothesis that HSV-1 infection of TG neuronal cul-
tures triggers antiviral signaling, which modulates the autophagic
pathway to induce cluster formation.

Autophagic clusters are induced by other alphaherpesvi-
ruses. Since autophagosomal clustering was triggered by antiviral
signaling and HSV infection, we reasoned that other viruses
should also induce cluster formation. We therefore compared
cluster formation in neuron cultures infected with a range of
virus types: three related neurotropic alphaherpesviruses (HSV-1,
HSV-2, and pseudorabies virus [PrV]), a lymphotropic gamma-
herpesvirus (murine gammaherpesvirus 68 [MHV-68]), an unre-
lated DNA virus (vaccinia virus [VACV]), a neurotropic RNA
virus (Theiler’s murine encephalomyelitis virus [TMEV]), and
two unrelated RNA viruses (yellow fever virus [YFV] and vesicular

FIG 2 Large GFP-LC3	 structures (clusters) form in neurons that harbor the HSV-1 genome. (a) GFP-LC3 neurons infected with KOS-58 and stained for �-Gal
(red) and VP16 (white). Green arrows indicate neurons with clusters, �-Gal expression, and no VP16. White arrows indicate neurons with VP16 expression and
no clusters. Bar � 50 �m. (b) Quantification of cultures described for panel a and analyzed as for Fig. 1d. (c) Quantification of �-Gal and VP16 prevalence
among total neurons (left graph) or among cluster-positive neurons (right graph) in the cultures represented in panel a. A total of �3 experiments were
performed, with �1,000 neurons scored per experiment. Error bars represent SEMs. Significance was evaluated by one-way analysis of variance (ANOVA)
with Bonferroni posttests. *, P � 0.05.
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FIG 3 Large GFP-LC3	 structures are clustered autophagosomes. (a) Deconvolution microscopy imaging of four representative neurons cultured from
GFP-LC3 mice to show clustered autophagosomes, with enlarged insets to show detail. (b) Deconvolution microscopy imaging of four representative neurons
cultured from WT C57BL/6J mice stained with an anti-LC3 antibody (Cell Signaling) to show clustered autophagosomes, with enlarged insets to show detail. (c)
Merged fluorescence image of neuron from GFP-LC3 mice, with white arrows indicating clusters. Zoomed single-channel images of the boxed cluster show
GFP-LC3 (green), p62 (red), and LAMP1 (purple). (d) Merged fluorescence image of neuron from GFP-LC3 mice stained with LysoTracker (purple), with a
white arrow indicating a cluster. A zoomed image is shown as an inset. (e) Graph showing the percentage of GFP-LC3	 clusters that colocalized with p62 or
lysosomal markers (LAMP1 or LysoTracker) expressed as a fraction of total clusters. The experiment was performed �3 times, and �200 clusters were scored per
experiment. Error bars represent SEMs. Size bar � 10 �m.
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stomatitis virus [VSV]) (Fig. 5a). Unexpectedly, only HSV-1,
HSV-2, and PrV induced robust cluster formation, again predom-
inantly in neurons that exhibited no viral antigen expression. YFV
induced a modest increase in cluster prevalence, an interesting
finding given its ability to establish persistent neuronal infections
in immunocompromised mice (73). Overall, however, these data

showed that autophagic clusters were most efficiently induced in
response to alphaherpesviruses.

Given that HSV-1 inhibits the antiviral response, it was possi-
ble that it might also inhibit the cluster response in antigen-posi-
tive cells. We reasoned that �34.5 or US11 might be involved, since
both interfere with antiviral and autophagy pathways (14, 33–35,

FIG 4 IFN-� induces autophagosomal clustering. (a) Neurons from IRF3
/
, IFNR-���
/
, or STAT1
/
 mice were infected with HSV-1 at an MOI of 25 or
mock infected and then stained and analyzed as for Fig. 1d, presented relative to GFP-LC3. (b) Neurons from IRF3
/
, IFNR-���
/
, or STAT1
/
 mice were
starved for 24 h, treated with bafilomycin for 2 h, and then stained for LC3. Bar � 10 �m. (c) GFP-LC3 neurons were treated with IFN-�, IFN-�, IFN-�, IFN-,
cGAMP, nutrient deprivation (“starve”), rapamycin, or Tat-beclin 1 peptide, and cluster formation was assessed. The graph indicates the percentage of neurons
with GFP-LC3	 clusters relative to the total neurons observed. (d) GFP-LC3 neurons were treated with the indicated doses of IFN-�. The graph indicates the
percentage of neurons with GFP-LC3	 clusters relative to the total neurons observed. (e) Neurons were infected with HSV-1 at an MOI of 5 or treated with 10
U/ml of IFN-�, and then expression of ISG15 and IFIT was assayed by qPCR. (f) GFP-LC3 neurons were untreated or pretreated with an IFN-blocking antibody
and then either infected with HSV-1, treated with IFN-�, or left untreated. The graph indicates the percentage of neurons with GFP-LC3	 clusters relative to the
total neurons observed or to the HSV-1 antigen-negative neurons. All experiments were performed at least 3 times, and 200 to 1,200 cells were scored per
experiment. Error bars represent SEMs. Significance was evaluated by one-way ANOVA with Bonferroni posttests. **, P � 0.01; ***, P � 0.001.
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51, 74, 75). We therefore infected neuron cultures with HSV-1
lacking the beclin-binding region in the �34.5 gene (�bbd) (35),
the entire �34.5 gene (�34.5) (14), or the both �34.5 and US11
genes (�34.5 �US11) (56) and examined cluster prevalence and
HSV antigen expression. Unexpectedly, there was no difference in
the abundance of clusters induced by wild-type (WT) or mutant
viruses, and there was no change in the mutual exclusivity of viral
antigen expression and cluster formation (Fig. 5b). We therefore
wondered whether cluster formation is influenced by the expres-
sion of latency-associated-transcripts (LAT) and early lytic genes
within HSV-infected neurons. We explored this possibility using

mutant viruses that lack either LAT expression (dlLAT1.8 [57]) or
the key immediate early (IE) genes ICP4 and ICP27, such that lytic
gene expression is very limited (d92 [59]). Both dlLAT1.8 and d92
were fully capable of inducing cluster formation (Fig. 5b). How-
ever, the near-complete mutual exclusivity of clusters and HSV
antigen expression was broken in the d92-infected cultures. Treat-
ment with UV-inactivated HSV-1 did not induce cluster forma-
tion (Fig. 5b). Moreover, cluster formation in response to wild-
type HSV-1 was dose dependent and was significantly induced
even at an MOI of 1 (Fig. 5c). Taken together, these findings dem-
onstrate that limited expression of HSV lytic genes is sufficient to

FIG 5 Clusters are induced by alphaherpesvirus infection. (a) GFP-LC3 neurons were infected with the indicated viruses and then stained with anti-HSV-1
(HSV-1, HSV-2, and PrV), anti-MHV-68, anti-vaccinia virus, anti-YFV, or anti-VSV-G. Neurons were analyzed as for Fig. 1d. (b) GFP-LC3 neurons were
infected with HSV-1 mutants and then stained for HSV antigen and analyzed as for Fig. 1d. (c) Neurons were infected with HSV-1 at the indicated MOIs and then
stained and analyzed as for Fig. 1d. Each experiment was performed 3 or 4 times, and 200 to 1,200 neurons were scored per experiment. Error bars represent
SEMs. Significance was evaluated by two-way ANOVA with Bonferroni posttests. *, P � 0.05; **, P � 0.01; ***, P � 0.001. ND, not detected.
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trigger the cluster autophagic response in TG neurons. They also
suggest that cluster formation in antigen-positive cells is inhibited
by early HSV gene expression.

Dynamics of cluster formation and clearance. We next ex-
amined the process of cluster formation after IFN-� treatment.
We used qPCR to detect transcripts of the autophagy genes
Atg5 and p62 and found no change in their expression 3 to 6 h
postinfection or 6 h after IFN-� treatment. This finding sup-
ports the notion that a generalized increase in autophagy is not
necessary or sufficient to induce cluster formation (Fig. 4c).
We therefore hypothesized that antiviral effectors directly
modulate the autophagic machinery. In cancer cell lines, the
ubiquitin-like molecule ISG15 (76) modifies beclin 1 (77) and
can bind directly to p62 (78). We found that ISG15 colocalized
with �70% of clusters (Fig. 6a). While colocalization is not
proof of an interaction, these findings raise the possibility that
neuronal antiviral signaling produces posttranslational modi-
fications in the autophagy machinery.

We also sought to determine the kinetics of cluster forma-
tion. Cluster abundance increases approximately 8 h after
IFN-� treatment, peaks at 12 h, and then steadily declines (Fig.
6b). We reasoned that individual autophagosomes might form
at discrete locations in the cytosol and then be shuttled to a
single site in a microtubule-dependent process, as described by
Nunes et al. (79). Microtubule disruption with nocodazole,
however, did not affect cluster formation (data not shown).
When examined in live cells, it appeared that the clusters rep-
resent a stable, though not static, structure (see Movie S1 in the
supplemental material). Moreover, deconvolution microscopy

showed that some clusters appear to include open cups (Fig. 6c,
white arrows, and Fig. 3c) that may represent elongating au-
tophagosomes. Taken together, these data suggest that au-
tophagic biogenesis may occur at the clusters.

Next, we sought to determine how clusters might be cleared.
Live imaging revealed no evidence of autophagosome migra-
tion away from existing clusters (see Movie S1). Since clusters
decline over the course of 72 h (Fig. 6b) and also colocalize with
lysosomes (Fig. 3c and d), it seemed possible that lysosomal
fusion might clear vesicles from the clusters. To test this idea,
we treated neurons with IFN-� for 12 h to induce cluster for-
mation and then treated them with bafilomycin 1 to inhibit the
proton pump-dependent maturation. We expected that clus-
ters would increase in size and abundance. However, live im-
aging revealed that autophagic trafficking around the cluster
was dysregulated, and the stability of the clusters was compro-
mised (see Movie S2). Thus, cluster stability likely depends on
lysosomal acidification.

HSV-1 infection in vivo induces local cluster formation.
We utilized the ocular model of HSV-1 infection (53) in order
to test whether our findings in vitro were a recapitulation of
neuronal autophagosome dynamics in vivo. We infected GFP-
LC3 mice via corneal scarification with HSV-1 strain 17 and 4
days postinfection (dpi) examined histological sections of TG.
In three independent experiments, we observed that au-
tophagic clusters had formed in the neurons of infected TG
(Fig. 7a) but not in neurons of mock-infected animals (Fig. 7b).
As observed in vitro, clusters were found predominantly in

FIG 6 Cluster composition, kinetics, and form. (a) Merged fluorescence image of IFN-�-treated neurons from GFP-LC3 mice, with a white arrow indicating a
cluster (size bar � 10 �m). Shown are zoomed single-channel images of the cluster show GFP-LC3 (green) and ISG15 (red). (b) GFP-LC3 neurons treated with
IFN-� for the times indicated were scored for presence of clusters. Results are presented as percentages of neurons from the entire population scored. The
experiment was performed �3 times, and �1000 neurons were scored per experiment. Error bars represent SEMs. (c) GFP-LC3 neurons treated with IFN-�.
Images show representative clusters; white arrows indicate “open cups.” Bar � 5 �m.
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HSV-1 antigen-negative neurons (Fig. 7c), and most (�80%)
colocalized with p62 (Fig. 6d).

Since clusters form in response to HSV-1 infection and IFN-�
stimulation, it was of interest to localize the cluster-containing
neurons more precisely within the infected TG. We examined lon-
gitudinal sections comprising the entire TG to establish a map of
the neurons that were positive for HSV antigen or GFP-LC3 clus-
ters (Fig. 8). GFP-LC3 was detectable throughout the TG (Fig. 8a).
However, autophagic clusters were restricted to neurons
within the ophthalmic branch (Oph.), proximal to the infec-
tion site (Fig. 8b). Immunohistochemistry confirmed that this
was the most HSV antigen-positive infected region of the TG
(Fig. 8c). The merged image demonstrates that the autophagic
clusters were in close proximity but not colocalized to the
HSV-1 antigen-positive cells (Fig. 8d). Taken together, these
data demonstrate that autophagosomal clustering occurs in

vivo during acute infection in neurons that are proximal to
those expressing HSV antigen.

DISCUSSION

We have studied the relationship between virus infection, the in-
terferon response, and the induction of autophagy (35, 37, 55, 74)
We recently showed that the neuronal antiviral response to HSV-1
is driven by IFN-� signaling and that HSV strains that cannot
counter autophagy are more susceptible to this antiviral effect
(12). While several studies have shown that IFN-� induces au-
tophagy in cancer cells (80), to our knowledge a direct link be-
tween IFN-� signaling and autophagy induction has not been pre-
viously demonstrated in neurons. Our data support the notion
that HSV infection and IFN-� signaling in primary murine TG
neurons induce a distinct structure, consisting of clustered, and
possibly selective, autophagosomes. Given that treatment with

FIG 7 Clusters are induced in the context of HSV-1 infection in vivo. GFP-LC3 mice were infected with HSV-1 (a, c, and d) or mock infected (b). TG were
isolated and 10-�m sections were stained with anti-HSV-1 (c) or anti-p62 (d). Autophagic clusters were quantified for panel c as for Fig. 1d. Each experiment was
performed 3 times; 1 representative slice was scored per mouse. Bars � 10 �m (a), 100 �m (b), and 50 �m (c and d). Error bars represent SEMs. Significance was
evaluated by one-way ANOVA with Bonferroni posttests. *, P � 0.05; ***, P � 0.001.
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conventional pharmacological inducers of autophagy did not re-
sult in clusters, it appears that this process is dependent upon
antiviral signaling pathways, which are both necessary and suffi-
cient to induce cluster formation.

Three key observations in this study are suggestive of possible
links between neuronal autophagosomal clustering and the
HSV-1 life cycle. First, while �95% of neurons in infected cultures
harbor HSV genomes, the clusters formed almost exclusively in
viral antigen-negative neurons. The cluster-containing neurons
are therefore largely HSV genome positive, and it is of interest to
determine whether latency has been established in these cells. Sec-
ond, TG neurons formed clusters efficiently and almost exclu-
sively in response to infection with neurotropic alphaherpesvi-
ruses. Third, HSV gene expression was necessary to induce
clusters, yet the limited immediate-early/early (IE/E) gene expres-
sion of d92 was sufficient in this regard. It is possible, therefore,

that clusters form specifically in response to alphaherpesvirus IE
gene expression. Accordingly, cluster formation in vivo was re-
stricted to the branch of the TG that had been infected by HSV and
showed antigen expression. Thus, TG neurons display both sensi-
tivity and specificity to alphaherpesvirus infection, as judged by
cluster formation. There is some precedent for the notion that TG
neurons have adapted to respond specifically to alphaherpesvi-
ruses, since they express neuronal miR138, which mediates spe-
cific repression of HSV-1 ICP0 (32).

TG neurons are sensitive to IFN signaling, since clusters were
induced by low levels of IFN. Neurons fail to produce detectable
levels of IFN-�, and nonneuronal cells, such as glial cells or infil-
trating immune cells, are the most likely source of IFN in vivo.
Consistent with this idea, IFN production and cluster formation
are modest in vitro, where the neurons are highly enriched relative
to nonneuronal cells. Indeed, in vivo infection produced a higher

FIG 8 Clusters occur in close proximity to infected cells in TG in vivo. Shown are tiled images of a whole TG in a representative longitudinal section. The blue
outline demarcates the boundaries of the tissue; the white arrow indicates the direction of viral spread. GFP-LC3 mice were infected with HSV via the corneal
route. At 4 dpi the TG were stained for HSV-1 antigen. (a) GFP-LC3 in the entire TG. (b) After image acquisition, cluster locations were marked by addition of
green pixels (no fluorescence is shown in this panel). (c) HSV-1 antigen. (d) Merged image of panels b and c. The experiment was performed 3 times. Bar � 1
mm. Oph., ophthalmic branch; Mand., mandibular branch; C., central nervous system.
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percentage of clusters, comparable to the frequency induced by
IFN treatment in vitro. These clusters were restricted to the acutely
infected region of the TG, proximal to localized IFN-producing
cells. Intriguingly, clusters were found predominantly in neurons
which were HSV antigen negative. HSV is known to modulate IFN
signaling in infected cells. It is of interest to determine both in vitro
and in vivo whether the absence of clusters in antigen-positive
neurons reflects either the absence of an antiviral response or im-
munomodulatory activity of HSV.

Autophagy is clearly a key player in the neuronal antiviral re-
sponse (35, 37, 74), but the precise role for autophagic clusters in
this critical pathway remains unclear. There are some clues, how-
ever, that implicate a role for selective autophagy that warrant
further study. Virtually every cluster examined was p62 positive,
consistent with a hypothesis that this overall process represents
p62-mediated selective autophagy. p62 is known to recruit the
autophagic machinery to large cargo (41, 81). We therefore
stained IFN-�-treated neuron cultures for markers of aggresomes
(�-tubulin and HDAC6 [82, 83]) and stress granules (TIA and
PABP [84, 85]). We also stained infected neuron cultures for
ICP5, a component of the HSV capsid (55). While we were able to
clearly observe these markers in their expected subcellular loca-
tions, they did not colocalize with clusters (our unpublished data).
We are therefore investigating whether clusters facilitate selective
autophagic degradation of smaller cargos, such as components of
innate signaling pathways (86). The presence of a smaller cargo is,
however, at odds with the presence of these closely associated clus-
tered vesicles. A previous study with kidney cells showed that in-
dividual autophagic vesicles can migrate to a single location in a
microtubule-driven fashion (79), but recent work has shown that
nocodazole does not disrupt cluster formation (our unpublished
data). Furthermore, our live-imaging movies show no evidence of
vesicle migration into the clusters. Another line of investigation in
our lab is driven by the fact that p62 self-oligomerizes, possibly
promoting cluster formation (87). Alternatively, vesicle clustering
may be promoted by innate mediator ISG15 (28, 88, 89) which
decorates the clusters and is known to interact with beclin 1 and
p62 (77, 78).

In summary, the autophagic clusters described here are
novel reporters of heightened neuronal antiviral responses
both in vitro and in vivo. Further characterization of these
structures and their cargo may provide important insights into
the relationship between HSV, sensory neurons, and the anti-
viral response and likely elucidate aspects of the establishment,
maintenance, and reactivation of latency. Finally, the possible
involvement of autophagy in the regulation of the antiviral
state in neurons opens up new pathways for intervention and
therapy for herpetic diseases.
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