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ABSTRACT

The coronavirus membrane (M) protein is the central actor in virion morphogenesis. M organizes the components of the viral
membrane, and interactions of M with itself and with the nucleocapsid (N) protein drive virus assembly and budding. In order
to further define M-M and M-N interactions, we constructed mutants of the model coronavirus mouse hepatitis virus (MHV) in
which all or part of the M protein was replaced by its phylogenetically divergent counterpart from severe acute respiratory syn-
drome coronavirus (SARS-CoV). We were able to obtain viable chimeras containing the entire SARS-CoV M protein as well as
mutants with intramolecular substitutions that partitioned M protein at the boundaries between the ectodomain, transmem-
brane domains, or endodomain. Our results show that the carboxy-terminal domain of N protein, N3, is necessary and sufficient
for interaction with M protein. However, despite some previous genetic and biochemical evidence that mapped interactions with
N to the carboxy terminus of M, it was not possible to define a short linear region of M protein sufficient for assembly with N.
Thus, interactions with N protein likely involve multiple linearly discontiguous regions of the M endodomain. The SARS-CoV M
chimera exhibited a conditional growth defect that was partially suppressed by mutations in the envelope (E) protein. Moreover,
virions of the M chimera were markedly deficient in spike (S) protein incorporation. These findings suggest that the interactions
of M protein with both E and S protein are more complex than previously thought.

IMPORTANCE

The assembly of coronavirus virions entails concerted interactions among the viral structural proteins and the RNA genome.
One strategy to study this process is through construction of interspecies chimeras that preserve or disrupt particular inter- or
intramolecular associations. In this work, we replaced the membrane (M) protein of the model coronavirus mouse hepatitis vi-
rus with its counterpart from a heterologous coronavirus. The results clarify our understanding of the interaction between the
coronavirus M protein and the nucleocapsid protein. At the same time, they reveal unanticipated complexities in the interactions
of M with the viral spike and envelope proteins.

Coronaviruses (CoVs) are a family of enveloped positive-strand
RNA viruses that cause disease in numerous mammalian and

avian hosts (1, 2). Of the six coronaviruses that can infect humans,
the two of greatest current concern are the etiologic agents of
severe acute respiratory syndrome (SARS-CoV) and Middle East
respiratory syndrome (MERS-CoV). Virions of coronaviruses
contain a canonical set of four structural proteins. The most nu-
merous constituent, the membrane (M) protein, makes up a lat-
tice in the viral envelope that associates with the other compo-
nents. Trimers of spike (S) protein form projections on the virion
surface responsible for attachment to host cell receptors, and mi-
nor amounts of the small envelope (E) protein also appear in the
viral membrane. In the virion interior, the nucleocapsid (N) pro-
tein encloses the �30-kb viral genome into a helically symmetric
ribonucleoprotein.

Much of our knowledge of coronavirus assembly has been
worked out through studies with the prototype coronavirus
mouse hepatitis virus (MHV). MHV falls into the betacoronavi-
ruses, the second of the four genera of the family and the one
which also includes SARS-CoV and MERS-CoV. Key contribu-
tions to understanding virion morphogenesis have also been
made through analyses of the gammacoronavirus infectious bron-
chitis virus (IBV) and the alphacoronavirus transmissible gastro-
enteritis virus (TGEV). A large body of work points to M protein
as the major player in virion assembly. Coexpression of subsets of
viral proteins revealed that just M protein and E protein are suffi-

cient for the formation of virus-like particles (VLPs) (3–5). The
inclusion of N protein, although it is not strictly required, greatly
enhances the efficiency of VLP formation (6, 7). The critical role of
E protein is carried out at the site of budding, the endoplasmic
reticulum-Golgi intermediate compartment, with very little E be-
ing carried over into assembled virions (8). Additionally, M pro-
tein captures S protein for incorporation into virions or VLPs (9,
10), but S is an optional participant in virus formation (11, 12),
even though it is essential for infectivity.

Thus, extensive networks of protein-protein interactions in
coronavirus assembly involve one or both of the most abundant
virion components, M and N. The N protein is a highly basic
phosphoprotein containing the structurally distinct amino-termi-
nal RNA-binding domain (NTD) and the carboxy-terminal RNA-
binding domain (CTD) (13), which we have previously called do-
mains N1b and N2b, respectively (14–16) (Fig. 1A). In MHV N
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protein, the CTD, but not the NTD, is a critical determinant for
recognition of the genomic RNA packaging signal (16). The CTD
also mediates N-N dimerization and longer-range interactions in
the nucleocapsid (17). Flanking the NTD and CTD are intrinsi-
cally disordered protein segments (13, 18). One of these, the linker
between the NTD and CTD, harbors a serine- and arginine-rich
(SR) region that binds to the replicase nonstructural protein 3
(nsp3) in an interaction crucial to an early step of infection (15,
19). At the carboxy terminus of the molecule is domain N3, which
many (20–24), but not all (25–27), prior studies have assigned to
be the locus of N-M interactions.

The M protein is a triple-spanning transmembrane protein
with a small ectodomain and a large carboxy-terminal endodo-
main (28, 29) (Fig. 1A). As yet, there is only limited structural
information available for M. The assignment of intra- and inter-
molecular interactions to parts of the M protein is more tentative
than that to parts of the N protein. Evidence from cryo-electron
micrographic (cryo-EM) and tomographic reconstructions (30)
and inferences drawn from a genetic study of evolved M mutants
(31) suggest that M-M monomer interactions occur among the
transmembrane (Tm) domains, whereas higher-order oligomer-
ization of M dimers is governed by the endodomain. The endodo-
main is also the locus of interactions of M protein with N protein

(20–24, 32, 33) and with S protein (34, 35). In order to learn more
about the intra- and intermolecular interactions of M, we con-
structed MHV chimeras containing entire or partial substitutions
of the SARS-CoV M protein. This strategy allowed us to further
define M-N and M-M interactions. Additionally, it revealed that
the interactions of M with the E and S proteins are more complex
than currently pictured.

MATERIALS AND METHODS
Cells and viruses. MHV A59 wild-type and mutant virus stocks were
grown at 37°C in mouse 17 clone 1 (17Cl1) cells. Plaque titrations and
plaque purifications were performed with mouse L2 cells. The host-range
chimeric coronavirus designated fMHV.v2 (36), used as the recipient vi-
rus for reverse genetics, was grown in feline FCWF cells.

MHV mutant construction. All mutants in this study were isolated by
targeted RNA recombination, as previously described in detail (36, 37).
Transcription vectors for donor RNA synthesis were constructed from
plasmid pSG6X (16), which contains the 3=-most 8.6 kb of the MHV A59
genome. To create vector pMN1, SARS-CoV domain N3 was transferred
to pSG6X from the previously described pMN54-SN3 (15) by transfer of
the NheI-BstEII fragment, which runs from the center of the N gene
through the start of the 3= untranslated region. All subsequent constructs
containing SARS-CoV domain N3 were then derived from pMN1. Whole
or partial SARS-CoV M-gene substitutions were made through manipu-
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FIG 1 Coronavirus M- and N-protein domain structure. (A) Schematics of the M and N proteins with a summary of currently assigned interactions. Tm,
transmembrane domain; NTD (N1b), amino-terminal RNA-binding domain; SR, serine- and arginine-rich region; CTD (N2b), carboxy-terminal RNA-binding
domain; B, spacer region; N3, carboxy-terminal domain. (B) Alignment of the MHV and SARS-CoV (SCoV) M proteins. Tm domains are as modeled in the work
of Rottier et al. (29). Vertical bars between the ectodomain (ecto), Tm domains, and endodomain (endo), functional crossover boundaries in the constructed
chimeras; filled circles, nonfunctional crossover boundaries within the M endodomain. (C) Alignment of the carboxy termini of the MHV and SARS-CoV N
proteins. Vertical bar, the functional crossover boundary in chimeras; broken line, boundary between spacer B and domain N3. The GenBank accession numbers
for the sequences shown are AY700211 for MHV A59 and AY278741 for SARS-CoV strain Urbani.
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lation of the EcoRV-PspXI fragment running from the end of the E gene
through the M gene and to the start of the N gene. Chimeric sequences
were generated via PCR or two-step PCR using a cloned SARS-CoV M-
gene cDNA as the template (strain Urbani; GenBank accession number
AY278741). Alternatively, some M-gene fragments were synthesized by
PCR from overlapping oligonucleotides and inserted into plasmids using
the EagI or BssHII site within M or a coding-silent BspEI site that was
created at MHV M codons 198 and 199 (equivalent to SARS-CoV M
codons 190 and 191, respectively). The entire SARS-CoV M substitution
in vectors pMN2, pMN3, pMN6, and pMN7 was an exact replacement of
the MHV M open reading frame (ORF). The junctions in the partial
SARS-CoV M substitutions in vectors pMN4A, pMN4B, pMN4C,
pMN5A, pMN5B, pMN8, pMN9, and pMN10 were made at the various
boundaries shown in Fig. 1B. The SARS-CoV E gene in vector pMN6,
which is an exact ORF-for-ORF replacement, was obtained by transfer
from the previously described pLK106 (38) of the SbfI-EcoRV fragment,
which runs from immediately downstream of the S gene through the end
of the E gene. Similarly, the E-gene F20S mutation was placed in vectors
pMN5A, pMN5B, pMN7, pMN8, and pMN10 by transfer of an SbfI-
EcoRV fragment of cDNA from mutant MN3rev3. Oligonucleotides for
PCR and DNA sequencing were obtained from Integrated DNA Technol-
ogies. The overall compositions of the constructed plasmids were con-
firmed by restriction analysis, and all ligation junctions and regions gen-
erated by PCR amplification were verified by DNA sequencing.

The wild-type virus used in this work was Alb741, a recombinant that
was previously isolated by targeted RNA recombination with donor RNA
from pSG6X (16). For viable chimeric viral mutants, at least three inde-
pendent isolates were obtained. In each case, once it was established in
preliminary experiments that multiple isolates behaved identically, one of
them was chosen for further analysis. The exceptions were mutants MN6
and MN7, each of which was isolated only once. Particular chimeric con-
structs were judged to be lethal after yielding no recombinants in multiple
targeted RNA recombination experiments for which parallel positive con-
trols with wild-type donor RNA produced recombinants at a robust fre-
quency.

Virus purification. The wild-type and mutant MN8 viruses were
grown in 17Cl1 cell monolayers infected at a multiplicity of 1 PFU/cell.
Medium containing released virus was harvested at 14 h postinfection, at
a point when the monolayers exhibited maximal syncytium formation but
minimal lysis or detachment. Virions were purified by polyethylene glycol
precipitation followed by equilibrium centrifugation on preformed gra-
dients of 20 to 30% iodixanol (OptiPrep; Sigma-Aldrich) in a buffer of 50
mM Tris-maleate (pH 6.5) and 1 mM EDTA. Gradients were centrifuged
at 111,000 � g in a Beckman SW41 rotor at 4°C for 18 h, and for each
gradient, 15 750-�l fractions were collected from the top.

Northern blotting. RNA was extracted from aliquots of the gradient
fractions with the TRI Reagent (Zymo) according to the manufacturer’s
instructions. Purified RNA denatured with formaldehyde and formamide
was directly dot blotted onto Nytran Supercharge membranes (Whatman;
GE Healthcare) by filtration through a vacuum manifold, followed by UV
cross-linking. Membranes were hybridized with a PCR-amplified probe
corresponding to nucleotides 401 to 909 of the MHV genome, a region
unique to genomic RNA (and absent from subgenomic RNA). The probe
was labeled by use of an AlkPhos Direct kit; the RNA in the blots was
visualized using the CDP-Star detection reagent (GE Healthcare) and
quantitated with a Bio-Rad ChemiDoc XRS� instrument.

Western blotting. Purified virions or NP-40 lysates prepared from
infected 17Cl1 cell monolayers were separated by sodium dodecyl sulfate-
polyacrylamide gel electrophoresis (SDS-PAGE; 10%, except where indi-
cated otherwise) and analyzed by Western blotting exactly as described
previously (31). Proteins were detected with one of the following: anti-
MHV N-protein rabbit polyclonal antibody (14); anti-MHV M-protein
monoclonal antibody J.1.3, generously provided by John Fleming, Uni-
versity of Wisconsin, Madison, WI; anti-SARS-CoV M-protein monoclo-
nal antibody NR-621, similar to 283C (39), obtained through the NIH

Biodefense and Emerging Infections Research Resources Repository; or
anti-MHV S-protein rabbit polyclonal antibody raised against a peptide
corresponding to the carboxy-terminal 13 residues of S (DSIVIHNISSH
ED). Bound antibodies were visualized by enhanced chemiluminescence
detection (Pierce), and quantitation was carried out with a Bio-Rad
ChemiDoc XRS� instrument.

RESULTS
Construction of an MHV mutant containing the entire SARS-
CoV M protein. To more completely elucidate the structural pro-
tein requirements for coronavirus assembly, we constructed an
MHV chimera containing the SARS-CoV M protein. The equiva-
lence of the M endodomain of MHV with that of the very closely
related bovine coronavirus (BCoV) was demonstrated in an ear-
lier study (40). However, we anticipated that substitution of the
much less homologous SARS-CoV M protein would provide a
more stringent test of compatible and incompatible intermolecu-
lar interactions. The M proteins of MHV and SARS-CoV, which
are lineage A and lineage B betacoronaviruses, respectively, share
only 38% amino acid sequence identity (Fig. 1B). Although M
protein is known to engage with each of the other three coronavi-
rus structural proteins, we did not expect that a SARS-CoV M
chimera would be significantly hindered in essential M-S or M-E
interactions. We had previously found that the SARS-CoV E pro-
tein could functionally substitute for the MHV E protein (38).
Additionally, it was shown that the endodomain of the MHV S
protein, the region of S that interacts with M (41, 42), could be
completely replaced by its SARS-CoV counterpart (43).

In contrast, we postulated that substitution of a heterologous
M protein would require that it be partnered with the region of N
protein that assembles with M. Much prior work indicated that N
interactions with M are confined to the carboxy-terminal domain
of N protein (domain N3) (20–24), which has little or no sequence
homology between MHV and SARS-CoV (Fig. 1C). Accordingly,
we used targeted RNA recombination (36, 37) to isolate an MHV
mutant, MN3, which harbored the complete SARS-CoV M pro-
tein as well as domain N3 (plus the adjacent spacer B) of SARS-
CoV N protein (Fig. 2A). Consistent with our initial assumptions,
a chimeric construct that paired the MHV M protein with the
SARS-CoV domain N3 (mutant MN1) was lethal, confirming ear-
lier results (15). Likewise, a chimeric construct that paired the
SARS-CoV M protein with the MHV domain N3 (mutant MN2)
was also lethal. These results showed that domain N3 is essential
for the functional interaction between the coronavirus N and M
proteins. Previous work has established that the highly variable
spacer B is not essential for virion formation. MHV N spacer B can
be altered with a divergent coronavirus sequence (44) or an
epitope tag (21) or even entirely replaced with a synthetic flexible
linker peptide sequence (14). Moreover, the complete deletion of
spacer B in the classical temperature-sensitive mutant Alb4 still
allows virion assembly at the permissive temperature (45).

Three independent isolates of the MN3 mutant were obtained,
and their sequences were confirmed. Two of the three contained
the exact SARS-CoV M-gene sequence. The third isolate had two
coding changes in M, N206S and T207A. However, since this virus
was phenotypically identical to the other two, these mutations
were deemed extraneous, and one (unmutated) isolate was chosen
for further study. Notably, none of the MN3 isolates had any se-
quence changes in the S endodomain, the E gene, or the chimeric
N gene. Thus, the substitution of the SARS-CoV M protein did not

Coronavirus M- and N-Protein Assembly Interactions

May 2016 Volume 90 Number 9 jvi.asm.org 4359Journal of Virology

http://www.ncbi.nlm.nih.gov/nuccore?term=AY278741
http://jvi.asm.org


depend upon the acquisition of second-site mutations in protein
domains that interact with M protein, other than N3. To verify
expression of proteins encoded by the chimeric virus, lysates from
infected cells were analyzed by Western blotting (Fig. 2B). As ex-
pected, an anti-SARS-CoV M monoclonal antibody reacted with
MN3 M protein but not with wild-type MHV M protein. Con-
versely, an anti-MHV M monoclonal antibody reacted with wild-
type MHV M protein but not with MN3 M protein. Since the two
anti-M antibodies recognize different epitopes, the level of M ex-
pression by MN3 could not be directly compared to that of the
wild type. However, both viruses expressed comparable amounts
of wild-type (49.7-kDa) or chimeric (48.3-kDa) N protein, as
judged by probing infected cell lysates with polyclonal anti-MHV
N antibody. Additionally, as predicted, a monoclonal antibody
that recognizes an epitope in wild-type MHV domain N3 (21) did
not react with the chimeric MN3 N protein (data not shown).

Although the MN3 mutant was viable, it grew to an �40-fold
lower infectious titer than did wild-type virus and formed smaller
plaques at 37°C (Fig. 2C). This plaque size difference was more
pronounced at 33°C, and at 39°C MN3 plaques were tiny com-
pared to those of the wild type. This indicated that at least one of
the intermolecular interactions of SARS-CoV M protein with
MHV components was partially impaired.

Analysis of revertants of MN3. To gain an understanding of
the defect in the SARS-CoV M chimera, we isolated mutants with
improved growth following 6 to 10 serial passages at 39°C of mul-
tiple individual cultures of MN3, each of which had been started
from a single plaque. These mutants (referred to as revertants
here) formed plaques at 39°C that were markedly larger than those
of the MN3 parent but that were not fully as large as wild-type

plaques. We mapped the mutations that had arisen in each by
sequencing the S endodomain and the entire E, M, and N genes.
Among 10 independent revertants that were isolated, 7 had single
changes in the E protein, which localized in either the Tm domain
or the endodomain (Fig. 3A). Of the three other revertants, two
had mutations in SARS-CoV M (V96L or S172P) and one had a
mutation in both S (H1310Y) and N (E146Q). Since most of the
reverting mutations fell in E and since these were in the revertants
which formed the largest plaques, this suggested that wild-type
MHV E cannot optimally cooperate with SARS-CoV M in virion
morphogenesis. Such a finding was unexpected, because we had
previously found that the SARS-CoV E protein was nearly com-
pletely able to replace the MHV E protein (38).

More surprising was the finding that substitution of the entire
SARS-CoV E protein in conjunction with the SARS-CoV M pro-
tein generated a virus whose fitness was further impaired, rather
than improved, with respect to that of MN3. The resulting E-M
chimera, MN6, formed very small plaques at 37°C and pinpoint
plaques at 39°C (Fig. 3B and C), and it had an �3-fold lower
infectious titer. This unforeseen outcome may have been the con-
sequence of distinct activities of the substituted E protein (46)
acting in conflict with each other (see Discussion). To ascertain
whether alteration of the MHV E protein was sufficient to enhance
the fitness of the SARS-CoV M chimera, we reconstructed the
mutation from the most robust of the revertants, MN3rev3. The
MN7 construct, containing F20S in its E protein, exhibited sub-
stantially larger plaques than the MN3 mutant at both 37°C and
39°C (Fig. 3B and C), and it had a 20- to 30-fold higher infectious
titer than MN3. This established that the F20S mutation alone is
capable of significantly enhancing the growth of the MN3 mutant,
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suggesting that there exists an interaction between the E and M
proteins. However, as MN7 did not entirely recapitulate the phe-
notype of MN3rev3, we determined the entire genomic sequence
of the latter. This revealed four additional mutations in MN3rev3:
D42G in nsp2, T298I in nsp15, S163L in the HE pseudogene, and
F270V in the S-protein ectodomain. We think it likely that none of
these points to a previously unknown interaction with M protein,
although the S ectodomain mutation conceivably contributed to
the larger plaque size of MN3rev3. We therefore included just the
E protein F20S mutation in further M chimeric constructs.

Domain substitutions within the M protein. Multiple lines of
evidence from previous structural (30), genetic (31), and virus-
like particle (47) studies all suggest that the M-protein ectodo-
main, Tm domains, and endodomain might have separable roles
in assembly. To test this notion, we generated intramolecular M-
protein chimeric substitutions. The first of these, MN8 (Fig. 4A),
retained the entire SARS-CoV M protein, except for the restora-
tion of the MHV M ectodomain. The crossover point between the
MHV and SARS-CoV sequences chosen was a conserved pair of

residues (WN) at the junction of the ectodomain and the first Tm
domain (Fig. 1B). As with the MN7 construct, the E protein of
MN8 incorporated the F20S mutation and domain N3 of the
SARS-CoV N protein. In two additional recombinants, MN9 and
MN10 (Fig. 4A), both the MHV ectodomain and Tm domains
were restored to the SARS-CoV M protein. In this case, the con-
structed crossover between the MHV and SARS-CoV sequences
was a motif (WSFNPETN) occurring shortly after the third Tm
domain (Fig. 1B). This motif is highly conserved among all beta-
coronavirus M proteins, and in MHV it has been shown to be
critical for virus-like particle assembly and for virus viability (48).
Mutant MN9 was made with the wild-type MHV E protein, while
MN10 had the E-protein F20S mutation.

The ectodomains of the MHV and SARS-CoV M proteins di-
verge extensively (Fig. 1B). Moreover, the MHV-A59 M-protein
ectodomain is O-glycosylated (49), whereas the SARS-CoV M-
protein ectodomain is N-glycosylated (50). These differences ap-
peared to have no major effect on the growth of MN8 at 37°C (Fig.
4B) relative to that previously seen for the complete SARS-CoV M
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MHV. (C) Plaques of wild-type, MN3, MN3rev3, MN6, and MN7 viruses at 37 and 39°C (passage 4 stock for the wild type, passage 2 stocks for the mutants).
Plaque titrations were carried out on L2 cells; monolayers were stained with neutral red at 72 h postinfection and were photographed 18 h later. The infectious
titers (numbers of PFU per milliliter) measured at each temperature are indicated.
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substitution mutants MN3 and MN7. Likewise, the MN9 and
MN10 mutants tolerated the pairing of heterologous Tm domains
and endodomains within the M molecule, indicating that these
two regions participate largely independently in intermolecular
interactions. Nevertheless, it was noted that at 39°C all three mu-
tants formed smaller plaques than did MN3 or MN7 (data not
shown). This impairment was most profound for MN9, suggest-
ing that in MN8 and MN10 the E-protein F20S mutation made a
beneficial contribution to SARS-CoV M endodomain associations
in M-protein oligomers.

In contrast to the substitutions that were allowed in MN8,
MN9, and MN10, we were not able to subdivide the M-protein
endodomain in order to define a minimal region capable of inter-
acting with N protein. On the basis of prior evidence that the M-N
interaction maps to the carboxy terminus of the M endodomain
(20, 21, 23, 32), various potential crossover points between the
two species of M protein were tested. In constructs MN4A, MN4B,
and MN4C, the SARS-CoV sequence was grafted onto the tail of
the MHV M protein at conserved residues positioned 30 (SGFA),
43 (YK), or 20 (GNY) amino acids, respectively, from the carboxy
terminus (Fig. 1B and 4C). Reciprocal substitutions of the MHV
M sequence on a SARS-CoV M background were also made in
constructs MN5A and MN5B. In each case, domain N3 of the N
protein was derived from the species to which the tail of the M
protein belonged. None of these five constructs yielded viable vi-
ruses, despite numerous independent trials of targeted RNA re-
combination, some of which included mutagenized donor RNAs

and all of which had robust wild-type controls. The lethality of all
of these mutants likely means that, due to the globular nature of
the M endodomain, the surface that interacts with domain N3 is
more complex than merely a linear stretch of primary sequence.

Analysis of virions of the SARS-CoV M-protein chimera. We
consistently noted that monolayers inoculated with MN3 or MN8
at 37°C exhibited a progression of syncytium formation and cyto-
pathic effect similar to that exhibited by monolayers inoculated
with wild-type virus at the same multiplicity of infection. How-
ever, virus released from cells infected with either of these SARS-
CoV M chimeras had a markedly lower infectious titer than the
wild type. Moreover, preliminary evidence showed that virions of
MN3 and MN8 were defective in the selective packaging of
genomic RNA (L. Kuo and P. S. Masters, unpublished data), sug-
gesting a possible basis for their reduced infectivity. These obser-
vations prompted us to examine SARS-CoV M chimeric virions in
more detail. We chose MN8 for this analysis because its composi-
tion allowed us to directly compare the M proteins in wild-type
and mutant virions using an anti-M monoclonal antibody that
recognizes the MHV M-protein ectodomain (40).

Virions of MN8 and the wild type were purified by equilibrium
centrifugation on continuous gradients of 20 to 30% iodixanol
and collected in multiple fractions that were analyzed for infectiv-
ity, viral protein, and genomic RNA (Fig. 5). One readily apparent
distinction between the two viruses was that they had markedly
different buoyant densities. This difference was confirmed by the
nearly identical density profiles of the two gradients shown in
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FIG 4 Intramolecular M-protein chimeric substitutions. (A) Schematics of wild-type virus and chimeras MN8, MN9, and MN10 containing mutant E, M, and
N proteins. Shading represents the sequence of SARS-CoV substituted for that of MHV. (B) Plaques of wild-type, MN8, MN9, and MN10 viruses at 37°C (passage
4 stock for the wild type, passage 3 stocks for the mutants). Plaque titrations were carried out on L2 cells; monolayers were stained with neutral red at 72 h
postinfection and were photographed 18 h later. The infectious titers (numbers of PFU per milliliter) measured are indicated. (C) Schematics of lethal
substitutions in chimeras MN4A to MN4C, MN5A, and MN5B, made in attempts to define a carboxy-terminal subregion of the M endodomain sufficient for
interaction with domain N3. MN5A and MN5B also contained the MHV E-gene mutation F20S.
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Fig. 5A. MN8 and wild-type virions were also seen to sediment
differently in glycerol-tartrate gradients (41) and in iodixanol gra-
dients of other densities (data not shown). A second salient con-
trast between the two viruses was that the MN8 mutant had a
severely reduced infectious titer, nearly 30-fold lower than that of
the wild type (Fig. 5A and F). However, this deficiency was not
due to a decreased quantity of assembled viral particles. The
levels of N and M proteins detected by Western blotting were
comparable for MN8 and wild-type virions, and the two had
similar ratios of N protein to M protein (Fig. 5B, C, and F).
Additionally, contrary to our original expectations, there was

no impairment in the amount of genomic RNA packaged by the
mutant. Indeed, virions of MN8 contained slightly more
genomic RNA than wild-type virions (Fig. 5D to F), and North-
ern blotting verified that MN8 genomic RNA was intact (data
not shown). For both the mutant and the wild type, the peaks of
protein and RNA coincided with the respective peaks of infectivity.
This indicated that MN8 virions did not consist of separate pools of
empty and RNA-containing particles.

Surprisingly, MN8 virions contained drastically reduced
amounts of S protein compared to wild-type virions. MHV S pro-
tein is synthesized as a 180-kDa glycoprotein, S0, that is cleaved by
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cellular proteases into amino- and carboxy-terminal halves, S1

and S2, respectively. Using an antibody specific for the carboxy
terminus of the molecule, we observed that S in wild-type virions
was almost entirely in the cleaved S2 form, although trace amounts
of S0 were seen as well (Fig. 6A). In contrast, only minor quantities
of S2 were detected in MN8 virions. Since S is essential for the
initiation of infection, this accounted for the diminished infectiv-
ity of the M chimera. This difference in MN8 was not due to a
failure to synthesize S. Examination of lysates of infected cells
showed that the wild type and MN8 expressed equivalent amounts
of S protein, and intracellular S was almost all in the uncleaved S0

form (Fig. 6B). We also separated virions in a higher-density SDS-
polyacrylamide gel to look for evidence of degradation of S pro-
tein, analogous to that described for an E-protein mutant of IBV
(51). This revealed a minor amount of a 12.5-kDa carboxy-termi-
nal fragment of S protein in wild-type virions, corresponding to
roughly 110 amino acids, which would comprise heptad repeat
region 2, the Tm domain, and the endodomain (Fig. 6C). How-
ever, no such membrane-bound remnant of S was found in MN8
virions, although we would have expected it to be abundant if S
had been incorporated into mutant virions and then degraded.
Our results therefore indicated that, even though adequate
amounts of MHV S protein were available, they were not effi-
ciently incorporated into assembling virions by SARS-CoV M
protein. To determine if this was a general characteristic of the
SARS-CoV M-protein chimeras, we grew separate stocks of wild-

type, MN8, MN3, and MN3rev3 viruses and purified them on
continuous iodixanol gradients. Equivalent quantities of virions,
as judged by the N-protein content, were analyzed for S protein.
As shown in Fig. 6D, virions of the original chimera, MN3, had an
even more severely reduced incorporation of S protein than did
those of MN8. In contrast, the large-plaque revertant MN3rev3
had levels of S protein approaching those of the wild type. Thus,
the level of S-protein incorporation into various SARS-CoV M-
protein chimeras was consistent with their relative titers with re-
spect to the titer of the wild type. To attempt to remedy this defect,
we designed an additional chimeric construct, MN11 (Fig. 6E).
This mutant incorporated the SARS-CoV S-protein Tm domain
and endodomain, in addition to the M, N, and E substitutions
already made in MN8. Remarkably, this modification further im-
paired the virus, since the substitutions in the MN11 construct
were lethal. In eight independent targeted RNA recombination
trials, no recombinants with MN11 donor RNA were obtained,
whereas wild-type control RNA samples in the same experiments
yielded robust numbers of recombinants. Contrary to expecta-
tions, the inclusion of the SARS-CoV homolog of the region of S
protein known to directly interact with the M endodomain was
not sufficient to rescue normally assembled viruses. This suggests
that there exist structural protein interactions or host cell-specific
interactions that remain unaccounted for in coronavirus virion
morphogenesis.
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DISCUSSION

The construction of interspecies chimeras has proven valuable
in the identification of the intra- and intermolecular interactions
of the coronavirus N protein (15, 16, 19, 44). We have now applied
this approach to the M protein. It was previously found that sub-
stitution of the highly homologous BCoV M-protein endodomain
had no discernible effect on MHV (40). In the present study, we
extended this test over a significantly greater phylogenetic dis-
tance, by creating substitutions of the SARS-CoV M sequence in
MHV. This has sharpened our picture of the interaction of M with
itself and with N protein, and it has revealed unanticipated com-
plexities of the interactions of M with the E and S proteins.

M-N and M-M interactions. Our isolation of the chimera
MN3 made clear that incorporation of the heterologous SARS-
CoV M protein into MHV required the concomitant inclusion of
the SARS-CoV N-protein carboxy-terminal domain N3 (Fig. 2).
Chimeras MN1 and MN2, containing just one or the other of these
components, were not viable. Moreover, analysis of the chimera
MN8 showed that its virions contained abundant amounts of N
and M proteins in a ratio comparable to that of wild-type virions
(Fig. 5). Together, these results demonstrated that domain N3 is
both necessary and sufficient for N protein to interact with M
protein in virus assembly. This conclusion conforms to the find-
ings of most previous genetic and molecular biological studies
(20–24). The necessity of domain N3 for virion assembly also
explains why intracellular carboxy-terminal truncated forms of N
protein, likely generated by caspases late in infection (52, 53), are
not incorporated into released virions. The sufficiency of N3 ac-
cords well with cryo-EM and tomographic reconstructions of
MHV and SARS-CoV virions, which found the M endodomain to
be connected to the nucleocapsid via a single thread-like connec-
tion (54, 55). Nevertheless, some work has purported to detect
essential interactions with M that map to parts of N protein other
than N3. A mammalian two-hybrid analysis of SARS-CoV N and
M localized the interacting segment of N to a region comprising
the downstream end of the NTD and all of the SR region (25).
Another study used glutathione S-transferase pulldown assays to
map the SARS-CoV N-M interaction to a segment of N encom-
passing the linker between the SR region and the CTD (26). Fi-
nally, an analysis of SARS-CoV M and N proteins found the car-
boxy terminus of N to be required for the formation of virus-like
particles with M but proposed an additional M-binding site falling
in the center of the NTD (27). The biological relevance of any of
these reported interactions remains to be determined, but our
results establish that they are not required for virion assembly.

Beyond substitution of the entire SARS-CoV M protein in
MHV, we found that it was possible to construct functional chi-
meric viruses in which intramolecular M-protein substitutions
were made (Fig. 4). In the chimera MN8, the ectodomain of MHV
M was linked to the Tm domains and endodomain of SARS-CoV
M. This substitution mutant was nearly as robust as the complete
M-protein chimera MN3. Such an outcome was not unexpected,
because the M ectodomain varies considerably among different
strains of MHV, and it is relatively tolerant to mutation (40).
Additionally, the MHV ectodomain, which is normally O-glyco-
sylated, can be altered to either an unglycosylated or an N-glyco-
sylated form without affecting virus growth in tissue culture (56).
Our replacement of the N-glycosylated SARS-CoV M ectodomain
with its O-glycosylated MHV M counterpart provides further

support that the mode of M-protein glycosylation is not a crucial
factor in virion assembly.

A more extensive intramolecular substitution was made in
mutants MN9 and MN10, in which the ectodomain and Tm do-
mains of MHV M were linked to the endodomain of SARS-CoV M
(Fig. 4). The viability of these constructs suggests that folding and
oligomerization of the M-protein Tm domains and the endodo-
main, for the most part, occur independently of one another. This
conclusion is consistent with our previous finding of truncated
endodomain variants of the M protein, designated M*, that
evolved by gene duplication in MHV E-deletion mutants to com-
pensate for the absence of E protein (31). Similar M* proteins have
also very recently been observed to arise upon passaging of SARS-
CoV E-deletion mutants (57). The MHV M* protein was found to
be incorporated into purified virions, which showed that interac-
tions among Tm domains were sufficient to sustain the assembly
of M* with native M protein. Conversely, cryo-EM analyses of
coronavirus virions resolved the basic unit of M to be a dimer, and
intermolecular contacts in higher-order oligomers were seen to
occur exclusively between M endodomains (30). Thus, the MN9
and MN10 chimeras demonstrate that these two classes of inter-
actions can even be apportioned between M Tm domains and
endodomains derived from two divergent coronavirus species.

Although the M protein could be partitioned at domain
boundaries, we were not able to further dissect the M endodomain
to identify a short linear segment functionally analogous to do-
main N3 of N protein. Various considerations had indicated that
this ought to be possible. First, an early characterization of M
protein showed that roughly 15 carboxy-terminal residues were
susceptible to protease digestion, which was taken to mean that
the carboxy terminus of M was structurally separate from the rest
of the globular endodomain (28, 29). Second, prior genetic studies
mapped a dominant role in the MHV M-N interaction to an elec-
trostatic bridge between the penultimate M residue, R227, and
residues D440 and D441 in domain N3 (20–23). Additionally, in
vitro assays with TGEV (32) and SARS-CoV (33) M-protein frag-
ments also appeared to localize the N-binding component of M to
within 30 residues of the carboxy terminus. However, our multi-
ple attempts to obtain chimeric recombinants in which crossover
sites were chosen at distinct motifs near the carboxy terminus of
either SARS-CoV or MHV M protein were uniformly unsuccess-
ful (Fig. 4C). This negative result accords well with previous find-
ings that the mutations in several second-site revertants of defec-
tive MHV M or N assembly mutants mapped to positions
considerably upstream in the M endodomain (20, 21, 23). More-
over, it was pointed out previously that, in many cases, the iden-
tical upstream mutation in the M endodomain was independently
isolated either as an intragenic suppressor of certain R227 M-pro-
tein mutants or as an intergenic suppressor of a D440/D441 N
mutant (23). This convergence presents a strong argument that
upstream regions of the M endodomain make direct or indirect
contributions to the interaction with N protein. Further evidence
for a larger participation of the endodomain comes from cryo-EM
reconstructions showing that virion M-protein endodomains ex-
ist in either a compact form or an extended form, with only the
latter making contact with the nucleocapsid (30). This suggests
that binding to domain N3 induces a conformational change af-
fecting the entire M endodomain. Since domain N3 is intrinsically
disordered (18), we envision that it fits into a surface on the glob-
ular M endodomain composed of residues that are discontiguous
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in the primary sequence. More detailed exploration of this inter-
action would benefit greatly from higher-resolution structural in-
formation on the M endodomain, which is as yet unavailable.

M-E and M-S interactions. At the outset of this study, we as-
sumed that interactions with MHV E or S would not be affected by
the SARS-CoV M-protein substitution. Nevertheless, despite the
complete reconstitution of the M-N interaction in chimeric vi-
ruses, the transplanted SARS-CoV M protein did not perform well
with the other two structural proteins of MHV. In a previous
study, we showed that the SARS-CoV E protein could efficiently
replace the MHV E protein (38), which seemed to imply that the
fitness of the chimera with the reciprocal pairing of MHV E with
SARS-CoV M would be equally robust. However, the marked
temperature sensitivity of the original M chimera, MN3, was
found to be partially suppressed by mutations in the MHV E pro-
tein (Fig. 3). Although there is extensive evidence for the colocal-
ization and association of M and E in infected cells (8, 58), this is
the first observed instance of genetic cross talk between the M
and E proteins. Previously, only intragenic revertants of E mu-
tants were isolated (38, 59–61). This finding suggested that the
SARS-CoV M protein would, ideally, require its homologous E
partner. Paradoxically, though, substitution of the entire
SARS-CoV E protein in mutant MN6 was deleterious, rather
than beneficial (Fig. 3).

E protein is known to have at least three separate functions.
First, it promotes the assembly of virions, specifically, through
mediating aggregation-prone M-M interactions in the membrane
of the budding compartment (6). Second, it triggers disassembly
of the Golgi compartment, which somehow facilitates the cellular
egress of assembled virions (51, 62, 63). Third, E associates with
host factors, thereby affecting cell signaling and viral pathogenesis
(64, 65). The first two of these functions, virion assembly and
Golgi compartment disruption, are carried out by distinct oligo-
meric states of the E molecule (46). The third role is the only one
that has so far been shown to depend on the ion channel activity of
E protein (61). Not all functions of E protein appear to be required
by all coronaviruses. The consequences of deletion of the E gene
were seen to vary from modest impairment for SARS-CoV (66) to
severe impairment for MHV (38, 67) and lethality for TGEV and
MERS-CoV (68, 69); also, for SARS-CoV, the E-deletion pheno-
type was dependent on cell type. The multiplicity of roles of E
protein likely explains why we were previously able to substitute
the phylogenetically distant E proteins of SARS-CoV or IBV for
the E protein of MHV but, on the other hand, the TGEV E protein
was inert in an MHV background (38). Thus, some functions of E
may be interchangeable between a given pair of coronaviruses,
while others are not. It is therefore conceivable that transplanting
the SARS-CoV M protein into MHV placed it in a heterologous
environment where neither MHV E nor SARS-CoV E could si-
multaneously (i) address the requirements of M protein and (ii)
interact with cellular components in a manner optimal for pro-
ductive infection.

More enigmatic than the M-E interaction was the defective
M-S interaction in the SARS-CoV M chimera. Our analysis of the
MN8 mutant revealed that virions of the chimera had a striking
deficiency of S protein and, consequently, a much higher particle-
to-PFU ratio than the wild type (Fig. 6). MN8 virions also had a
lower buoyant density than wild-type virions (Fig. 5), which may
be attributed to the lack of S or may point to some as yet unchar-
acterized defect in virion morphogenesis in the chimera. There is

ample evidence that M protein has the sole responsibility for re-
cruiting S protein into virions (9, 10) through interactions that
localize to the endodomain of S (41, 42). One possible reason for
the reduced complement of S protein in MN8 could be that the
SARS-CoV M protein cannot efficiently bind to the MHV S
endodomain. This seems unlikely, given that the opposite ar-
rangement is fully functional. Previous work showed that the
SARS-CoV S-protein Tm domain and endodomain were com-
pletely able to replace their MHV S counterpart (43, 70). Addi-
tionally, a foreign membrane protein harboring the SARS-CoV S
Tm domain and endodomain was incorporated into MHV virions
at a slightly higher efficiency than the MHV version of the same
protein (43). Moreover, if the carboxy terminus of MHV S was
incompatible with SARS-CoV M, then the defect in the MN8 mu-
tant should have been repaired by substitution of the SARS-CoV S
Tm domain and endodomain. Surprisingly, that substitution was
lethal in that chimeric construct (MN11).

A second possible cause of the sparse incorporation of S pro-
tein into MN8 virions could be that despite being well able to
interact, the two proteins colocalize too briefly to do so efficiently.
It has been shown that the terminus of the SARS-CoV S endodo-
main contains a coatomer complex I (COPI)-binding KXHXX
motif that is thought to be responsible for recycling of S protein
from the Golgi compartment back to the ER, thus increasing the
time that S spends in the proximity of M protein (71). The MHV
S-protein endodomain does not possess such a signal, although
this lack does not impede its ability to interact with the MHV M
protein. Again, if this constituted a deficiency in MN8 with respect
to S protein contacting the SARS-CoV M protein, then it should
have been rescued by the SARS-CoV S endodomain substitution
in the MN11 chimera. Finally, we could find no evidence that
MHV S protein was incorporated into MN8 virions but subse-
quently degraded, as was found to happen with a particular E-pro-
tein mutant of IBV (51). Thus, further work will be required to
unravel the complete range of intermolecular interactions in
which the coronavirus M protein participates.
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