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Protein deamidation has been considered a nonenzymatic process associated with protein functional decay or “aging.” Recent
studies implicate protein deamidation in regulating signal transduction in fundamental biological processes, such as innate im-
mune responses. Work investigating gammaherpesviruses and bacterial pathogens indicates that microbial pathogens deploy
deamidases or enzyme-deficient homologues (pseudoenzymes) to induce deamidation of key signaling components and evade
host immune responses. Here, we review studies on protein deamidation in innate immune signaling and present several immi-
nent questions concerning the roles of protein deamidation in infection and immunity.

Innate immunity is the first line of defense against invading
pathogens. Central to host immune responses is the detection of

pathogen-associated molecular patterns (PAMPs) by cellular pat-
tern recognition receptors (PRRs) (1). Retinoic acid-induced gene
I (RIG-I) is a cytosolic receptor that senses double-stranded RNA
(dsRNA) originating from pathogens such as viruses (2–5). Bind-
ing to dsRNA disrupts an intramolecular interaction that keeps
RIG-I in an autoinhibitory state (6, 7), triggering an overall con-
formational change that releases the N-terminal CARD domain
(8, 9). The N-terminal CARD of RIG-I undergoes homotypic oli-
gomerization and heterooligomerization with that of the mito-
chondrion antiviral signaling (MAVS) adaptor molecule (10).
Oligomerized MAVS forms prion-like filaments that are capable
of activating two kinase complexes, I�B kinase alpha beta gamma
(IKK���) and IKKε–TBK-1, which, in turn, activate NF-�B and
interferon (IFN) regulatory factors (IRFs) (11–13). Along with
other transcription factors, NF-�B and IRFs upregulate the ex-
pression of intrinsic antiviral molecules (e.g., Mx and viperin) and
the secretion of various cytokines (e.g., interferon) that further
induce the expression of a network of a few hundred antiviral
genes (14). Given the potent activity of RIG-I in inducing inflam-
matory responses, it is not surprising that RIG-I activation is reg-
ulated by multiple mechanisms in response to viral infection. For
example, noncovalent binding and covalent conjugation of the
Lys63-linked polyubiquitin chain to the CARD domain are re-
ported to activate RIG-I (15–17), whereas phosphorylation by
protein kinase C and casein kinase represses and dephosphoryla-
tion promotes RIG-I-mediated signaling (18–20). These are key
cellular events that have been evolved to tightly regulate RIG-I-
mediated immune activation in response to viral infection.

Viruses often evolve intricate mechanisms to deflect host im-
mune responses. While RNA viruses deploy various proteins to
blunt RIG-I-mediated innate defenses by hampering key signaling
components such as RIG-I and MAVS, DNA viruses can manip-
ulate the signaling cascade to benefit their infection (21–23) (Fig.
1). Studies of RNA viruses have identified distinct viral factors that
target RIG-I and MAVS. Influenza virus NS1 derails RIG-I ubiq-
uitination by nullifying the essential TRIM25 E3 ligase (24). No-
tably, hepatitis C virus uses its NS3/4A protease to cleave MAVS
and release it from the mitochondrial membrane (25–27), thereby
halting RIG-I-dependent antiviral immune responses. A similar
strategy is employed by hepatitis G virus, hepatitis A virus, entero-
virus 71, and coxsackievirus to derail IFN production (28–31).
DNA viruses utilize strategies that are more intricate than those

utilized by RNA viruses to evade these innate immune signaling
cascades. The manipulation of innate and adaptive immune re-
sponses by herpesviruses has been previously well reviewed (21).
One interesting example is murine gammaherpesvirus 68
(�HV68), which requires MAVS for efficient lytic replication.
�HV68 is a model herpesvirus for human Kaposi’s sarcoma-asso-
ciated herpesvirus (KSHV) and Epstein-Barr virus (EBV). With a
combination of genetic and biochemical analyses, Dong et al.
showed that the downstream IKK� kinase is usurped to phos-
phorylate viral replication trans-activator (RTA) and thereby pro-
motes viral lytic gene expression (32). Additionally, IKK� is also
coopted to phosphorylate p65 (also known as RelA), which primes
p65 for proteasome-mediated degradation in conjunction with
the RTA E3 ligase, thereby terminating NF-�B activation (33, 34).
Thus, MAVS-dependent signaling is critical for efficient produc-
tive replication of �HV68.

HIJACKING RIG-I TO EVADE CYTOKINE PRODUCTION VIA
DEAMIDATION

In order to characterize the virus-host interactions that instigate
MAVS-dependent signaling, a screen for open reading frames
from �HV68 that activate MAVS-dependent signaling revealed
that ORF75C is a potent activator of RIG-I and MAVS signaling
(35). Genetic and biochemical studies demonstrated functional
and direct physical interactions between ORF75c and RIG-I.
ORF75 genes are highly conserved in all gammaherpesviruses.
While the KSHV genome encodes ORF75 and EBV encodes
BNRF1, ORF75 genes are duplicated in herpesvirus saimiri (ORF3
and ORF75) and triplicated in murine �HV68 (i.e., ORF75a, -b,
and -c). Accumulating studies describe antagonism of members of
the promyelocytic leukemia (PML) family as a common immune
evasion function of gammaherpesvirus ORF75 proteins (36–38).
These studies have been extensively reviewed elsewhere (70).
Here, we discuss the deamidating activity of ORF75 proteins of
gammaherpesviruses.
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FIG 1 Summary of viral factors that interfere with or hijack RIG-I-mediated innate immune signaling. Emphasis is placed on viral proteins that interfere with
RIG-I or MAVS to evade antiviral cytokine production. Notably, viral proteins that target TBK-1 and IRF3 to block interferon production are not included here.
vGAT proteins of KSHV and �HV68 recruit PFAS to deamidate and activate RIG-I. Activation of RIG-I and its downstream signaling events, specifically, those
associated with IKK�, result in p65 degradation and suppress inflammatory cytokine production (33–35). vGAT appears to blunt IRF activation by an unknown
mechanism (indicated by dashed inhibition sign). PEDV, porcine epidemic diarrhea virus; IAV, influenza A virus; RSV, respiratory syncytial virus; HSV-1, herpes
simplex virus 1; Hepatitis A, hepatitis A virus; Hepatitis C, hepatitis C virus; GB virus, hepatitis G virus; pro, protease; NEMO, NF-�B essential modulator; TANK,
TRAF family member-associated NF-�B activator. RTA, replication and transcription activator.
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The gammaherpesvirus ORF75 shares homology with phos-
phoribosyl-formylglycinamidine synthetase (PFAS; also known as
FGARAT of phosphoribosyl-formylglycinamidine [FGAM]), a
cellular glutamine amidotransferase (GAT), and is thus also re-
ferred to as vGAT. PFAS catalyzes reaction 4 of the 10 steps of
purine de novo synthesis. However, the vGAT proteins of �HV68
cannot complement cells deficient in PFAS (40). The carboxyl-
terminal GAT domain of vGAT is sufficient to interact with RIG-I
but fails to activate RIG-I. Coupled with the fact that vGAT pro-
teins share homology with cellular GATs, this observation sug-
gests that vGAT-induced RIG-I activation may require the enzy-
matic activity of GAT. Indeed, treatment of cells expressing vGAT
with a GAT inhibitor specifically diminished signaling down-
stream of RIG-I, but not that downstream of IKK�, indicating that
GAT activity is specifically required for events upstream of IKK�
(e.g., RIG-I). Two-dimensional gel electrophoresis showed that
vGAT reduced the RIG-I charge, and mass spectrometry analysis
identified three site-specific deamidations within RIG-I: Q10 in
the CARD domain and N245 and N445 within the helicase 1 do-
main. Simultaneous deamidation of all three residues led to con-
stitutive activation of RIG-I in the absence of RNA (35), revealing
a new means to activate the RIG-I receptor. Consistent with pre-
vious findings on MAVS and IKK� (32, 33), activated RIG-I is
usurped to evade antiviral cytokine production via inducing the
degradation of p65, the key subunit of the transcriptionally active
NF-�B dimer. Whether deamidated and activated RIG-I is re-
quired for efficient replication of �HV68 remains an open ques-
tion.

vGAT proteins lack the catalytic triad essential for amidotrans-
fer/deamidation catalysis (35), suggesting that vGAT may recruit a
cellular enzyme(s) to induce the deamidation and concomitant
activation of RIG-I. Enzymes involved in nucleotide biosynthesis
have a propensity to form homo-oligomers in order to regulate
enzymatic activity (39, 41), so it is possible that vGAT proteins
recruit cellular PFAS to deamidate RIG-I. Indeed, vGATs of
KSHV, EBV, and �HV68 interact with PFAS, but only vGATs of
KSHV and �HV68 induce RIG-I deamidation and activation. De-
pletion or pharmacological inhibition of PFAS recapitulates the
phenotype of fibroblasts deficient in RIG-I and MAVS, i.e., in-
creased cytokine production in response to �HV68 infection (33–
35). Furthermore, purified vGAT and PFAS deamidated RIG-I in
vitro. Neither vGAT nor PFAS alone was sufficient to induce RIG-I
deamidation, suggesting that vGAT activates PFAS by an intrinsic
mechanism. For the first time, these studies demonstrated that a
PRR is activated by a deamidase consisting of a metabolic enzyme
and a viral pseudoenzyme rather than by its conventional ligand.
This work also describes a new function of the cellular metabolic
PFAS enzyme in deamidating asparagines and glutamines of
RIG-I to regulate innate immune signaling (35), suggesting that
protein deamidation could play pivotal roles in regulating innate
immune signaling.

PROTEIN DEAMIDATION

Protein deamidation was initially reported more than half a cen-
tury ago (42). Early work focused on the nonenzymatic deamida-
tion of asparaginyl and, to a lesser extent, glutaminyl residues of
proteins in vivo and in vitro. Analyzing a large set of proteins,
Robinson and Robinson showed that the rate of asparaginyl
deamidation was determined by the primary sequence, secondary
and tertiary structures of the protein, and cellular environment

(such as pH) (43). The ubiquitous distribution of asparaginyl/
glutaminyl residues and frequent deamidation thereof in proteins,
coupled with the finding that surrounding sequences determine
the rate of protein deamidation, prompted the postulation that
nonenzymatic protein deamidation serves as an internal clock to
time the biological events of a particular protein (44). Thus, non-
enzymatic deamidation may be a built-in clock to time protein
functional decay or “aging.”

(i) Enzymes (deamidases) that catalyze protein deamidation.
Emerging studies indicate that microbes deploy protein deamida-
tion to manipulate key signaling components to promote their
infection. Microbial enzymes constitute the founding members of
the protein deamidase family and offer an opportunity to answer
fundamental questions concerning protein deamidation. Work
on the PFAS-vGAT protein-deamidating complex has described a
new regulatory function of the metabolic PFAS enzyme, and likely
other glutamine amidotransferases, in innate immune signal
transduction. This work raises a number of imminent questions
that are fundamental to enzymology and innate immune signal-
ing. First, how does the amidotransferase activity of PFAS in pu-
rine synthesis correlate with its protein-deamidating activity in
virus-infected cells? PFAS is known to catalyze amidotransfer
from free glutamine to synthesize phosphoribosyl-formylglyci-
namidine (FGAM) in purine synthesis (45), whereas the PFAS-
vGAT complex is capable of deamidating asparaginyl and glu-
taminyl residues of RIG-I (35). Cellular GAT enzymes catalyze the
biosynthesis of nucleotides, amino acids, glycoprotein, and NAD
(46). The fact that PFAS can participate in both purine synthesis
and RIG-I activation suggests that nucleotide metabolism is
linked to innate immune signaling. Indeed, inhibitors targeting
dihydroorotate dehydrogenase, a key enzyme of the de novo py-
rimidine synthesis pathway, reduced viral replication (47–49).
Later, it was shown that this antiviral activity relies on an elevated
cellular immune response (50). The molecular link between re-
duced pyramidine biosynthesis and increased antiviral gene ex-
pression remains unknown. Presumably, the nucleotide pool
within cells infected by a virus in vivo is small, so activating nucle-
otide biosynthesis is imperative for efficient viral transcription
and genome replication. An elegant example is how cellular
SAMHD1 nucleotide hydrolase restricts human immunodefi-
ciency virus (HIV) via depleting the nucleotide pool available for
HIV replication (51). If vGAT activates PFAS for purine biosyn-
thesis and RIG-I-dependent evasion of antiviral cytokine produc-
tion, a proper division between the two enzymatic activities (i.e.,
protein deamidation and purine synthesis) is critical for viral lytic
replication. In support of this notion, murine �HV68 robustly
upregulates the protein expression of PFAS, partly by increas-
ing its mRNA level (35). Future work concerning PFAS regu-
lation in virus-infected cells will likely further elucidate the
possible cross talk between innate immune signaling and nu-
cleotide biosynthesis.

Second, how does RIG-I access the active site of the PFAS
deamidase domain? Cellular glutamine amidotransferases consist
of a GAT domain and a metabolite synthetase domain connected
by an ammonia channel. Structural analysis of the Salmonella en-
terica serovar Typhimurium homolog of PFAS revealed a rela-
tively buried catalytic triad for deamidation facing the internal
ammonia channel (39). If human PFAS is structurally similar to
Salmonella PFAS, binding to vGAT perhaps triggers a conforma-
tional change that exposes the catalytic triad to accommodate as-
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paraginyl and glutaminyl residues of RIG-I. The GAT domain is
loosely connected to the FGAM synthetase domain (39), which
likely provides flexibility and enables substrate accessibility. Such
a conformational change may uncouple deamidation from am-
monia channeling to the catalytic center of the FGAM synthetase,
thereby facilitating the release of free ammonia. Interestingly, mu-
tations blocking the ammonia channel between the GAT domain
and the neighboring synthetase domain of imidazole-glycerol-
phosphate synthase increased the deamidating activity of the glu-
taminase domain by more than 3 orders of magnitude (52), sug-
gesting that ammonia release is a mechanism to significantly
elevate glutamine hydrolysis. vGAT may deploy a similar mecha-

nism of uncoupling the ammonia channel from the enzymatic
domain to deamidate RIG-I, although the detailed mechanism of
vGAT activation of PFAS requires further investigation.

Third, it is unclear whether PFAS, and other glutamine amido-
transferases, can deamidate proteins in the absence of gammaher-
pesvirus vGAT proteins. RIG-I deamidation was not observed in
cells infected with Sendai virus or �HV68 deficient in vGAT. If
PFAS and other GATs can deamidate proteins in mammalian
cells, it would be interesting to quantify how viral infection im-
pacts the spectrum of deamidated proteins. This would be best
assessed by a proteome-wide deamidation analysis. The herpesvi-
rus proteome offers an excellent platform to systematically ana-

TABLE 1 Emerging discoveries of mammalian protein deamidations

Functional consequence Deamidated cellular target(s) Deamidase/other mechanism(s) Deamidase-encoding species Reference

G protein signaling pathways

Activation of G protein signaling Rho GTPases Cytotoxic necrotizing factors (CNFs) Escherichia coli (EPEC) 60
● RhoA
● Rac
● Cdc42 Yersinia pseudotuberculosis 53
Heterotrimeric G proteins

(G�i, G�q/11, and G�12/13)
Pasteurella multocida toxin (PMT) Pasteurella multocida 61

Rho GTPases VopC Vibrio parahaemolyticus 62
● Rac
● Cdc42

Translation/cell cycle progression/apoptosis

Inhibition of translation Eukaryotic initiation factor
4A (eIF4A)

Burkholderia lethal factor 1 (BLF1) Burkholderia pseudomallei 63

Critical switch (checkpoint) of
apoptosis induced by DNA
damage

B-cell lymphoma—extra
large (Bcl-XL)

pH change NAa 64

Inhibition of cell cycle
progression

Ubiquitin Cycle-inhibiting factors (Cifs) Escherichia coli 58
Yersinia pseudotuberculosis

NEDD8 Burkholderia pseudomallei
Photorhabdus asymbiotica
Photorhabdus luminescens

Innate immunity and inflammatory responses

Inactivation of ubiquitin system
and its related pathways, e.g.,
NF-�B signaling pathway

Ubiquitin Cycle-inhibiting factors (Cifs) Escherichia coli 58
Yersinia pseudotuberculosis
Burkholderia pseudomallei
Photorhabdus asymbiotica
Photorhabdus luminescens

Inhibition of UBC13/TRAF6-
dependent inflammatory
responses

Ubiquitin-conjugating
enzyme 13 (UBC13)

OspI Shigella flexneri 59

Activation of RIG-I signaling to
evade inflammatory signaling

Retinoic acid-inducible gene
1 (RIG-I)

vGAT (ORF75/ORF75c) �
phosphoribosylformylglycinamidine
synthase (PFAS)

Murine herpesvirus 68 (ORF75c) 35
Human herpesvirus 8 (ORF75)
Homo sapiens (PFAS)

Recognition by gut-derived T
cells to promote intestinal
inflammation

Gliadin (wheat), etc. Tissue transglutaminase (TG2) Homo sapiens 65

Others

N-end rule pathway of protein
degradation

Model substrate of N-end
rule pathway

N-terminal glutamine amidase
(NTQA)

Mus musculus 66

Alteration of the kinetics of
excitatory synaptic
transmission

Eukaryotic initiation factor
4E-binding protein 2
(4E-BP2)

pH change NA 67

a NA, not applicable.
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lyze protein deamidation. vGATs of KSHV, EBV, and �HV68 dis-
play similar interactions with PFAS, but only EBV vGAT failed to
deamidate RIG-I, implying that vGATs and PFAS may have other
functions shared by all three gammaherpesviruses such as nucle-
otide metabolism and evasion of intrinsic antiviral immunity. Al-
though the genomes of herpes simplex viruses (HSV) contain no
homolog of vGAT, HSV-1 infection induced a robust reduction in
RIG-I’s charge, indicative of deamidation. This suggests that her-
pes simplex viruses may have evolved a different mechanism for
inducing RIG-I deamidation. Future studies may reveal a new
example of protein deamidation in innate immune signaling.

In contrast to viral pseudoenzymes, several bacterial proteins
appear to possess intrinsic deamidase activity toward multiple sig-
naling molecules. Cytotoxic necrotizing factors (CNFs) produced
by uropathogenic (CNF1) or enteropathogenic (CNF2) Esche-
richia coli deamidate and constitutively activate small G proteins
(53–55). Similarly to chemotaxis D (CheD) deamidase, CNFs
form a common �/�/� sandwich that contains the catalytic dyad
in a shallow cavity at the top of the protein (56, 57). The members
of the Cif family of effectors secreted by Burkholderia pseudomallei
and enteropathogenic E. coli and the OspI effector secreted by
Shigella flexneri can deamidate ubiquitin/Nedd8 and the UBC13
E2 enzyme, respectively (58, 59). Deamidation of these signaling
components by bacterial effectors is essential for evading cellular
immune responses and the pathogenesis of these microbes. These
studies define the structure and function of protein deamidases in
pathogen infection.

(ii) Protein targets of enzyme-catalyzed deamidation. Pro-
tein deamidation catalyzed by enzymes is generally rapid and
tightly regulated. To date, we have understood the functional con-
sequences of deamidation of a small subset of proteins in pro-
karyotes and mammalian cells (Table 1). Initial studies showed
that key cellular signaling molecules are deamidated by patho-
genic microbes to facilitate their invasion, which underpins their
pathogenesis (68). Small G proteins such as RhoA and Cdc42 re-
quire a key glutamine residue for GTP hydrolysis. Deamidation of
the conserved glutamine by pathogenic E. coli locks these G pro-
teins in a GTP-bound state, resulting in the constitutive activation
of G proteins and stress fiber formation (53, 60, 62). Interestingly,
deamidation is also crucial for regulating signal transduction in
bacterial chemotaxis. In nonenteric bacteria, the chemotaxis C
(CheC) phosphatase and methyl-accepting chemotaxis proteins
(known as MCPs) are deamidated by the CheD polypeptide and
are required for directional chemotaxis (57). Mammalian ubiq-
uitins Nedd8 and UBC13 have recently been shown to be deami-
dated by effectors secreted by enteric pathogenic E. coli and Shi-
gella, respectively (58, 59). Deamidation of these cellular signaling
molecules inactivates the ubiquitin proteasome system that is crit-
ical for signal transduction downstream of tumor necrosis factor
alpha (TNF-�), an important component of the host immune
defense system. In response to DNA damage, anti-apoptotic
Bcl-xL is targeted for degradation via deamidation (64). Recently,
the deamidation of 4E-BP2 was shown to promote its association
with mammalian target of rapamycin (mTOR) and modulate
neuronal excitatory synaptic transmission (67). It was postulated
that the deamidation of Bcl-xL and 4E-BP2 is a nonenzymatic
process and results from an increase in cellular pH. Deamidation
of other key proteins is implicated in regulating some fundamen-
tal processes (e.g., cell-matrix interaction) and underpins medi-
cally important diseases (e.g., Alzheimer’s disease) (69).

CONCLUSION AND PERSPECTIVES

Recent studies of enterobacterial effectors and gammaherpesviral
pseudoenzymes implicate a new function of protein deamidation
in regulating innate immune signal transduction. This is likely just
the tip of iceberg concerning the general regulatory roles of pro-
tein deamidation in fundamental biological processes. That met-
abolic glutamine amidotransferases, such as the vGAT-PFAS
complex, are capable of deamidating proteins is interesting in that
these enzymes may provide a physical and functional link to other
biological processes. However, these studies have generated more
questions than answers in regard to fundamental principles con-
cerning protein deamidation. For example, how are these cellular
GATs regulated and delegated between metabolism and signal
transduction in response to infection? What sequence and struc-
tural elements of GATs (e.g., PFAS) enable their dual functionality
or substrate promiscuity in deamidating free glutamine and glu-
taminyl/asparaginyl residues? Is there sequence specificity of tar-
get deamidated proteins? If yes, is the specificity defined by the
primary, secondary, or tertiary structure of the deamidated pro-
tein? Last, and importantly, is protein deamidation involved in
other fundamental biological processes that are intrinsically
linked to nucleotide biosynthesis, such as DNA damage and re-
pair? These microbial studies have unveiled a new function of the
simplest posttranslational modification of proteins, deamidation,
in immune regulation and will certainly instruct us more in the
years to come.
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