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Abstract

Phosphorylated phosphatidylinositol lipids are crucial for most eukaryotes and have diverse 

cellular functions. The low-abundance signaling lipid phosphatidylinositol 3,5-bisphosphate 

(PI(3,5)P2) is critical for cellular homeostasis and adaptation to stimuli. A large complex of 

proteins that includes the lipid kinase Fab1/PIKfyve, dynamically regulates the levels of PI(3,5)P2. 

Deficiencies in PI(3,5)P2 are linked to some human diseases, especially those of the nervous 

system. Future studies will likely determine new, undiscovered regulatory roles of PI(3,5)P2, as 

well as uncover mechanistic insights into how PI(3,5)P2 contributes to normal human physiology.

Keywords

Fab1; PIKfyve; Vac14; Fig4; lysosome; neurodegeneration

Introduction

Phosphorylated phosphatidylinositol lipids are crucial for most eukaryotes and have diverse 

cellular functions. They regulate multiple pathways, including organization of the 

cytoskeleton, cellular motility, endocytosis, and provide spatial and temporal control for 

membrane trafficking. The inositol ring of phosphatidylinositol can be phosphorylated and 

dephosphorylated on its 3,4 or 5 hydroxyl groups by several lipid kinases and lipid 

phosphatases. These interconversions serve as a network for the synthesis of several 

phosphorylated phosphatidylinositol species. Seven phosphoinositide lipid species have been 

identified in mammalian cells, and four in the yeast, S. cerevisiae. Early evidence that these 

lipids function in signal transduction came from the finding that phosphatidylinositol-4,5-

bisphosphate (PI(4,5)P2) is cleaved to generate the second messengers inositol-1,4,5 

triphosphate and diacylglycerol, which mobilize Ca2+ from the endoplasmic reticulum [1]. 

One way that phosphatidylinositol lipids regulate diverse pathways is via the recruitment of 

effector proteins to specific membrane domains. Importantly, by functioning at confined 

membrane regions, interconversion between phosphorylated phosphoinositide lipids 

provides spatial and temporal regulation of downstream pathways.
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Phosphatidylinositol-3.5-bisphosphate (PI(3,5)P2) is among the more recently identified 

phosphoinositide lipids [2, 3]. PI(3,5)P2 is relatively low abundance, approximately, 0.05 % 

~ 0.1 % of total phosphatidylinositol lipids. Physiological signals including insulin, growth 

factors in mammalian cells, and hyperosmotic shock in yeast and plant cells, cause an acute 

elevation of PI(3,5)P2 [2, 4–7]. These observations suggest that PI(3,5)P2 functions as a 

signaling molecule in cellular homeostasis and in adaptation. Moreover, in yeast, there is a 

dramatic and transient elevation of PI(3,5)P2 during hyperosmotic shock. Within 5 min of 

exposure to hyperosmotic media, there is a 20-fold increase and then a rapid return to the 

normal, low levels within 30 min [8] (Figure 1). These findings indicate that the synthesis of 

PI(3,5)P2 is tightly regulated and that upstream pathways are part of this regulation. 

However, these upstream pathways and many of the downstream pathways specific for 

PI(3,5)P2 are poorly understood. Here, we review studies that shed light on the regulation of 

PI(3,5)P2 and discuss the significance of PI(3,5)P2 as a signaling molecule, including its 

roles in animal physiology and human disease.

The PI(3)P 5-kinase Fab1/PIKfyve functions within a regulatory complex

Fab1/PIKfyve is the sole lipid kinase that synthesizes PI(3,5)P2 from phosphatidylinositol-3-

phosphate (PI(3)P) [6, 9, 10]. Fab1 was identified in the budding yeast S. cerevisiae [11] and 

was shown to function as a vacuolar PI(3)P 5-kinase [9, 12]. Mammalian Fab1/PIKfyve [4] 

and Arabidopsis FAB1A and FAB1B [13], are homologues of yeast Fab1. Fab1 and PIKfyve 

are larger than other PI 5-kinases and are composed of 2278 and 2098 amino acids, 

respectively. In addition to its kinase domain, Fab1/PIKfyve possesses many regulatory 

domains [14] (Figure 2). The FYVE domain binds to PI(3)P [4, 15]. The CCT (chaperone 

containing TCP1) domain has homology with TCP-1/Cpn60 chaperones and the CCR 

(conserved cysteine rich) domain contains conserved cysteines and histidines. The CCT and 

CCR domain are proposed to associate with regulatory proteins [14]. The DEP (Disheveled, 

Egl-10, Pleckstrin) domain is found in mammals, chordates and insects and is of unknown 

function. Furthermore, our analysis indicates three additional conserved regions that are 

either conserved in all metazoans, all fungi, or in all eukaryotes, respectively (Figure 2). The 

existence of these conserved domains suggests that Fab1 is highly regulated, and that this 

regulation is conserved.

Indeed, yeast Fab1 has several modulators of its lipid kinase activity including Vac7, Vac14, 

Fig4 and Atg18. Fab1 and its regulators localize on the vacuole membrane [9, 16–18]. Vac7 

and Vac14 were first identified as novel vacuolar proteins required for vacuole inheritance 

and morphology [16, 19]. Deletion of Vac7, Vac14 or Fab1 increases vacuole size and 

causes a defect in the synthesis of PI(3,5)P2 under basal conditions as well as during 

hyperosmotic shock [9, 16, 20], which provides an indication that Vac7 and Vac14 positively 

regulate Fab1 lipid kinase activity. The connection between Fig4 and Fab1 came from a 

yeast genetic screen for mutants that suppress the temperature sensitivity of a vac7Δ mutant 

[21]. Fig4 has a Sac1 phosphatase domain (Figure 2) that is found in several lipid 

phosphatases including Inp51, 52 and 53 [21]. Although Fig4 functions as a PI(3,5)P2 

specific phosphoinositide phosphatase in vitro [17] and in vivo [8, 21], paradoxically, 

deletion of Fig4 causes a defect in the acute synthesis of PI(3,5)P2 during hyperosmotic 

shock [8]. This suggests that Fig4 has dual roles for the synthesis and turnover of PI(3,5)P2. 
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Atg18 is a regulator of autophagy [22]. However, deletion of Atg18 results in an enlarged 

vacuole, similar to mutants with defects in the levels of PI(3,5)P2. Unexpectedly, the atg18Δ 
mutant has increased levels of PI(3,5)P2 both under basal conditions and during 

hyperosmotic shock [18]. These observations indicate that Atg18 negatively modulates Fab1 

activity and that dynamic changes in PI(3,5)P2 levels may modulate vacuolar membrane 

fission and/or fusion. Note that Atg18 binds PI(3)P and PI(3,5)P2 with high affinity via two 

sites [18] and associates with the vacuole membrane through binding to PI(3,5)P2. 

Association of Atg18 with the vacuole membrane is required for its regulation of Fab1 [18, 

23]. Atg18 may also have a separate role in vacuole membrane fission [21].

In mammalian cells, Vac14 and Fig4 are evolutionally and functionally conserved, and are 

also referred to as ArPIKfyve [24] and Sac3 [25] respectively. Similar to yeast, mammalian 

Fab1/PIKfyve, Vac14, and Fig4 are localized on early and late endosomes as well as 

lysosomes [25–27]. Vac7 homologues have only been observed in fungi and it is not clear 

whether functional homologues are present in other species. Atg18 belongs to a large family 

of proteins known as PROPPINS, which are found in most eukaryotes [18, 28]. PROPPIN 

proteins have predicted beta-propeller folds and the presence of an FRRG motif required for 

phosphoinositide binding. Mammals have four PROPPINS, WIPI-1,2,3, and 4 which have 

homology with yeast Atg18 [29–31] (Figure 3). Moreover, like Atg18, WIPI-1,3 and 4 bind 

PI(3)P and PI(3,5)P2 with high affinity [31]. WIPI-2 has not been tested thus far due to 

instability. Despite the similarities between Atg18 and WIPI-1,2,3 and 4, it is not clear 

whether WIPI proteins regulate PI(3,5)P2 levels in mammalian cells.

Several studies suggest that the levels of PI(3,5)P2 are tightly controlled by multiple layers 

of regulation. Fab1 activity is regulated in part via formation of a large protein complex that 

includes Fab1, Vac14, and Fig4 [32, 33]. The CCT and CCR domain of Fab1 are responsible 

for its association with Vac14 and Fig4 [32, 33]. Moreover, Vac7 and Atg18 are a part of the 

protein complex [33]. Similarly, mammalian Fab1/PIKfyve, Vac14 and Fig4 reside within a 

complex [25]. Vac14 is predicted to be entirely composed of HEAT repeats, each containing 

two anti-parallel helices connected by a short loop [20, 33]. Secondary structure prediction 

in conjunction with multiple sequence alignments indicate that there are likely 18–22 HEAT 

repeats in yeast Vac14 and 15–17 HEAT repeats in human Vac14 (Figure 2). Yeast Vac14 

serves as a hub of the complex and through distinct HEAT repeats directly binds Fab1, Fig4, 

Vac7 and Atg18 [33]. The importance of Vac14 in mammals is underscored by the finding 

that a knock-out of Vac14 in mice causes perinatal lethality [34]. Candidate interacting 

proteins were isolated from Vac14-3xFLAG expressed in HEK293 cells. These include Rab9 

and Rab7, which regulate endo-lysosomal membrane dynamics and trafficking pathways 

[35]. Thus, Vac14 may serve roles beyond its function as a scaffold for proteins within the 

Fab1/PIKfyve complex.

The roles, effectors, and downstream pathways of PI(3,5)P2

An obvious phenotype of yeast mutants defective in the synthesis of PI(3,5)P2 is an increase 

in vacuole size [9, 11, 16]. Similarly, the inhibition of Fab1/PIKfyve activity causes 

abnormal, enlarged endo-lysosomal compartments in mammalian cells and mouse tissues [6, 

34, 36–38] as well as in the worm, C. elegans [39] and in the plant, A. thaliana [40]. These 
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observations suggest that PI(3,5)P2 is required for normal vacuole/endo-lyososmal 

functions.

Under limited nutrients and/or stress, autophagy provides a degradation pathway for 

cytosolic content as well as organelles. PI(3,5)P2 has at least two roles in the regulation of 

autophagy. A decrease of PI(3,5)P2 levels in yeast causes defects in vacuolar degradation of 

autophagosomes that are delivered to the vacuole lumen [41]. Second, inhibition of Fab1 

activity causes a loss of TORC1 activity and a concomitant increase in autophagy (discussed 

in below) [41]. These observations suggest that autophagy is a downstream pathway of 

PI(3,5)P2. Autophagy is similarly impaired by the inhibition of Fab1/PIKfyve function in 

mammalian cells [38, 42–44], in C. elegans [39] and in Drosophila [45]. Thus, the linkage 

between PI(3,5)P2 and autophagy may be conserved.

Recent studies revealed that the target of rapamycin complex 1 (TORC1) is regulated by 

PI(3,5)P2 in yeast and cultured adipocytes [5, 41]. TORC1 is a major regulator of cell 

growth and metabolic processes in many organisms and its activity is tightly regulated by the 

availability of nutrients. PI(3,5)P2 is required for mammalian TORC1 (mTORC1) activity 

upon insulin stimulation. This regulation may occur via Raptor, a component of mTORC1, 

that binds PI(3,5)P2 in vitro [5]. Moreover, in yeast, PI(3,5)P2 is required for TORC1 

dependent regulation of autophagy as well as nutrient dependent endocytosis. The Raptor 

homologue, Kog1, binds PI(3,5)P2 in vitro. Furthermore, a major downstream target of 

TORC1, Sch9, which is a similar to mammalian S6 kinase, binds PI(3,5)P2. PI(3,5)P2 is 

required for the recruitment of Sch9 to the vacuole membrane and for its phosphorylation by 

TORC1 [41].

PI(3,5)P2 is likely required for the maintenance of intracellular osmolarity and proper pH. 

During hyperosmotic shock in yeast, the volume of vacuoles is transiently decreased likely 

due to transport of water, ions and osmolytes out of vacuole to help minimize changes in 

cytosolic osmolarity [8]. One possible role of PI(3,5)P2 for the maintenance of intracellular 

osmolarity and pH is through regulation of the vacuolar proton-translocating ATPase (V-

ATPase) as well as ion channels. In yeast, PI(3,5)P2 is required for V-ATPase stability and 

for its reassembly after glucose starvation [46]; this occurs via the interaction between 

PI(3)P2 and the V0 subunit [46]. Similarly, in plants, PI(3,5)P2 is required for vacuolar 

acidification [47]. In mammalian cells PI(3,5)P2 regulates Ca2+ channel currents on endo-

lysosome membranes via the TRPML1 channel [48, 49] and TPC sodium selective channels 

[50]. Importantly, TRPML1 directly binds PI(3,5)P2 [51]. Similarly, PI(3,5)P2 regulates the 

yeast homologue of TRPML1, Yvc1, which regulates Ca2+ currents during hyperosmotic 

shock [49]. Together these findings suggest that PI(3,5)P2 directly regulates the activity of 

selected ion channels upon physiological stimulation.

Another possible role for PI(3,5)P2 in homeostatic response to intracellular osmolarity is 

that PI(3,5)P2 functions in the fission of the vacuole membrane. In yeast, during 

hyperosmotic shock, vacuole fission would decrease vacuole volume with either no or a 

smaller decrease in the vacuole membrane surface area [8]. Within 30 min following 

hyperosmotic shock, vacuole size returns to its original size [8]. These observations suggest 
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that PI(3,5)P2 regulates membrane dynamics via regulation of fission and/or fusion of the 

vacuole membrane.

Similar to most phosphatidylinositol lipids, PI(3)P [52] and PI(3,5)P2 are involved in 

membrane trafficking and protein sorting. PI(3,5)P2 has been proposed to be required for 

cargo selection into mutivesicular bodies (MVB). Many receptor proteins on the cell surface 

are down-regulated by the delivery to the vacuole/lysosome through the MVB pathway. The 

ESCRT machinery is required for this sorting [53–55]. PI(3,5)P2 is required for the MVB 

sorting of some proteins to the vacuole lumen in yeast [56]. Vps24, a component of ESCRT-

III binds PI(3,5)P2 and is a candidate effector protein [57]. However, precisely how 

PI(3,5)P2 regulates cargo sorting is not yet known.

PI(3,5)P2 is also required for retrograde traffic from the yeast vacuole to the Golgi [18, 58]. 

Similarly in mammalian cells, PI(3,5)P2 is required for retrograde traffic from early 

endosomes to the trans Golgi network. SNX1 and SNX2 are required for this retrograde 

traffic and directly bind PI(3,5)P2 [36, 59]. In plants, SNX1 also binds PI(3,5)P2 and in 

addition binds to Fab1 [60]. Thus in both plants and animals, SNX1 and SNX2 are candidate 

effector proteins of PI(3,5)P2.

In addition, PI(3,5)P2 has been shown to selectively regulate transcription in yeast via Tup1 

and Cti6 [61].This raises the possibility that PI(3,5)P2 may regulate some transcription 

pathways in mammalian cells. PI(3,5)P2 is also required for polarized cell growth in a moss 

via direct binding to a class II formin [62]. In Arabidopsis, PI(3,5)P2 is required for pollen 

tube growth [63]. Together these studies suggest that PI(3,5)P2 is crucial for many cellular 

events and has fundamental roles beyond vacuolar/endo-lysosomal function.

Roles for PI(3,5)P2 and PI(5)P in animal physiology and human disease

Similar with yeast, mammalian Fab1/PIKfyve generates all of the PI(3,5)P2 pools from 

PI(3)P. In addition, Fab1/PIKfyve is responsible for most of the pools of PI(5)P [6, 10]. The 

generation of PI(5)P occurs either via direct synthesis from PI by PIKfyve [10] and/or by the 

conversion of PI(3,5)P2 to PI(5)P by PI(3)P-phosphatases [6]. Myotubularin-related 

(MTMR) proteins are likely candidates [64, 65].

Although the distinct role of PI(3,5)P2 and/or PI(5)P in mammals is poorly understood, 

recent findings suggest that the activity of Fab1/PIKfyve is critical in mammalian cells, and 

has additional functions beyond the known roles shared with yeast. Mouse models of Fig4 
and Vac14 deletions [34, 37] and a hypomorphic mutation in Pikfyve [6] exhibit neonatal 

lethality. Moreover, these mutants have spongiform neurodegeneration that may be due to 

enlarged endo-lysosomal compartments. A whole body knock-out of Pikfyve in mice results 

in early embryonic lethality [10, 66]. These observations suggest that PI(3,5)P2 is crucial for 

development and is especially critical in the nervous system. Indeed, the activity of Fab1/

PIKfyve is required for the regulation of synaptic strength [27]. PI(3,5)P2 plays a role in 

postsynaptic weakening during chemical long-term depression and during homeostatic down 

scaling [67]. Notably, the levels of PI(3,5)P2 dynamically change during the initiation of 

long-term depression and become elevated during homeostatic downscaling [67].
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PI(3,5)P2 deficiencies are linked to human diseases, especially those of the nervous system. 

For instance, mutations predicted to have a modest effect on the ability of cells to 

dynamically regulate PI(3,5)P2 levels underlie a severe form of Charcot Marie-tooth 

syndrome (CMT4J), a peripheral neuropathy, as well as some cases of amyotrophic lateral 

sclerosis (ALS) and primary lateral sclerosis (PLS) [37, 68]. Recently, a homozygous 

missense mutation in Fig4 was found to be the causal allele in a consanguineous family with 

multiple neurological problems: polymicrogyria, epilepsy, and abnormal behavior [69]. 

Mutations with more severe deficiencies in the regulation of PI(3,5)P2 underlie additional 

neurological diseases. For instance, a homozygous null mutation in FIG4 causes Yunis-

Varón syndrome, which results in infant mortality and severe pathological effects on 

multiple tissues, including the brain [70]. Based on studies in mice [37], this mutation is 

predicted to lower PI(3,5)P2 to 1/3 of its normal levels Although mechanisms whereby 

mutations in the PI(3,5)P2 synthesis pathway cause diseases are not known, the Fig4 I41T 

allele in CMT4J [37] causes a defect in its association with Vac14 and Fab1/PIKfyve and 

results in a defect of Fab1/PIKfyve activity [37, 71]. Analysis of the causative mutations 

linked with the synthesis of PI(3,5)P2 may provide insights into new treatments for some 

diseases.

Conclusion

To date, it has been shown that PI(3,5)P2 plays fundamental roles in several cellular events. 

Fab1/PIKfyve binds PI(3)P and converts PI(3)P to PI(3,5)P2. Recruitment of Fab1/PIKfyve 

likely causes local depletion of PI(3)P and an increase in the levels of PI(3,5)P2 on 

endosomal membranes. These changes in PI(3)P and PI(3,5)P2 will also change the local 

concentration of effector proteins that bind PI(3)P or PI(3,5)P2. Thus PI(3)P and PI(3,5)P2 

likely provide spatial and temporal control of diverse pathways.
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PI(3)P phosphatidylinositol 3-phosphate

PI(3,5) P2, phosphatidylinositol 3,5-bisphosphate

PI(4,5) P2, phosphatidylinositol 4,5-bisphosphate

v-ATPase vacuolar proton translocating ATPase

TORC1 target of rapamycin complex 1

mTORC1 mammalian target of rapamycin complex 1

MVB Multivesicular bodies
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Figure 1. The synthesis of PI(3,5)P2 is tightly regulated
The graph indicates the levels of PI(3,5)P2 during hyperosmotic shock in yeast. PI(3,5)P2 

levels transiently change in response to specific stimuli. A prolonged single stimulus, 

introduction of yeast into hyperosmotic media, causes a transient elevation of PI(3,5)P2. 

Within 5 minutes, PI(3,5)P2 levels rise over 20-fold, plateau for 10 minutes, then rapidly 

return to basal levels. That levels of PI(3,5)P2 are tightly controlled suggests that there are 

multiple layers of regulation. Data modified from [8].
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Figure 2. Domain architecture of Fab1/PIKfyve, Vac14, and Fig4
Boundaries of each domain were determined using a combination of Jpred4 secondary 

structure prediction and ClustalW multiple sequence alignment [72, 73]. For Vac14, the 

above techniques were used in addition to tailored HHpred alignments of select predicted 

HEAT repeats [74]. Fab1/PIKfyve contains previously described domains (FYVE, DEP, 

CCT, CCR, and Kinase); we identify three additional areas of predicted secondary structure 

which have structural and sequence conservation in all species (L3), in all fungi (L2), or in 

metazoans (L1). Vac14 is composed of tandem HEAT repeats. Colored boxes indicate 

homology of HEAT repeats between yeast and human Vac14. Hashed boxes indicate 

degenerate sequences which may be bona fide HEAT repeats. Fig4 contains a single Sac 

domain, which is conserved in some lipid phosphatases. Black lines represent 100 amino 

acids.
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Figure 3. Domain architecture of Vac7 and Atg18
Vac7 is found only in some fungi. Atg18 is similar to mammalian WIPI1 and WIPI2; 

however, it is not known if these WIPI proteins regulate PIKfyve. For Vac7, boundaries of 

each domain were determined using a combination of Jpred4 secondary structure prediction 

and ClustalW multiple sequence alignment. Vac7 contains a coiled-coil domain (80% 

certainty using COILS) and a transmembrane domain. Atg18, WIPI1, and WIPI4 domain 

boundaries were determined from ClustalW multiple sequence alignment with Hsv2—a 

related protein where high-resolution structures are available [31, 75, 76]. Seven WD40 

blades are depicted in green. A hydrophobic lipid-associated region is highlighted in blue. 

Beige Atg18 Loop is a predicted unstructured region between beta sheet 2 and 3 of blade 4. 

WIPI2 (not depicted) is structurally similar to WIPI1 and both contain an unstructured C-

terminal tail with 31% similarity to each other. WIPI3 (not depicted) is structurally similar to 

WIPI4. Residue pockets predicted to bind PI(3)P and PI(3,5)P2 are highlighted for ATG18, 

WIPI1, and WIPI4. That these regions are conserved indicates that Atg18, WIPI1, WIPI4 as 

well as their paralogs likely interact with phospholipids in a similar manner. Black lines 

represent 100 amino acids.
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