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Brain endothelial cells form a unique cellular structure
known as the tight junction to regulate the exchanges
between the blood and the parenchyma by limiting the
paracellular diffusion of blood-borne substance. Together
with the restricted pathway of transcytosis, the tight junction
in the brain endothelial cells provides the central nervous
system (CNS) with effective protection against both the
foreign pathogens and the host immune cells, which is also
termed the “blood-brain barrier.” The blood-brain barrier is
particularly important for defending against neurotropic viral
infections that have become a major source of diseases
worldwide. Many neurotropic viruses are able to cross the
BBB and infect the CNS through very poorly understood
processes. This review focuses upon the structural and
functional changes of the brain endothelial tight junction in
response to viral infections in the CNS and how the tight
junction changes may be studied with advanced imaging and
recording approaches to reveal novel processes used by the
viruses to cross the barrier system. Additional emphasis is
placed upon new countermeasures that can act directly upon
the tight junction to improve the pathogen clearance and
minimize the inflammatory damage.

Introduction

The blood-brain barrier (BBB) is a vital structure present in
the central nervous system (CNS) of all vertebrates, which func-
tions as a regulated barrier to protect the neurons from circulat-
ing insults of toxins, antibodies, immune cells and etc. The BBB
is composed of brain microvascular endothelial cells (BMECs)
joined by tight junctions (TJs). The TJs are made of intercellular
associations of transmembrane proteins, including claudins and
occludin, which prevent paracellular diffusion between BMECs.1

Functional TJs require anchoring of claudins to the endothelial
cytoskeletal network by adaptor proteins, including the zonula
occludens (ZO) family. Particularly, the connection of molecules
of claudins-5 and the adaptor ZO-1 is a major regulatory mecha-
nism for controlling BBB integrity, which constitutes the primary
structural elements of mammalian BBB TJs and is widely

examined as markers of BBB integrity.2 More recently, claudin-
12, which is expressed at lower levels, has been shown to partici-
pate in dynamic responses of the BBB.3 Ensheathing pericytes
and astrocyte endfeet exert additional regulatory control over
BBB endothelium via soluble factors, and with neurons form the
neurovascular unit (NVU).4

Disruption of the BBB is a hallmark of CNS infections with
viruses and can be caused by both viral factors and the host
immune response.5 Neurotropic arboviruses capable of breaking
down the BBB include members of the Flaviviridae (e.g., West
Nile and Japanese encephalitis viruses), Bunyaviridae (La Crosse
and Rift Valley Fever viruses), and Togaviridae (Alphavirus spe-
cies) families, all of which are RNA viruses maintained in com-
plex life cycles involving a nonhuman primary vertebrate and a
primary arthropod vector (Table 1).6 The DNA viruses such as
mouse adenovirus 1 (MAV-1)7 and Herpes simplex virus type 1
(HSV-1)8 have also been shown to directly alter the structure and
function of the BBB (Table 1). Viruses gain access to the CNS
either as free virions, hijacking motile infected cells, or by utiliz-
ing axonal transport mechanisms of the peripheral nerves that
directly enter or form synapses with neurons in the CNS.9 While
all of the above viral infection routes may alter the BBB perme-
ability or integrity in the end, this review will emphasize newly
discovered mechanisms underlying how free virions directly
interact with the BBB apart from many well-studied mechanisms
associated with peripheral immune responses.

Tight Junction Ultrastructure of BBB Endothelium
in Viral Infection

Tight junction appears as series of direct membrane contacts
under thin-section electron microscopy, where membranes from
adjacent cells fuse together,10 and freeze-fracture electron micros-
copy has further revealed TJ to exist as extended protein strands
that form transmembrane networks.11 At the ultrastructural level,
BBB TJ morphology closely resembles that of epithelial cells rather
than that of extra-CNS endothelial cells. In ultrathin section elec-
tron micrographs, BBB TJs appear as membrane fusions of the
outer plasma membrane leaflet of the adjacent CNS endothelial
cells (Fig. 1A). Freeze-fracture replica electron microscopy studies
have demonstrated that the TJ particles from BBB endothelial cells
are preferentially associated with the protoplasmic leaflet (P-face)
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rather than the exocytoplasmic leaflet (E-face) of the cell mem-
brane (Fig. 1B), also resembling the TJs of epithelial cells.12 While
direct evidence of viral interaction with BBB tight junction is
sparse, numerous studies have attested to the concept that viruses
can exploit the tight junction as a route of entry in other vital
organs. The best-studied case of viral interaction with tight junc-
tion is how adenovirus crosses the human airway epithelial bar-
rier.13 Adenovirus binds to its receptor – the coxsackievirus and
adenovirus receptor (CAR), a known tight junction integral pro-
tein,14 and enters the cells to replicate. Mature viruses are then
released to the basolateral surface, bind to CAR again, and break

the tight junction structure to escape apically, as revealed by a
series of ultrathin electron micrographs.13 Several other viruses also
exploit tight junction proteins for entry of cells. For example, reno-
viruses bind to the junctional adhesion molecule (JAM) to infect
the ependymal cell and the neuron in the CNS15; occludin and
claudin-1 are co-receptor for hepatitis C virus (HCV) infection of
the hepatocyte in the liver.16,17 Nevertheless, there is no evidence
to suggest that either renovirus or HCV may alter the tight junc-
tion architecture made by the host cells.

Tight Junction Permeability of BBB Endothelium in
Viral Infection

Primitive permeability studies such as the Trans-Endothelial
Electrical Resistance (TEER) measurements suggest paracellular
channels of 4-7 A

�
in diameter are formed at tight junction con-

tacts and are responsible for the selectivity in ion transport.18,19

Claudins are the building blocks of tight junction, which consist
of a family of at least 28 members20,21 ranging in molecular mass
from 20-28 kD and forming the paracellular permeation pore.21

Targeted deletion of claudin-5, which is predominantly expressed
in vascular endothelia (Fig. 1C),22 results in a selective increase in
the blood-brain barrier to small molecules <800 Da.2 Trafficking
of virus across the BBB is likely made possible by enhanced perme-
ability of BBB endothelium, caused either directly by viral factors

or indirectly by host immune factors,
including innate cytokines such as
tumor necrosis factor (TNF)-a23,
interleukin (IL)-1b and type II inter-
feron (IFN-g).24-26 To date, enhanced
BBB permeability has been demon-
strated in several murine models of
viral encephalitis, including West Nile
virus23,27-30 (WNV), Japanese enceph-
alitis virus,31 Venezuelan equine
encephalitis virus,32 and Semliki Forest
virus.28 BBB hyper-permeability is
often associated with the degradation
of specific tight junction integral pro-
teins such as claudin-1, occludin, and
JAM, which contributes to virus
entry27,33-35 and enhanced extravasa-
tion of activated immune cells into the
CNS parenchyma.36 These events cor-
relate with simultaneous production of
the matrix-degrading metalloprotei-
nases (MMPs), a large family of endo-
peptidases previously known to
degrade the extracellular matrix pro-
teins.37 In CNS infections, MMPs are
thought to play a major role in pro-
moting destructive neuroinflammatory
processes including BBB disruption via
tight junction protein degradation.38

Additional inflammatory regulation of

Table 1. Neurotropic viruses capable of breaking down the blood brain
barrier

Virus Genome Family Animal host

West Nile virus ssRNA Flaviviridae Mice
Japanese encephalitis virus ssRNA Flaviviridae Primates, mice
Chikungunya virus ssRNA Togaviridae Primates, mice
La Crosse virus ssRNA Bunyaviridae Primates, mice
Rift Valley Fever virus ssRNA Bunyaviridae Primates, mice
Human immnodeficiency virus 1 ssRNA Retroviridae Primates, mice
Human T cell leukemia virus 1 ssRNA Retroviridae Primates, mice
Rabies virus ssRNA Rhabdoviridae Dogs, mice
Mouse adenovirus 1 dsDNA Adenoviridae Mice
Herpes simplex virus 1 dsDNA Herpesviridae Mice

Figure 1. (A) Ultrathin section electron micrograph of a mouse cerebral microvessel. Arrowheads denote
the tight junction. (B) Freeze-fracture electron micrograph of tight junction architecture from a mouse
cerebral microvessel. Note that tight junction is seen as protein strand between 2 endothelial cells.
(C) Immunofluorescent images from mouse brain sections showing the molecular co-localization of clau-
din-5 and ZO-1, the 2 constituent proteins making the tight junction of the BBB.
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TJ proteins involves the cytokine-mediated activation of the cyto-
skeletal regulatory GTPase – Rac1 and RhoA in response to
WNV infection24 and hyper-phosphorylation of the myosin light
chain (MLC) after human T cell leukemia virus (HTLV-1) infec-
tion,33 both of which are known to modulate endothelial TJ struc-
ture and function.39,40 The TJ peripheral proteins such as zonula
occludens-1 (ZO-1) and ZO-2 have been implicated with human
immunodeficiency virus type-1 (HIV-1) induced encephalitis.41,42

Two culprit proteins – gp120 and Tat encoded within the HIV-1
genome have been found to destabilize ZO-1 and ZO-2 in the
BBB TJ via complex intracellular signaling cascades.42-44

WNV neuroinvasion has also been shown to directly decrease
BBB permeability via mechanisms that involve pathogen-associated
molecular pattern (PAMP) activation of pattern recognition recep-
tors (PRRs) including toll-like receptor 7 (TLR7), retinoic acid-
inducible gene 1 (RIG-I), and melanoma differentiation-associated
protein 5 (MDA-5), which induce expression of types I and III IFN
(IFNab and IFN-l). These pathways are normally associated with
innate immune mechanisms that orchestrate the clearance of patho-
gens. However, the type III IFN receptor, IFNLR1, and the type I
IFN receptor, IFNabR or IFNAR, are expressed by both brain
endothelial cells and astrocytes. Activation of IFNAR directly,
which signals via a Janus kinase–signal transducer and activator of
transcription (JAK-STAT)-1, activates the cytoskeletal regulatory
GTPase Rac1, enhancing tight junction integrity and limiting viral
entry into the CNS.24 Although IFNLR and IFNAR exhibit analo-
gous JAK-STAT–dependent signaling pathways, IFNLR improves
BBB integrity and limits viral invasion via modulation of tight junc-
tion protein localization in a protein synthesis– and STAT1–inde-
pendent manner.26 In more recent studies, the TAM receptors Axl
andMertk, were found to synergize with IFN-b to tighten cell junc-
tions and limit viral neuroinvasion.45 TAM receptors, Tyro3, Axl,
and Mertk, are receptor tyrosine kinases that dampen host innate
immune responses following engagement with their ligands, Gas6
and Protein S, which recognize phosphatidylserine on apoptotic
cells. Of interest, many viruses incorporate and display phosphati-
dylserine on their membranes, and may therefore bind TAM recep-
tors as a form of apoptotic mimicry. These studies indicate that
viral sensing at the BBB also exerts neuroprotective mechanisms
that more stringently regulate access to the CNS parenchyma,
which may critically prevent excessive inflammation in the face of
cell-mediated immune responses that target the virally infected
CNS.

Tricellular Tight Junction in Host-pathogen
Interactions

Regular bicellular tight junctions (bTJs) cannot practically seal
some exceptional regions, namely tricellular tight junctions (tTJs),
where the corners of 3 or more polygonal epithelial cells meet. The
ultrastructure of tTJ has been examined in detail by freeze-fracture
replica electron microscopy.46,47 As illustrated in Figure 2, the
bTJs are discontinuous at tricellular contacts. The tTJ is composed
of 3 pairs of TJ strands arranged vertically and known as the central
sealing element.48,49 The integral membrane proteins making the

central sealing element of tTJ include tricellulin and lipolysis-stimu-
lated lipoprotein receptor (LSR). Tricellulin was first identified in a
random screen for genes involved in epithelial-mesenchymal transi-
tion.50 Tricellulin belongs to the tight junction-associated MAR-
VEL domain-containing protein family, which includes occludin,
tricellulin, and marveld3.51 Mutations in tricellulin cause recessive
nonsyndromic familial deafness – DFNB49.52 LSR is a type I trans-
membrane protein that was identified as a tTJ-localizing protein by
localization-based expression cloning.53 The TEER of LSR-knock-
down cells was decreased compared with normal cells, suggesting
that LSR maintains epithelial barrier function of the tricellular tight
junction.Most interestingly, deletion of LSR during embryogenesis
delayed the sealing of BBB tTJ barrier, resulting in hyper-perme-
ability of molecules < 400 Da.54 Unlike bTJ that only permeates
ions due to the restrictive permeation pore of 4-7 A

�
in diameter,

tTJ, on the other hand, is predicted to create a paracellular pathway
(also known as the central tube; Fig. 2) with much larger diameter
–»10 nm48. The size selectivity of tTJ may underlie many key bio-
logic processes, facilitating a wide range of host-pathogen interac-
tions. For example, the epidermal Langerhans cells project their
dendrites via tricellulin dependent interactions to penetrate the ker-
atinocyte tight junctions and sample the external antigens.55 Group
B Streptococcus crosses human epithelial barriers preferably at the tri-
cellular junctions.56 Certain leukocytes, such as neutrophils, trans-
migrate across the human umbilical vein endothelial cells
(HUVECs) preferentially at the tricellular junctions.57,58

Study of Virus-TJ Interaction with Cellular and
Subcellular Specificity

The Trans-Endothelial Electrical Resistance (TEER) measure-
ments combined with molecular biology manipulations are widely

Figure 2. Fluorescence image highlighting tricellular tight junctions with
schematic of tricellular tight junction structure (bottom drawing). bTJ:
bicellular tight junction; tTJ: tricellular tight junction.
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used to interrogate the transport processes in the tight junction
across the brain endothelium. These techniques, which were based
upon the well-established Ussing chamber configuration, allowed
delineating the transport properties of many important tight junc-
tion molecules making the BBB, such as claudin-159, claudin-360

and claudin-561. Cellular regulators such as the astrocyte and the
pericyte can be co-cultured in the Ussing chamber, allowing estab-
lishing an amiable niche for tight junctions to develop.62 However,
these measurements represent the aggregate response of thousands
to millions of transport events across the endothelium, which
may obfuscate studies of unique transport processes in response to
selective virus-endothelium interaction or leukocyte-endothelium
interaction. Scanning ion conductance microscopy (SICM) is a
non-invasive type of scanning probe microscopy (SPM), which
scans a biologic sample to record the pipet-to-sample distance and
generate a topographic image of the sample surface.63 In an inge-
nious electronic design (Fig. 3A-B), Baker and colleagues have
incorporated the TEER measurements into the SICM and success-
fully recorded the TJ specific conductance reaching nanometer reso-
lution from an epitheliummade of claudin-2.64,65 The advantage of
applying SICM to study BBB permeability is elaborated as below.
First, a high-resolution topographic image can be obtained by
SICM for the luminal surface of an endothelium grown in the
Ussing chamber. The locations of cell bodies (CB, representing the
transcellular pathway) and tight junctions (bicellular tight junction
[bTJ] and tricellular tight junction [tTJ], representing the paracellu-
lar pathway) can be pinpointed from the image to extract their spa-
tial coordinates (Fig. 3C). Second, the recording pipet is
positioned over CB, bTJ or tTJ based upon these coordinates to
measure the local conductance through each surface structure.
Third, selective leukocyte-endothelium interaction can be identi-
fied from the topographic image of the cell monolayer, allowing
revealing the leukocyte induced local changes in paracellular perme-
ability. Finally, identifying live virions on the luminal surface may
also be possible considering the best recorded lateral resolution of

SICM is 3–6 nm, which has been achieved on S-layer proteins
from Bacillus sphaericus.66 Beyond the utility in cellular specificity,
SICM may reveal key subcellular properties of tight junction per-
meation processes owing to its high spatial resolution, e.g., the clau-
din channel density along a TJ perimeter, the unitary conductance
level of each TJ claudin molecule, and the ion or solute selectivity of
each claudin molecule making the TJ, all of which are fundamental
questions related to the BBB permeability.

The Structural basis of BBB Tight Junction
Permeability

Recently, the first 3D crystal structure of claudin molecule –
claudin-15 has been determined,67 which primed the field to
address the fundamental question of how ion and solute permeation
is structurally arranged by claudin in the tight junction. The clau-
din-15 monomer adopts characteristic b-sheet folds comprising
both extracellular loop domains, which are anchored to 4 trans-
membrane helical bundles (Fig. 4A). A conserved segment of
charged amino acids in the 4th b-sheet of the 1st extracellular loop
domain are purported to form the permeation pore through electro-
static interactions (Fig. 4A), based upon previous electrophysiolog-
ical recordings.68-70 Alignment of the second resolved claudin
crystal structure – claudin-19 with that of claudin-15 reveals that
(1) the structural arrangements of key features such as the trans-
membrane helix and the extracellular b-sheet are conserved among
different claudin species (Fig. 4B); and (2) the putative amino acid
residue forming the permeation pore differs by its side chain charge.
For example, the D64 in claudin-15 confers cation selectivity while
the K65 in claudin-19 confers anion selectivity (Fig. 4B). The next
logic question to ask would be how claudin molecules oligomerize
to form the tight junction architecture. In the crystal lattice, the
claudin-15 molcule forms a linear polymer through the tandem
intermolecular interactions mediated by the extracellular loop

Figure 3. (A) Schematic of potentiometric-scanning ion conductance microscopy (P-SICM) for nanoporours membrane measurement. A double barrel
nanopipet is used as probe. Pipet electrode (PE) monitors ion current, which is used to control probe-sample distance, and potential electrode (UE) meas-
ures local potential vs. reference electrode (RE). Transmembrane potential (VTM) is applied to working electrode (WE) vs. RE. (B) Equivalent circuit for P-
SICM measurements. (C) SICM topographical image of luminal surface of an endothelium. Cell body (CB), bicellular tight junction (bTJ) and tricellular tight
junction (tTJ) are identified. (Fig. 3A and 3B are adapted from reference: Zhou Y, Chen CC, Weber AE, Zhou L, Baker LA. Potentiometric-scanning ion con-
ductance microscopy. Langmuir 2014; 30:5669–5675. Reproduced with permission).
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domains.67 The hydrophobic residue
(M68) in the first extracellular loop
domain of one molecule appears to
snugly fit into the hydrophobic pocket
formed by the residues (F146, F147 and
L158) in the second extracellular loop
domain of the adjacent molecule
(Fig. 5A). Nevertheless, it is important
to be noted that the molecular arrange-
ment observed in the claudin-15 crystal
lattice is mainly due to the crystal pack-
ing entropy, not necessarily reflecting
true meaningful interactions between
claudins. No trans-interaction or ion-
conducting channel is evident in the
crystal lattice, largely owing to the fact
that the liquid cubic phase (LCP) used
to crystalize claudin-15 itself forms a
unique structure, which may prevent
the assembly of a claudin oligomer. An
alternative model was proposed by
Gong and colleagues after studying a
stable dimer made of claudin-16 and
claudin-19.71 Using alanine insertion
mutagenesis, Gong and colleagues have
found that claudin-16 and claudin-19
dimerize through cis-interaction of the
transmembrane domain #3 and #4
(Fig. 5B). No higher form of oligomer
exists despite the presence of many dif-
ferent chemical cross-linkers, suggesting
that the claudin dimer is the fundamen-
tal structural unit for making tight junc-
tion architecture. The architectural
remodeling of BBB tight junction dur-
ing inflammation has been captured
using modern light microscopy.
Winger and colleagues have observed
that human monocytes were able to
cross the endothelial tight junction by
transiently breaking the local claudin-5
architecture.72 Non-junctional clau-
din-5 molcules were rapidly mobilized
to form foci surrounding the tight junc-
tion gap, which ensured the re-sealing
of tight junction after leukocyte
extravasation.

Extracellular Mechanisms to
Regulate BBB Tight Junction
Permeability and Integrity

The mechanism of extracellular reg-
ulation of claudin is particularly
important to the concept of a

Figure 4. (A) 3D crystal structure of monomeric claudin-15 in ribbon representation. The color changes
gradually from the N terminus (blue) to the C terminus (orange). A conserved segment of charged
amino acids made of D55, W63 and D64 in the 4th b-sheet of the 1st extracellular loop are believed to
form the ion permeation pore through trans-interaction. (B) Super-imposing of the crystal structure of
claudin-15 onto the crystal structure of claudin-19. Claudin-15 is shown in ice blue; claudin-19 is shown
in gold. The locale of the putative amino acid residue forming the permeation pore is highlighted for
claudin-15 (D64) and for claudin-19 (K65) respectively.

Figure 5. Model (A) of claudin oligomerization. The residue (M68) in one molecule fits into the domain
formed by the residues (F146, F147 and L158) in the adjacent molecule. Model (B) of claudin oligomeri-
zation. Two claudin molecules form anti-parallel dimer through cis-interaction of the transmembrane
domain #3 and #4.
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“druggable” tight junction. Infection with Clostridium perfringens
type A is a common cause of food poisoning in humans and ani-
mals. In the intestines, this bacterium produces Clostridium perfrin-
gens enterotoxins (CPEs) that bind to claudin-3 and claudin-4 and
trigger massive disruption of tight junction integrity.73,74 Using
crystallography, Saitoh and colleagues have resolved the 3D crystal
structure of the motif in claudin-19 that binds to CPE via hydro-
phobic interactions.75 The CPE binding motif is conserved across
different claudin species and made of 4 amino acid residues located
in the second extracellular loop domain (ECL2) of claudin, e.g.
NPSTP (amino acid number: 150-154) in claudin-19 (Fig. 6).
The ECL2 in claudin is also considered to be a key domain medi-
ating the trans-interaction between claudins. Combining systematic
mutagenesis and live-cell imaging approaches, Piontek and col-
leagues have identified key loci (F147, Y148, and Y158) in the
ECL2 of claudin-5 molcule forming the intermolecular interface
of its trans-interaction.76 Notably, these loci are not coinciding
with the CPE-binding motif, suggesting that CPE does not disrupt
claudin trans-interaction directly. Low levels of trypsin and trypsin-
like proteases such as prostasin and matriptase are also potent regu-
lators of tight junction permeability in a variety of epithelia.77-80 In
a seminal discovery, Gong and colleagues have found that prosta-
sin transiently broke the trans-interaction between the claudin-4
molcules.81 The luminal presence of 100nM prostasin rapidly
(within 1hr) mitigated the trans-interaction affinity of claudin-4
and its membrane stability, causing increased endocytosis rates.
Mutagenesis studies allowed identifying the locus (R158) in clau-
din-4 important for prostasin-mediated dissociation.81 The R158
site in claudin-4 is homologous to the Y158 site in claudin-5,
known to be part of the trans-interaction interface. A special group
of proteases known as the matrix metalloproteinases (MMPs) also
play vital roles in regulating tight junction permeability, particu-
larly in the BBB. MMPs belong to a family of over 25 zinc-depen-
dent extracellular endopeptidases. Among them, MMP-2 and -9
were upregulated by HIV-1 envelope protein gp120 in rat neu-
rons,82 whereas MMP-1 and -3 were upregulated in WNV
infected human astrocytes.83 Some MMPs were found to directly
degrade tight junction proteins such as claudin and occludin. For
example, MMP-1 was highly expressed in brain metastatic cells;
both the metastatic cell conditioned medium and the recombinant
MMP-1 were able to directly degrade claudin-5 and occludin in
the brain endothelial cells.84

Perspective

Once believed to be static, multicellular physical barrier against
pathogens and immune cells, the BBB is now known to sense and
respond to systemic inflammation and pathogen invasion by alter-
ing tight junction integrity and permeability. The studies outlined
above demonstrate that the term “barrier” may be an oversimplifi-
cation, as it is clear that this structure enables continuous connec-
tion between physiologic events occurring in the periphery and the
CNS. These large numbers of recent new insights on BBB structure
and function have been made possible by innovative approaches
that enable investigators to detect effects of signaling events in real-

time and at the ultrastructural level. New recording and imaging
approaches will allow delineating the different host responses trig-
gered by viral infection with greatly improved temporospatial reso-
lution. It remains to be seen whether the new pathways identified
may be utilized to manipulate BBB function during infectious dis-
eases to improve pathogen clearance without ensuing inflammatory
damage. The ultimate goal will be to design or screen for novel
chemical compounds or small molecular reagents based upon
knowledge of how the BBB tight junction is altered on the ultra-
structural level and how to correct the change in a timely manner
during each phase of the infectious diseases.
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Figure 6. 3D crystal structure of claudin-19 bound with Clostridium per-
fringens enterotoxin (CPE). The CPE binding motif in claudin-19 is
highlighted: NPSTP (amino acid number: 150-154). Claudin-19 is shown
in ice blue; CPE is shown in gold.
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