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Adipose cell hypertrophy precedes the appearance of small adipocytes by 3 days
in C57BL/6 mouse upon changing to a high fat diet
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ABSTRACT
Adipose tissue is the energy buffer in mammals. The cellularity of adipose tissue has a major role in
determining the response of adipose tissue to insulin action. A reduction in the ability of adipose
tissue to store ingested caloric excess can lead to dyslipidemia and lipotoxicity, impacting insulin
action systemically. The dynamic response of adipose tissue to changes in diet is therefore a crucial
aspect of metabolism, and has attracted attention in the context of the ongoing worldwide increase
in overweight and obesity and resulting metabolic syndrome dysfunctions. We investigated in a
mouse model if there is a specific delay between an increase in caloric intake and the recruitment of
new adipocytes, and if there are other changes in adipose tissue dynamics concomitant with such a
diet change. By developing a dynamic mathematical model, we found that there is a delay of 3 days
between the start of a high fat diet and the recruitment of new adipocytes, and that the rate of fat
mass increase modulates lipid turnover and adipose cell hypertrophy.
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Introduction

Dyslipidemia may be an important contributor to insulin
resistance and hyperglycemia associated with overweight
and obesity.1 Hypertrophy of mature adipose cells and
recruitment of new pre-adipose cells is crucial for lipid
storage.2 If adipose tissue cannot store ingested caloric
excess, insulin action and normal metabolic flexibility of
energy homeostasis is impacted negatively.3 Thus, under-
standing the dynamic response of adipose tissue to
changes in diet has attracted attention,4 especially in the
context of the ongoing worldwide increase in obesity and
resulting public health issues. Short-term overfeeding has
been associated with reduced locomotor activity which
contributes to net weight gain,5 adipose tissue lipid over-
load,6 and adipose cell specific effects including impaired
insulin signaling at the IRS-17 level but maintained lipo-
lytic rate.8 Mathematical modeling has proven powerful to
quantitatively resolve adipose tissue dynamic at the cellu-
lar level, illustrating expansion of adipose tissue and pre-
cursor recruitment.9-11 Here, we investigate in a mouse
model if there is a specific delay between an increase in
caloric intake and the recruitment of new adipocytes, and
if there are other dynamic changes in adipose tissue lipoly-
sis and lipid uptake concomitant with such an increase.

The ability to define the timing of cell recruitment and
lipid turnover is essential for our overall understanding of
the immediate changes in adipose cell function in
response to altered/increased energy intake which influen-
ces whole body homeostasis (manuscript in preparation).

Materials and methods

Dataset

We used a data set consisting of adipose cell-size distri-
butions that has been described elsewhere (manuscript
in preparation). Briefly, 30 male C57BL/6 mice (Taconic,
Ry, Denmark) were used at 9 weeks of age. Animals were
on a 12 h light cycle with non-restricted food and water.
Animals were fed a high-fat diet (HFD) (D12492, 60%
fat content; ResearchDiets, New Brunswick, NJ, USA)
for a specific number of days, as described below. All ani-
mal procedures were approved by the Malm€o/Lund
Committee for Animal Experiment Ethics, Lund, Swe-
den. Each group (6 animals/group) was on chow diet
(CD) for tCD days and then HFD for tHFD days, with
tCD + tHFD totaling 14 days. There were 5 sets of ani-
mals: 1) only chow diet for the entire period, tCD =
14 days; 2) 12 days CD followed by 2 days HFD; 3)
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10 days CD followed by 4 days HFD; 4) 8 days CD fol-
lowed by 6 days HFD; 5) only HFD, tHFD =14 days. The
CD only group served as a baseline to deduce the initial
adipocyte cell-size distribution.

Adipose tissue samples were obtained from epididy-
mal fat tissue. The adipose cell-size distributions were
obtained using a Beckman-Coulter counter after osmium
fixation as described previously.12 Fat mass changes were
measured (shown in Fig. S1). The mean adipose cell dis-
tributions for each group are shown in Fig. S2.

Model description

We have previously developed dynamic models of adi-
pose tissue cellularity in different contexts. Compared to
our previous models,9,10,13 the data in this study presents
the challenge of uncovering the downstream effect on

adipose tissue cellularity of a discontinuous change in
diet. The general form of the equation governing adipo-
cyte kinetics is
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in which n is a normalized adipose cell-size probability
distribution, s is the cell diameter (mm); b is the new adi-
pose cell recruitment rate; v(s) is a cell size-dependent
hypertrophy rate

v.s/D Vm

4
1C tanh

s¡ sl
hl

� �� �
D¡ tanh

s¡ su
hu

� �� �
(2)

and D is a lipid turnover rate, modeling the stochastic
changes in adipose cell size due to lipid uptake and

Figure 1. Model simulation and comparison with experimental data of each diet condition by MOD 1. A) 2 days of HFD; B) 4 days of
HFD; C) 6 days of HFD; D) 14 days HFD. Solid line, experimental data; dashed line, model simulation.
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lipolysis. We have to determine the parameters (b, D,
Vm) in CD and HFD contexts from the data. We fixed
the other parameters from our previous studies in
mouse.9

The three parameters (b, D, Vm) can be constants that
are different depending on diet, CD or HFD. However,
from the fat mass measured at different diet combination
conditions (Fig. S1), the fat mass is not simply propor-
tional to the length of HFD, but has a maximal increase
after about 6 days of HFD. This phenomenon suggests
that the modulation of adipocyte growth kinetics by
HFD is complex, and therefore, the 3 essential parame-
ters in HFD may not be constant but could possibly vary
depending on the rate of fat mass change indirectly.

Models

There are 2 mathematical models that we developed to
address these questions. In one model, denoted MOD 1,
we let all rate constants be dependent on diet alone. In
the other model, denoted MOD 2, we let the 3 rate
parameters (b, D, Vm) be diet dependent, and D and Vm

are assumed to be functions of the rate of fat mass
change, which means that factors associated with fat
mass play a role in the modulation of adipocyte kinetics.

θD θ0
dFM
dt

dFM
dt CKFM
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in which u is either D or Vm in HFD, dFM/dt is the fat
mass change rate, calculated based on the measured epi-
didymal fat mass in each diet group. KFM is a free param-
eter that sets the scale for sigmoidal dependence of D and
Vm on the rate of fat mass change, and we assume here
that this parameter is the same for both D and Vm. This
does not have to be so but the experimental data is not
detailed enough to justify including a separate parameter
for the modulation of each parameter. The new adipose
cell recruitment parameter is only changed from the
chow to HFD diet value after the time delay period from
the start of the HFD.

The models were implemented in Matlab (http://
www.mathworks.com). A least-squares cost function
comparing model predictions obtained by integrating
Eq. 1 and the measured adipose cell-size probability dis-
tribution obtained from the Beckman-Coulter counter
was minimized for parameter determination using the
Optimization Toolkit. The uncertainties in cell-size
counts in each bin needed for the cost function were esti-
mated as the squared deviation between the measured
final cell size distribution and a smoothed distribution.
The Bayes Information Criterion (BIC) was used to

balance goodness of fit and model complexity in com-
paring models, calculated as

BICD SSEC p ln.n/ (4)

in which n is the number of data points (here the num-
ber of adipose cell-size bins), p is the number of parame-
ters in each model and SSE is the total sum of squared
errors normalized by the variance of data.

Results

There are 2 questions that we investigated:
1. Does HFD induce immediate new adipose cell

recruitment or is there a specific time delay? Here
we assume that after HFD initiation, b, the hyper-
plasia rate, is unchanged from its CD value until
the time delay has elapsed, whereupon it changes
to a (possibly different) value in the HFD diet.

2. Are the kinetic rates D and Vmdiet dependent and
constant, or are they modulated by physiological
changes, such as the rate of fat mass increase?

Delay in onset of hyperplasia

Model predictions with parameters minimizing the cost
function are compared with experimental adipocyte cell-
size probability distributions in each group in Figure 1.
While model simulations approximately fit the data, the
simulated distributions do not match the data well in

Figure 2. Values of BIC obtained by assuming different time
delay associated with new cell recruitment rate from chow diet
to high- fat diet. Solid line- MOD 1; dashed line- MOD 2.
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some ranges of adipose cell diameters, e.g., ~50 mm and
~100 mm (Fig. 1A).

The values of the BIC for different values of time delay
to the onset of hyperplasia associated with new adipose
cell recruitment due to HFD are shown in Figure 2 for
both models, and corresponding model parameters are
shown in Figure 3. The BIC reaches a minimum at
approximately 3 days for both models, which suggests
that HFD induced hyperplasia has a time delay of about

3 days. Most parameters have minor differences between
our 2 models assuming different time delays, except for
D in CD and Vm in both CD and HFD.

Modulation of lipid turnover and adipose cell
hypertrophy by rate of fat mass increase

The simulated cell distributions predicted fromMOD2 are
compared with experimental data in Figure 4.KFM is 0.022.

Figure 3. Model parameters obtained by assuming different time delay associated with the change of new cell recruitment from chow
diet to high-fat diet. Solid line- MOD 1; dashed line- MOD 2.
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By assuming that both the lipid turnover (D) and growth
rate (Vm) coefficients are functions of the rate of fat mass
change, the goodness of fit improves considerably. BIC
(MOD 2) is lower than BIC(MOD 1)(Fig. 2), suggesting
thatMOD 2, incorporating fat mass change as a modulator
of lipolysis and hypertrophy, is a better model of adipose
cell-size dynamics than MOD 1 which does not include
such a modulation.

Discussion

We investigated the effect of a change in diet on adipose
tissue in C57BL/6 mice, by measuring dynamic changes
in the adipose cell-size probability distribution. Obvi-
ously, an increase in energy intake will be stored mostly
as triglycerides leading to increased mass of fat depots.
We were interested in changes both in size and number

of adipose cells, specifically the appearance of new cells
in adipose tissue and the impact of fat mass gain on
hypertrophy and lipid turnover.

We found that hypertrophy and lipid turnover
increase immediately with onset of HFD but their rate
constants are modulated by the rate of change of overall
fat mass in the epididymal fat pad. Indeed, mathematical
modeling suggests that the appearance of new adipose
cells is delayed by about 3 days. It could be that this
time-delay in appearance of new adipose cells is further
dependent on initial body weights and the duration of
the high-fat diet. These are interesting avenues for future
experimental and modeling efforts.

Is this appearance of new cells really hyperplasia or
merely the maturation and hypertrophy of existing adi-
pocyte precursors? Our study only measured cells with
sizes larger than 20 microns due to the limitations of the

Figure 4. Model simulation and comparison with experimental data of each diet condition by MOD 2. A) 2 days of HFD; B) 4 days of
HFD; C) 6 days of HFD; D) 14 days HFD. Solid line, experimental data; dashed line, model simulation.
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Beckman-Coulter counter method for obtaining adipose
cell-size distributions. Thus, it could be that adipocyte
precursor cells are present but do not reach 20 microns
until 3 days after the increase in caloric intake. Evidence
from the AdipoChaser mouse would suggest that this
appearance of new cells is not due to the formation of
new cells during a short period of HFD but rather due to
hypertrophy of existing precursors.14,15 Nevertheless, if
precursors are present at all sizes below the Beckman-
Coulter counter’s lower limit, one would expect an
immediate appearance of such precursors after HFD diet
initiation 16 if it is the increased influx of lipid needing
storage alone that is responsible for new adipocyte
recruitment. Rather, new adipocytes reach the lower size
limit after 3 days, suggesting either a longer maturation
process indicating either some signaling or priming pro-
cess connecting additional calories ingested and new adi-
pocyte appearance, or a lack of demand due to the
existing capacity of mature adipocytes to absorb the
excess caloric intake for a certain period.15 These are
concrete hypotheses that may be testable with diet
changes in an appropriate experimental design.

Further, the results direct our on-going experimental
design exploring mature adipose cell function, where we
are characterizing insulin sensitivity and adipokine
secretion pattern that together influence the capacity of
precursor recruitment and excess energy storage (manu-
script in preparation). One of the major challenges is to
understand why equally obese subjects display a huge
variation of insulin sensitivity in the insulin target tis-
sues. A larger number of small cells in insulin resistant
compared with insulin sensitive subjects, suggests the
insulin resistant state is due to an impaired capacity of
newly recruited adipose cells to store surplus energy.12 In
contrast, impaired recruitment and differentiation of
precursors into mature adipose cells through WNT1-
inducible-signaling pathway protein 2 (WISP2) has
emerged as a limitation for adipogenesis, rather than
mature adipose cell malfunction.17 There is a definite
need for establishing methods to quantitatively describe
adipose tissue cellularity, and the mathematical study
presented herein of adipose cell adaptions in a short-
term HFD mouse model may serve as a useful frame-
work to validate different hypotheses of adipose cell
function and energy storage capacity.
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