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Abstract

Magic-angle spinning solid-state NMR spectroscopy is an important technique to study molecular 

structure, dynamics and interactions, and is rapidly gaining importance in biomolecular sciences. 

Here we provide an overview of experimental approaches to study molecular dynamics by MAS 

solid-state NMR, with an emphasis on the underlying theoretical concepts and differences of MAS 

solid-state NMR compared to solution-state NMR. The theoretical foundations of nuclear spin 

relaxation are revisited, focusing on the particularities of spin relaxation in solid samples under 

magic-angle spinning. We discuss the range of validity of Redfield theory, as well as the inherent 

multi-exponential behavior of relaxation in solids. Experimental challenges for measuring 

relaxation parameters in MAS solid-state NMR and a few recently proposed relaxation approaches 

are discussed, which provide information about time scales and amplitudes of motions ranging 

from picoseconds to milliseconds. We also discuss the theoretical basis and experimental 

measurements of anisotropic interactions (chemical-shift anisotropies, dipolar and quadrupolar 

couplings), which give direct information about the amplitude of motions. The potential of 

combining relaxation data with such measurements of dynamically-averaged anisotropic 

interactions is discussed. Although the focus of this review is on the theoretical foundations of 

dynamics studies rather than their application, we close by discussing a small number of recent 

dynamics studies, where the dynamic properties of proteins in crystals are compared to those in 

solution.

1 Introduction

Among the unique strengths of nuclear magnetic resonance (NMR) spectroscopy is its 

ability to probe molecular motion with atomic resolution in solution, solids and in the gas 

phase. In structural biology, solution-state NMR plays a central role in elucidating not only 

three-dimensional structures of proteins, nucleic acids and their complexes, but also in 

characterizing how these molecules fluctuate around their equilibrium positions, and how 

they change over time under non-equilibrium conditions. Over the last decades a wide array 

of techniques have been developed to study (bio-)molecular dynamics by solution-state 
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NMR spectroscopy. Nowadays, a range of different aspects of dynamics can be probed 

routinely by solution-state NMR, such as the amplitude of fast (picosecond-to-nanosecond) 

internal motion, properties of overall rotational tumbling as well as exchange processes 

occurring on millisecond time scales, often involving a small number of distinct states [1-5]. 

In addition to these equilibrium experiments, kinetic off-equilibrium approaches are 

available to study processes such as slow folding/unfolding and binding [6-8].

Even though solution-state NMR has proven to be a very powerful tool for studying various 

aspects of biomolecular structure, dynamics and function, it has several inherent limitations. 

(i) Solution-state NMR studies get more challenging as the molecules become larger. The 

slower overall tumbling leads to a rapid decay of the signal, leading to decreased resolution 

and sensitivity. (ii) Molecules to be studied by solution-state NMR need to be soluble at 

sufficient concentration. For many molecular systems of biological interest these two points 

cannot easily be met: many interesting biological processes involve large assemblies of 

molecules or molecules in lipid bilayers, which are hardly amenable to solution-state 

preparations. (iii) Internal dynamics that is slower than the overall tumbling cannot be 

detected by relaxation measurements, which hinders the study of nanosecond-microsecond 

motions.

Magic-angle spinning (MAS) solid-state NMR does not have these inherent limitations of 

increasing line width with increasing molecular size, and is sensitive to all time scales 

without “blind spots”. However, MAS solid-state NMR spectra tend to have broader lines 

due to incomplete averaging of anisotropic interactions and distribution of chemical shifts. 

This leads to a crowding in multi-dimensional spectra especially for larger molecules with a 

large number of resonances. Advances in NMR hardware, sample preparation and isotope-

labeling schemes, as well as development of new spectroscopic approaches have led to 

significant improvements in resolution and sensitivity allowing the determination of atomic-

resolution structures of proteins and nucleic acids of increasing size and complexity [9-14]. 

This is particularly interesting since MAS solid-state NMR can study proteins, which are 

either non-crystalline, and thus not accessible to X-ray-diffraction methods, and/or insoluble 

or too large to be studied by solution-state NMR. Solid-state NMR has, therefore, opened 

new fields of applications to structural biology, providing atomic-resolution insight into 

fibrils, membrane proteins, complexes of biomolecules in the context of their native 

environment, such as bound to cell walls, membranes or cell organelles [15-17]. In addition 

to studying structure, solid-state NMR spectroscopy has also been used for over 30 years to 

gain information about dynamical aspects of biomolecules [18,19]. However, many 

questions can only now be addressed, due to the increased capabilities of MAS solid-state 

NMR to provide atomic resolution at sufficient sensitivity for larger molecules. Examples of 

such questions are: What can we learn about the dynamics-function relationship in 

membrane proteins or large molecular assemblies? Which molecular rearrangements do 

membrane transporters undergo in their native lipid-bilayer environment? How do molecules 

interact with entire cell organelles or cell walls? In addition to these biological questions, 

there are also more fundamental biophysical questions that solid-state NMR could help 

resolving, e.g.: How do proteins move in crystalline lattices? Does the crystalline packing 

impact their internal motion, compared to the solution state? How do proteins move at very 

low temperatures? Triggered by these perspectives and possibilities of MAS solid-state 
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NMR, interesting methodological developments and applications have been reported over 

the last decade. The present article aims at outlining the theoretical basis for dynamics 

measurements, and illustrating some recent applications.

This review is organized as follows. Following a basic and more qualitative overview aimed 

at readers who are not yet familiar with the field (Section 1.1), Section 2 revisits the 

theoretical foundation of nuclear spin relaxation (Redfield theory), with a particular 

emphasis on relaxation in rotating solids. We briefly show the derivation of the master 

equation of Redfield relaxation theory and highlight the parts of the derivation where solid-

state NMR is distinct from the solution-state case. Section 3 focuses on ways to measure 

different longitudinal and transverse relaxation parameters and motional-averaged 

anisotropic interactions, as well as the information one can obtain by combining different 

experimental observables. We also investigate the validity of Redfield theory in solid-state 

NMR. Section 4 discusses some recent applications of biomolecular dynamics studies by 

solid-state NMR. Given the space limitations, we deliberately focus only on one question, 

namely the dynamics in crystalline proteins, and how crystal packing possibly impacts 

dynamics. Many of the other exciting applications of dynamics studies cannot be treated in 

this review. In this review we focus on spin-1/2 nuclei, and deliberately omit methods that 

use quadrupolar couplings, such as deuterium relaxation and line shape analysis. These 

approaches, (for biomolecules in particular deuterium-based experiments), have been 

reviewed elsewhere [19-23]. For additional complementary views of (bio-)molecular 

dynamics studied by solution- or solid-state NMR spectroscopy, we refer the reader to 

existing reviews [3,5,23-30].

1.1 General Overview of Observables Reporting on Dynamics in Solid-State NMR

Determining structure and dynamics of molecules using NMR methods relies on the 

sensitivity of NMR parameters to their local environment. Therefore, we would first like to 

review the relevant NMR interactions in diamagnetic (bio-)molecules which are listed in 

Figure 1a, sorted roughly according to their typical interaction strengths. The NMR 

interactions can be divided into spin-field interactions (Zeeman, magnetic susceptibility, 

chemical shift, and radio-frequency fields) and spin-spin interactions (isotropic J coupling, 

dipolar coupling, quadrupolar coupling).

The strongest interaction in high-field NMR is almost always the Zeeman interaction, i.e. the 

interaction of the spin with the applied external static magnetic field B0. It gives rise to a 

precession of nuclear spins about the external magnetic field at the Larmor frequency ν0 = 

ω0/(2π) = −γB0/(2π) and is typically in the range of tens of MHz to about 1 GHz. The 

Zeeman interaction is the same for all nuclei of a given type and does not provide any direct 

information about structure or dynamics. The electrons around a nucleus lead to a shielding 

or de-shielding of the effective field experienced by the nucleus relative to a reference 

substance and, therefore, modify the precession frequency of the spins. The interaction 

between the nucleus and the induced fields are typically divided into a part that is 

homogeneous over the material (susceptibility) and a part that is varying on an atomic length 

scale which is called chemical shielding or chemical shift. The electronic environment 

around a nucleus has in general a low symmetry and the chemical shift is an anisotropic 
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interaction, i.e., it depends on the orientation of the molecule with the external field. The 

chemical shift can be described in Cartesian coordinates by a general 3×3 matrix which can 

be decomposed into its isotropic part corresponding to the trace of the matrix, the first-rank 

tensor part corresponding to the antisymmetric part of the matrix and the second-rank tensor 

part corresponding to the traceless symmetric part of the matrix. The anisotropic orientation-

dependent first-rank tensor part is almost always neglected since it is not directly visible in 

NMR spectra. Both the isotropic part and the anisotropic orientation-dependent second-rank 

tensor part can provide information about structure and dynamics.

Spin-1/2 nuclei experience two types of spin-spin interactions. The scalar coupling is a 

through-bond coupling that is mediated by the electrons in the bond(s) that connect the 

involved nuclear spins. The scalar coupling can be described in Cartesian coordinates like 

the chemical shift by a general 3×3 matrix and has isotropic and anisotropic components. 

The anisotropic parts are almost always neglected and it is assumed that the scalar coupling 

is an isotropic quantity. The second-rank anisotropic part of the J coupling has the same 

functional form as the dipolar coupling. Since it is typically much smaller than the dipolar 

coupling, it is often absorbed into the dipolar coupling leading to a small error in the 

distance derived from the dipolar coupling [31]. Scalar J couplings depend on the local 

geometry and can provide information about structure and dynamics. The dipolar coupling is 

the direct through-space interaction between two nuclear spins. The dipolar coupling has no 

isotropic but only a second-rank tensor component and is, therefore, also orientation 

dependent, i.e., the coupling between two spins depends on the angle between the inter-

atomic vector and the magnetic field B0. Its magnitude depends on the inverse third power of 

the distance between the two nuclei. Dipolar couplings are the most direct source of 

structural and dynamic information available in NMR spectroscopy. In quadrupolar nuclei, 

i.e., nuclei with a spin-quantum number of I > 1/2 (2H (I = 1), 14N (I = 1), 17O (I = 5/2), 

there is an additional interaction of the quadrupolar moment with the electric-field gradient. 

Similar to the dipolar coupling, the quadrupolar interaction has no isotropic component and 

is purely described by an anisotropic second-rank tensor.

The relative strengths of these interactions are shown in Figure 1: quadrupolar couplings are 

often large, and for the nucleus that is of primary relevance in biomolecular systems, 

deuterium (2H), it has a strength (i.e., an anisotropy of the tensor, see Section 3.4 for 

definitions) of about 200 kHz. The dipolar coupling has an anisotropy in the range of a few 

kHz to tens of kHz for directly bound nuclei, while typical CSA anisotropies are on the 

order of several kHz for biomolecules. The range of isotropic chemical shifts for a given 

category of nucleus (e.g. amide-1H or carbonyl-13C or amide-15N) is of the order of several 

ppm for 1H and 13C spins, and about 20-30 ppm for 15N; this range typically corresponds to 

a range of hundreds of Hz to several kHz on the frequency scale. Scalar-coupling constants 

are typically on the order of less than 200 Hz.

Dynamic processes in molecules lead to a modulation of NMR parameters as a function of 

time since they depend on the local environment. Any nucleus samples different states with 

different local environments, distances between atoms, relative orientations, or bond 

geometries – and thus different isotropic and anisotropic chemical shifts, quadrupolar 

couplings, dipolar couplings, and scalar couplings. All these different time-dependent 
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quantities can be used to gain information about the magnitude and time scale and in 

favorable cases also about the type of motion. There are several ways how this information 

can be obtained from NMR spectra.

The first class of experiments to measure dynamics applies to cases where the motion is 

slow compared to the interaction strength under consideration (Figure 1c). The most 

prominent example here is the case of exchange between states with different isotropic 

chemical shifts. If the exchange is slow, i.e., if the rate of exchange is much slower than the 

chemical-shift difference (in angular frequencies) between the states, then one observes 

distinct resonance frequencies corresponding to the individual states. Exchange spectroscopy 

(EXSY) [32] or chemical-exchange saturation transfer (CEST) [33,34] experiments allow 

elucidating the dynamic processes between the different states. As isotropic chemical-shift 

averaging in solids is identical to solution-state NMR, we will not treat such experiments in 

this review, and refer the reader to literature on this topic [35]. In the solid state, it is possible 

to extend the concept of exchange spectroscopy also to anisotropic interactions, i.e., to 

dipolar-coupling and anisotropic chemical-shift interactions. The so-called CODEX 

experiments [36-39] probe the slow exchange of states with different CSA or dipolar 

couplings. These techniques are not within the scope of this review, and have been treated 

elsewhere [27].

If the dynamic process becomes faster and is on a time scale comparable to the interaction 

strength, a situation often called “intermediate exchange” regime, one can observe line 

broadening (see Figure 1d). This is well known and exploited for the case of isotropic 

chemical-shift exchange. If an exchange process occurs at a rate that is comparable to the 

chemical-shift difference between the involved states, i.e. kex ≈ ∣ΔΩ∣, the exchange process 

leads to broadening of the peaks. In the slow-to-intermediate regime (kex ≲ ∣ΔΩ∣) one may 

observe separate lines for each state, each broadened by the exchange, while if the exchange 

occurs on the fast-to-intermediate time scale, a single frequency (the population-weighted 

averaged between the two conformations) is observed, but it is broadened due to exchange. 

By quantitatively measuring the line broadening, one can obtain detailed information about 

the underlying process, even if one of the exchanging states has only a small population of 

few percent and cannot be observed directly in the spectrum. In solution-state NMR, so-

called relaxation-dispersion experiments (CPMG or R1ϱ relaxation dispersion) have been 

developed and applied very successfully to biomolecules, being used over the last two 

decades to gain insight into low-populated states, such as folding intermediates or 

marginally populated alternative conformers of proteins [1,40-43]. Recent studies that probe 

conformational exchange in the solid state, based on isotropic chemical-shift fluctuations, 

are discussed in Sections 3.3.3 and 3.3.4 [44,45]. Unlike in solution, where anisotropic 

interactions are averaged out by fast molecular tumbling, exchange in the solid state can also 

occur in the “intermediate regime” with respect to dipolar couplings or CSA interactions. In 

Section 3.4 we show using simulations that the dipolar powder patterns are broadened if the 

exchange occurs on a time scale of microseconds similar to the exchange broadening of 

isotropic lines in liquids. In this exchange regime, one can observe interference between the 

various time-dependent processes present in a MAS solid-state NMR experiment: magic-

angle spinning (at frequencies of tens of kilohertz), radio-frequency irradiation (at up to 

~100 kHz nutation frequencies) and dynamic processes on the time scale of microseconds. 
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Examples for such interference effects are found in R1ϱ experiments (discussed in Section 

3.3.4).

For even faster processes where the dynamics are fast relative to the strength of a given 

interaction, the interaction is averaged, i.e., the NMR parameter one can observe is the 

average over all the sampled states. The best-known example in this context is the averaging 

of the isotropic chemical shift in the fast-exchange regime. If a spin exchanges between 

states in which it has different isotropic chemical shifts, the observable chemical shift is the 

population-weighted averaged over these states. The criterion for this averaging is that the 

rate of dynamic exchange (in s−1) is much faster than the isotropic chemical-shift difference 

between the involved states (in angular frequencies). The same principles apply also to the 

anisotropic interactions. The anisotropic interactions considered here (dipolar couplings and 

the anisotropy of the chemical shift) have typical interaction strengths of several kilohertz, 

and are thus averaged by motion occurring on time scales shorter than tens of microseconds 

(see Figure 1b). For quadrupolar couplings, which are often significantly larger, the time 

scale over which averaging occurs is, accordingly, shorter. Purely second-rank interactions 

like the dipolar coupling, quadrupolar coupling and (the anisotropic part of the) chemical-

shift tensors have an isotropic average of zero. As a consequence of this, in isotropic 

solution the anisotropic interactions are all averaged to zero by the overall molecular 

tumbling. Consequently, one cannot obtain any information about internal motion from the 

averaged anisotropic interactions, as they are averaged to zero even without internal motion. 

In contrast, in the solid state the overall tumbling is absent. In solid-state NMR, the 

anisotropic interactions are averaged out by MAS, which is a continuous and deterministic 

rotation at constant frequency. We use the term deterministic here and throughout this review 

to distinguish such processes (e.g., sample rotation) from stochastic processes (e.g., 

Brownian motion in liquids or methyl rotation). While the former show a predictable and 

uniform behavior, the latter are random and vary over the ensemble of spins. Through the 

use of recoupling sequences MAS averaging can be (partially) cancelled, such that one can 

measure the anisotropic interactions in MAS solid-state NMR (see Section 3.4). Comparing 

the observed interaction strength to the expected one for the rigid-limit case provides direct 

access to the amplitude of the motion underlying the averaging. This works best for dipolar 

couplings where the rigid-limit value can easily be calculated from the distance of the two 

nuclei. For CSA tensors and quadrupolar couplings, quantum-chemical calculations have to 

be used to obtain a good estimate of the rigid-limit value. In Section 3.4 we discuss in detail 

the information that can be obtained from partially averaged anisotropic interactions and 

ways to measure them. We also show the transition from the fast regime through an 

intermediate regime to the slow regime on the dipolar-coupling time scale.

In the fast motion limit, one can use second-order perturbation theory to calculate the line 

broadening induced by the time-dependent modulation of the interactions (see Figure 1e). 

The most common form used in NMR is Redfield relaxation theory (see Section 2) [46-48]. 

Nuclear spin relaxation is induced by the presence of a fluctuating magnetic field at the 

location of the nucleus. Many processes can generate fluctuating local magnetic fields. In 

our context, reorientation of orientation-dependent interactions, i.e., dipolar couplings, 

chemical-shift anisotropies, or quadrupolar couplings are the most important source. Nuclear 

spin relaxation drives the spin system back to thermal equilibrium where the density 
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operator can be described by Boltzmann distribution of the diagonal elements. The rate of 

these relaxation processes depends on the amplitude of the magnetic-field fluctuation, i.e., 

the amplitude of motion and the magnitude of the interaction. Furthermore, the efficiency of 

the relaxation process depends on the time scale of the dynamic process. The rate constants 

of nuclear spin relaxation contain, therefore, information not only about the amplitude but 

also about the time scale of the motional process. For longitudinal relaxation, i.e., the 

relaxation that reestablishes the Boltzmann equilibrium of the diagonal elements of the 

density operator (populations), the relevant frequencies correspond to the Larmor 

frequencies of the involved nuclei (picosecond-to-nanosecond time scales). Transverse 

relaxation, i.e., the decay of off-diagonal elements of the density operator (coherence), is 

also sensitive to slower motion, i.e. motions on time scales of nanoseconds to milliseconds. 

The theory of relaxation and use of relaxation parameters are discussed in detail in Sections 

2 and 3.

It is instructive to consider the differences between dynamics measurements in solution and 

in the solid state. In solution, molecules tumble rapidly and isotropically on time scales of 

picoseconds to nanoseconds. As a consequence, all anisotropic interactions are averaged to 

zero, leading to high-resolution spectra. In the solid state, molecules are static and in a solid 

sample dipolar-coupling and chemical-shift interactions lead to very broad spectral features, 

generally tens of kilohertz large. This broadening is usually larger than the isotropic 

chemical-shift range, which makes it impossible to obtain any atomic-resolution 

information. Magic-angle spinning (MAS) is the method of choice to average the anisotropic 

interactions in order to get back spectral resolution. In a first-order average-Hamiltonian 

treatment, MAS completely averages these interactions to zero, leading to high-resolution 

spectra. However, in many cases the averaging by MAS is incomplete since higher-order 

terms lead to a residual line broadening (see Section 3.1). Thus, the way anisotropic 

interactions are averaged in solution and in solids is fundamentally different: while it is 

stochastic and fast (nanoseconds) in solution, it is due to a periodic deterministic process of 

sample rotation on a microsecond time scale in MAS solid-state NMR. These differences 

have important consequences for the measurement of dynamic properties. First, in solution 

the anisotropic interactions are averaged to zero by overall molecular motion, and they do, 

therefore, not lead to any observable splitting in NMR spectra. Consequently, the averaging 

of these interactions by restricted internal motion is not visible, as they are already fully 

averaged by overall motion. In contrast, in MAS solid-state NMR these interactions are only 

rendered time-dependent in a deterministic manner, and by use of appropriate recoupling 

sequences the anisotropic interactions can be measured. The amount of averaging seen in 

such measurements provides rich information about motion (see Figure 1b and Section 3.4). 

Furthermore, in solution the isotropic overall molecular tumbling leads to a decay of all 

correlation functions to zero on a time scale of nanoseconds. Consequently, internal motion 

that occurs on time scales slower than the overall tumbling (i.e., on nanosecond-to-

microsecond time scales) becomes invisible to solution-state NMR relaxation studies. This is 

in contrast to MAS solid-state NMR where overall motion is absent, and where relaxation 

parameters are sensitive to motions from picoseconds to milliseconds. The fact that the 

averaging process – MAS – is controlled by the spectroscopist, rather than by random 

Brownian motion also offers opportunities that are not accessible in solution: there may be 

Schanda and Ernst Page 7

Prog Nucl Magn Reson Spectrosc. Author manuscript; available in PMC 2017 February 01.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



interference effects between the dynamic process, MAS and possibly also an applied RF 

field, and this interference can be exploited to obtain information about the dynamic process 

(see e.g. Section 3.3.3).

We note, thus, that solid-state NMR provides more ways to obtain information about 

dynamics than solution-state NMR, in the sense that it has more observables, e.g., partially 

averaged anisotropic interactions, and that internal molecular motions occurring on a wider 

range of time scales can be probed by relaxation measurements. There are, however, also a 

number of challenges in the measurement and interpretation of dynamics data from MAS 

solid-state NMR. In particular, as we will discuss in Section 3.1, the time evolution of the 

density operator in solids is generally due to (i) relaxation (which is due to dynamic 

properties of the molecule) and (ii) coherent interactions, which are not perfectly averaged 

by MAS, such as so-called dipolar dephasing and spin diffusion (see Figure 1f). The latter is 

unrelated to molecular motion, and it may lead to faster evolution of elements in the density 

operator than the actual relaxation process, such that evolution due to the dynamic process is 

masked. Measuring relaxation in MAS solid-state NMR is, therefore, challenging, and the 

obtained rate constants are prone to systematic errors, as contributions not related to 

dynamics may dominate the measured rate constants and line widths. Another point requires 

attention when interpreting relaxation data in solids: in the derivation of Redfield theory, 

which is used generally for quantitative analysis of relaxation, the assumption is made that 

the process causing relaxation is fast (see Section 2 for details). In solution state this is 

almost always true, due to the fast overall tumbling. As the tumbling is absent in solids, and 

the motional process slow, one needs to question the validity of this theory. We investigate 

this question in Section 2, and in more detail in 3.3.5.

2 Relaxation Theory

2.1 Summary of Redfield Relaxation Theory

2.1.1 Semi-Classical Derivation of the Master Equation—In this section we give a 

short summary of the derivation of semi-classical relaxation theory as formulated by 

Wangsness, Bloch, and Redfield (WBR theory) [46-48]. For a detailed derivation and 

discussion and more details we refer the interested reader to the secondary literature about 

spin relaxation [25,49-53]. The full system Hamiltonian in the laboratory frame is written as

(1)

where the deterministic Hamiltonian  in the laboratory frame usually consists of a 

static part (Zeeman interaction and isotropic interactions) and a time-dependent part that 

represents the radio-frequency irradiation of the spins. The stochastic Hamiltonian 

contains the time-dependent interactions due to the stochastic processes, which can in 

addition be modulated by magic-angle spinning (MAS). The modulation of the Hamiltonian 

by stochastic processes are the source of relaxation phenomena. In the following we will 

neglect the time-dependent part of the deterministic Hamiltonian for the derivation of the 
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master equation and discuss the influence of magic-angle spinning and radio-frequency 

terms at a later stage without detailed derivation.

The Liouville-von-Neumann equation

(2)

describes the time-evolution of the density operator σ(t) in the laboratory frame. To isolate 

the effect of the stochastic part of the Hamiltonian on the density operator, we transform the 

Hamiltonian into an interaction-frame representation, which eliminates the deterministic 

Hamiltonian . An operator Q in the laboratory frame is transformed into the 

interaction frame according to

(3)

Here, the notation '~' over an operator indicates that it is in the interaction frame. The 

modified Liouville-von-Neumann equation in the interaction frame is given by

(4)

and no longer contains the deterministic part of the Hamiltonian  explicitly.

A formal integration of the Liouville-von-Neumann equation leads to

(5)

We can now insert Eq. (5) into the right-hand side of Eq. (4) and obtain

(6)

After a variable substitution using t′=t–τ, dt′=−dτ and adjusting the integration boundaries 

we obtain

(7)

At this point, we have to introduce two modifications into Eq. (7):
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(i) We take an ensemble average over all terms. This is necessary despite the fact that the 

density operator represents already an ensemble average because the stochastic Hamiltonian 

 is a random function of time and space and different parts of the system will evolve 

differently under the stochastic Hamiltonian leading to differences in the time evolutions of 

the density operator. We require that  describes a bias-free perturbation, i.e., the 

ensemble average . As a consequence of this the first term of Eq. (7) becomes zero 

under the ensemble average and can be dropped.

(ii) We replace  by  where σeq describes the thermal equilibrium of 

the spin system. This modification is needed because the lattice has a finite temperature 

while we have assumed no temperature in our model and identical absorption and emission 

probabilities. We end up with

(8)

where the overbar represents the ensemble average. So far the derivation of the master 

equation is rigorous except for the ad-hoc introduction of the thermal-equilibrium density 

operator.

At this point we have to make an assumption about the time scale of the stochastic process 

that leads to random fluctuations of the local fields. We assume that the time scale of the 

random fluctuations described by τ is much shorter than the variation in  which is on the 

time scale of t. This assumption is sometimes referred to as the “weak collision” limit or 

Redfield limit since we assume that each event that leads to relaxation will change the state 

of the system only weakly and many events are required before a change in the density 

operator can be observed. An alternative, related formulation of the weak collision limit is 

that the characteristic frequency of the relevant interaction is small compared to the time 

scale of the motion that modulates this interaction [52]. It is important to keep this weak-

collision limit in mind, in particular when dealing with relaxation in solids. In solution state 

NMR, this assumption is typically fulfilled because the molecular tumbling is generally on a 

much shorter time scale than the relaxation process since slow tumbling leads to broad lines 

that are unobservable. In solids, where molecular tumbling is absent, the validity of Redfield 

theory has to be evaluated carefully in each case especially for transverse relaxation rates 

that are sensitive to slow motions. We will address this question further in section 3.3.5.

Under this assumption we can replace  by  in the right-hand side of Eq. (8) and 

drop the overbar on the left-hand side of Eq. (8). We can then also replace the upper 

integration boundary by infinity since τ « t. This leads to the master equation for relaxation 

in the interaction-frame representation given by

(9)
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We transform now the Eq. (9) back into the laboratory frame leading to the master equation 

for relaxation in the laboratory frame

(10)

where the relaxation super operator  is defined by

(11)

Using the commutator super operator  leads to the equivalent formulation

(12)

2.1.2 Operator Formulation of Relaxation Theory—Many relaxation processes are 

induced by the random rotation (rotational diffusion) or the internal mobility of the 

molecules. Treating rotations is facilitated by choosing an adapted basis for expressing the 

interactions. While the Cartesian basis would make the treatment of rotations 

mathematically complicated, the spherical-tensor basis [54,55] is ideally suited for 

describing rotations. We, thus, write the Hamiltonian  in spherical-tensor notation as

(13)

where the  are the space-tensor components and the  are the spin-tensor 

components of the interaction (μ) with rank ℓ [55]. The parameter m is the magnetic 

quantum number characterizing the component of the tensor. After some transformations, 

one obtains the final form of the relaxation super operator,  which describes the 

transformation of a spin operator Q under the action of the relaxation super operator

(14)

Here, the operators  are an expansion of the spherical-tensor operators  in terms 

of eigenoperators of the Hamiltonian commutator super operator , i.e.,
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(15)

and . The double commutator of the spin part selects the relaxation 

pathways that are allowed by the interactions (μ) and (μ') and the operator  determines 

the frequency ωp′. The spectral-density functions  are the Fourier 

transform of the correlation functions and are defined as

(16)

The spatial part characterizes the stochastic process and determines the strength of the 

relaxation pathway. Since the auto- and cross-relaxation processes of different operators Q 
are sensitive to the spectral-density function at different frequencies, the different relaxation-

rate constants are sensitive to motions on different time scales. Because the integration in 

Eq. (11) extends only from zero to infinity, there can also be an imaginary component to the 

spectral-density function that causes (small) dynamic-frequency shifts [24,25,52,56,57]. For 

simplicity we have neglected this part in the discussion here.

Note that the indices μ and μ' in Eqs. (14) to (16) can, in principle, represent two different 

interactions. In this case the relaxation process is referred to as cross-correlated relaxation; 

we will deal with cross-correlated relaxation between a dipolar coupling and a CSA tensor, 

as well as two different CSA tensors in Section 3.3. If the relaxation is due to a correlation 

of an interaction with itself (i.e., μ = μ'), the relaxation process is referred to as auto-

correlated relaxation. The notions of auto-correlated and cross-correlated relaxation are 

different from auto relaxation and cross relaxation. Auto relaxation describes a diagonal 

element of the relaxation super operator , i.e., the relaxation of an operator Q towards its 

equilibrium value. Typical auto-relaxation rate constants are R1I, i.e., ΓIz ,Iz and R2I, i.e., 

ΓI+ ,I+. An example of cross-relaxation is the nuclear Overhauser effect, i.e., σNOE = ΓIz ,Sz, 

which we will briefly discuss in Section 3.2 for the heteronuclear case.

Equation (14) describes the general action of the relaxation super operator on any operator 

Q. In order to calculate relaxation-rate constants, one needs to (i) obtain the spectral density 

function  which describes a particular motion that leads to relaxation. 

Furthermore, (ii), we need to evaluate the double commutators in Eq. (14), and thus identify 

the spherical tensors , which depends on the particular relaxation mechanism we 

consider (CSA, dipolar coupling). Determining these double commutators will tell us which 
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frequencies ω of the spectral-density function are relevant for a particular relaxation 

mechanism. The approach of calculating these two quantities, double commutators and 

spectral densities, is the same whether one treats solution or solid-state relaxation theory. 

However, as we will show in the following section the presence of MAS leads to slight 

modifications of the frequencies.

2.2 Relaxation in Solids

2.2.1 Correlation Functions in Solids—Key to the calculation of relaxation in solids is 

the correlation function defined in Eq. (16) which is orientation dependent. Under MAS we 

have to transform the spatial tensor components from the principal-axis system to a 

molecule-fixed frame, to the rotor-frame and finally to the laboratory frame. We can write 

these transformations as a series of Euler rotations (Figure 2) as

(17)

The transformation is time dependent for two reasons: (i) the stochastic process will 

modulate the transformation from the principal-axis system to the molecule-fixed frame and 

(ii) magic-angle spinning will lead to a time dependence of the spherical-tensor components 

in the laboratory frame. Typically, the MAS time dependence is much slower than the 

stochastic process that can be described by Redfield relaxation theory and we can assume 

that the MAS is quasi-static on the time scale of the correlation time. If the stochastic 

process and the MAS rotation are on the same time scale, interference effects are observed 

and the averaging by MAS becomes inefficient. This is mostly an issue for “slow” stochastic 

processes and will be discussed in more detail in Section 3.3. The transformations from the 

molecule-fixed frame to the rotor-fixed frame (powder average) and the transformation from 

the rotor-fixed frame to the laboratory frame will be identical for both spatial-tensor 

components that constitute the correlation function if we assume that the stochastic process 

happens on a much shorter time scale than the MAS rotation (τc ≪ τr). The difference 

occurs only in the angles for the transformation from the principal-axis system into the 

molecule fixed frame which can be different due to the fact that we consider two different 

interactions (μ) and (μ'), i.e., cross-correlated relaxation or due to the fact that the stochastic 

process induces motion of the interaction. The correlation function is then defined as
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(18)

One can show that only correlation functions with ℓ = ℓ' and m = m' do not vanish. For 

simplicity we will assume auto-correlated relaxation (μ = μ') and a simple model where we 

can describe the stochastic process by a rotation about a single angle γPM. Under these 

conditions, the correlation function simplifies to

(19)

where the first factor describes the time dependence by MAS, the last factor the stochastic 

process and all other terms are just geometrical factors that characterize the linear 

combinations of the various angular correlation functions

(20)

Note that in contrast to liquid-state NMR off-diagonal contributions (p ≠ p') to the angular 

correlation functions are also important and have to be taken into account. For simple jump 

models or restricted or unrestricted rotational diffusion on a cone the angular correlation 

function can be calculated analytically.

For a two-site jump model with populations p1 and p2 (not to be confused with the 

summation variables p and p' used in the transformation of the spatial-tensor components 

from the PAS to the laboratory frame!) with angular positions of 0 and γ0, jump rate 

constants k12 and k21, where p1 = k21/(k12+k21) and p2 = k12/(k12+k21), and a correlation 

time of τc = 1/(k12+k21) we obtain a correlation function of the form [58,59]
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(21)

which corresponds to a spectral density function of the form

(22)

For the restricted rotational diffusion in a cone model, the calculation of the correlation 

function cannot be done analytically in a closed form but only using approximations. The 

expressions are more complex and can be found in the literature [60].

In the model-free approach [61,62] we assume that the correlation function can be expressed 

by a mono-exponential decay with the functional form

(23)

which leads to a spectral density function given by

(24)

In this approach there are two parameters, namely the correlation time τc which 

characterizes the time scale of the motion and the order parameter S2 which characterizes 

the spatial restriction of the motion. In this case the total spectral-density function is 

independent of the parameters m and m' and we obtain for an two interactions μ and μ' 

which are both axially symmetric

(25)

Because of the orientation dependence of relaxation-rate constants in solids, we would like 

to discuss some general properties of spin relaxation in MAS NMR, which are illustrated by 

Figure 3. The top left panel shows the T1 relaxation-rate constants, as induced by a dipolar 

coupling, in a static sample (i.e. without MAS). The upper right panel shows this rate 

constant as a function of the two relevant Euler angles βMA and αRL that characterize the 

orientation of a crystallite in the rotor-fixed frame (see Figure 2). The magnitude of the 
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relaxation-rate constant induced by an interaction oriented at a given orientation is indicated 

by a color code. For example, if the dipolar interaction has a mean orientation parallel to B0 

(and dynamics around this axis), the relaxation rate constant is at a maximum, while if it is 

oriented along the magic angle it is at a minimum. Magic-angle spinning corresponds to a 

time dependence of the relaxation-rate constant along the αRL axis, i.e., the considered 

dipolar interaction will sample all possible values of αRL during sample rotation (horizontal 

lines in the top right panel). Consequently, the instantaneous relaxation rate varies in the 

course of the sample rotation. If the relaxation rate constant is small compared to the 

frequency of the sample rotation, which is almost always the case, we can neglect this 

fluctuation as only the average rate constant is relevant. However, the rate constants for spin 

pairs oriented along different angles βMR are not averaged by MAS. This is illustrated for 

three different angles in Figure 3, corresponding to spin pairs on different “carousels”. Spin 

pairs oriented on one of these carousels are not converted to another carousel by MAS, and 

spin pairs at a given βMR will thus have a MAS-averaged (i.e. αRL-averaged) relaxation-rate 

constant that is different from spin pairs at other angles βMR. An important consequence of 

this is the inherent multi-exponential character of relaxation in solid-state NMR.

These considerations lead to the following simplifications of the correlation function. The 

analytical averaging over the MAS rotation (which is usually allowed because the relaxation 

time is much longer than the rotor period) leads to a simplified correlation function of the 

form

(26)

If the correlation function of the internal motion is diagonal, i.e., if the correlation function 

is zero for p ≠ p' then the total correlation function and, therefore, also the relaxation-rate 

constant is independent of the αMR angle of the powder average and it is sufficient to 

average over the angle βMR. Therefore, the correlation function becomes even simpler in this 

case and we end up with

(27)
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Based on the derivation of the master equation of relaxation (see Eq. (14), every relaxation 

rate constant can be written in the general form

(28)

Here  is the spectral-density function of the interactions μ and μ' (e.g., 

dipolar coupling, CSA tensor, or quadrupolar coupling) and zm is the weight of the spectral 

density sampled at frequency ωm. The weights with which the various frequencies are 

sampled depend on the interactions involved, e.g., T1 relaxation caused by the CSA tensor 

will have different weights than the T1 relaxation caused by dipolar couplings. Possible 

frequencies ωm are sums and differences of the Larmor frequencies of the involved spins. In 

isotropic liquids, the spectral density functions J(ω) are independent of the values of m but 

they can differ in solids. Magic-angle spinning leads to a modification of the sampling of the 

spectral-density functions [63]. In principle, all frequencies are sampled at ωi±nωr where n 
can take the values 1 and 2 since most anisotropic interactions in NMR are second-rank 

tensors. Note that the n = 1 sideband has twice the weight of the n = 2 sideband. Therefore, a 

term niJzi(ωi) has to be replaced by  under MAS. Since the 

MAS frequency is typically much smaller than the Larmor frequencies of the spins, the 

changes in the sampling frequency are neglected for all frequencies except for ωi = 0. In a 

similar way, rotating-frame relaxation leads to a modification of the sampling frequencies to 

ωi±nω1 where n can be 0, 1, or 2 [64]. Since also ω1 is typically much smaller than the 

Larmor frequencies, these changes are usually also neglected except for ωi = 0. If MAS and 

spin-lock fields are present at the same time, both modifications have to be combined 

usually also only for the zero-frequency term [65-67].

2.2.2 Powder Distribution of Relaxation-Rate Constants—As pointed out above, 

relaxation-rate constants in solids are always orientation dependent [59] and, therefore, one 

does not expect a mono-exponential decay or mono-exponential magnetization-transfer 

kinetics. The relaxation-rate constant R1 = 1/T1 of spin S in a heteronuclear two-spin system 

is given by

(29)

where we have included dipolar (D) and CSA (C) relaxation. We will exemplify the 

properties of the T1 relaxation of the 15N in a N-H spin system for two different motional 

models. The first model describes restricted rotational diffusion in a cone (sometimes 

referred to as “wobbling in a cone”) which is characterized by two parameters, namely the 
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diffusion constant Dw and the opening angle θ. The second model is a two-site jump model 

with jump-rate constants k12 = k21 or a correlation time τc = 1/(2 k12) and an angle γ0 

between the two orientations.

Figure 4a shows the powder-orientation dependence of the longitudinal relaxation-rate 

constant for a two-site jump model with a correlation time of τc = 1 ns and a jump angle of 

γ0 = 30°. The relaxation-rate constants range in value from 0.244 to 0.543 s−1, which is 

roughly a factor of 2.2 between the minimum and the maximum value. One can clearly see 

the dependence of R1 on both Euler angles αMR and βMR since the plane where the 

exchange process takes place requires two angles to orient in the rotor frame. The 

dependence of R1 on the crystallite orientation for a restricted rotational diffusion in a cone 

model with a diffusion constant of Dw = 2·106 s−1 and an opening angle θ = 30° is shown in 

Figure 4b. In this case the relaxation-rate constant depends only on the powder angle βMR 

and is independent of αMR since the cone where the diffusion takes place is axially 

symmetric and requires only a single angle to orient in the rotor frame. The relaxation rate 

constants cover a range from 0.10 to 0.14 s−1, which is roughly a factor of 1.4. Therefore, 

relaxation in solids is always characterized by a multi-exponential decay but the distribution 

of relaxation-rate constants covers usually only a range of a factor of about two. Due to the 

limited signal-to-noise ratio of experimental data, such a multi-exponential decay is difficult 

to characterize precisely and almost always mono-exponential fits of experimental data are 

used. There are several possibilities to characterize the distribution of relaxation-rate 

constants obtained from Redfield calculations by a single mono-exponential decay time. One 

can either use the powder average of the rate constants, i.e.,

(30)

or one can calculate a powder average of the magnetization decays and carry out a mono-

exponential fit of the decay of the powder, which corresponds to a common evaluation 

procedure of experimental data. Note that averaging the rate constants is not rigorous and 

only works because of the narrow distribution of relaxation times as a function of the 

crystallite orientations.

Figure 5 show the decays obtained from the true powder-averaged decays as well as the one 

characterized by the averaged rate constants and the one obtained from a mono-exponential 

fit of the powder-averaged decay with a cut off value of 5% of the initial intensity for the 

two models shown above. Significant differences between the three curves are only visible 

for very long times when the signal has decayed to less than 1% of its initial value indicating 

that the mono-exponential approximation is reasonable for data with limited signal-to-noise 

ratio. A more detailed comparison of the relaxation-rate constants obtained by the two 

methods can be found below.

If we characterize the relaxation-rate constant by a single mono-exponential decay constant, 

we can also think about using a model-free approach where we have no dependence on the 

crystallite orientation since the correlation function is a single exponential decay. For many 
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physical motional models, the model parameters can be recalculated in terms of the model-

free parameters τc and S2. For the two-site jump model with equal populations p1 = p2 = 0.5, 

the correlation time is given by τc = 1/(2 k12) and the order parameter by S2 = ¼(3cos2 θ+1) 

where θ is the angle between the main tensor axis at the two positions. For the restricted 

rotational diffusion in a cone model, the correlation time is a complex function of the 

opening angle θ of the cone and the diffusion constant Dw [60,68] while the order parameter 

is given by S2 = (½cosθ(1+cosθ))2. Using these relations, we can compare the relaxation-

rate constants obtained from the physical models with the equivalent rate constants obtained 

by a model-free approach. This allows us to compare the two approaches and see whether a 

model-free approach in solids is appropriate or not. For this comparison we use a simplified 

model where we consider only dipolar coupling and no CSA tensor. For the two-site jump 

model we vary the correlation time τc between 1 μs and 1 ps and the jump angle θ between 

0° and 90° corresponding to an order parameter S2 between 0.25 and 1.

Figure 6 shows that there are only small differences of less than 5% between the averaged 

rate constants or the mono-exponential fit and the rate constants obtained from the model-

free approach. Taking into account the experimental inaccuracies due to limited signal-to-

noise ratio of typical solid-state NMR experiments for larger systems, data evaluation using 

the model-free approach seems perfectly legitimate. The situation is slightly different for the 

restricted rotational diffusion in a cone model (Figure 7) where differences up to 25% can be 

observed between the rate constants obtained by the model-free approach and the averaged 

rate constants or the mono-exponential fit. However, the biggest errors are observed in the 

range of relatively long correlation times in the order of 10 ns to μs. For shorter correlation 

times, the differences are on the order of 5-10%, which makes the characterization of 

relaxation-rate constants using the model-free approach reasonable even for a motional 

model like restricted rotational diffusion in a cone.

3 Determination of Motional Parameters

3.1 Challenges for Measuring Relaxation Parameters in Solids

Relaxation-rate constants are very widely used in solution-state NMR to characterize 

dynamics [24,25], but less in solid-state NMR. Compared to solution-state NMR, both the 

measurement and the analysis of longitudinal and especially transverse relaxation 

parameters in solid-state NMR under MAS are challenging for a number of theoretical and 

experimental reasons:

(i) The decay of polarization and coherences in solids comprises two parts, a part that is due 

to coherent time evolution under an orientation- and MAS time-dependent Hamiltonian, i.e., 

induced by the presence of non-averaged anisotropic interactions, in particular dipolar 

couplings, and a part that is incoherent, i.e., induced by dynamic processes. Measuring 

selectively the latter, incoherent part – which reflects dynamics – is complicated by the 

presence of the former, coherent decay. This represents a major experimental obstacle to 

measuring transverse relaxation rates but is to a lesser extent also an issue when measuring 

longitudinal relaxation-rate constants, where coherent mechanisms lead to spin diffusion 

(see Section 3.2). In this manuscript we reserve the term relaxation for the incoherent part of 
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the decay that is due to dynamics characterized by stochastic processes. Section 3.3.1 

discusses experimental difficulties of measuring transverse relaxation rates.

(ii) The validity of Redfield theory is not a priori granted for transverse relaxation 

parameters. This is due to the fact that in the derivation of Redfield theory (see Section 

2.1.1) one makes the explicit assumption that the change in the density operator is negligible 

on the time scale of the stochastic process, which is equivalent to assuming that the 

relaxation-rate constant is much smaller than the rate of the dynamic process. In the absence 

of fast overall tumbling, this assumption may not hold, as we will show below. In Section 

3.3.5 we explore how well Redfield theory is justified for a number of selected examples 

using numerical simulations based on the stochastic Liouville equation approach [69-71].

(iii) Relaxation of a spin can be due to stochastic fluctuations of dipolar couplings and CSA 

tensors, and in addition also due to isotropic chemical-shift fluctuations (often referred to as 

“chemical exchange”). In solution-state NMR, the overall tumbling (on a nanosecond time 

scale) averages dipolar couplings and CSA tensors, such that fluctuations of the anisotropic 

interactions on time scales of microseconds to milliseconds do not have any impact on 

relaxation. Therefore, in solution state one can make a clear distinction between (a) 

“relaxation” in the sense of Redfield, that is due to fluctuations of anisotropic interactions by 

Brownian tumbling and (fast) local motions since local motions on time scales slower than 

the overall tumbling are unobservable, and (b) (slow) chemical exchange in the sense of 

isotropic chemical-shift fluctuations. In contrast to that, slow motions on time scales of 

micro-to-milliseconds average isotropic interactions as well as anisotropic interactions in 

solid-state NMR and need to be taken into account when discussing line broadening and 

coherence decay.

(iv) As a further complication, we need to consider interference effects between different 

time-dependent processes. In MAS solid-state NMR the sample rotation leads to a periodic 

deterministic modulation of anisotropic interactions (dipolar couplings, CSA tensor, 

quadrupolar couplings). In a first-order average Hamiltonian approximation [55,72], MAS 

averages out the effects of these interactions in the spectrum. A dynamic process can be seen 

as an additional time-dependent process, which is stochastic in nature. As a third time-

dependent process, RF irradiation during relaxation periods, such as in T1ϱ or CPMG 

[73,74] experiments needs also to be considered. If the dynamic process occurs on a time 

scale that is close to the time scale of the MAS rotation or the nutation frequency of the RF 

field or the modulation frequency, interference effects may arise. Both the MAS frequency 

and the RF-field amplitudes are typically on time scales of several tens of kilohertz. 

Therefore, we expect to see such interference effects if we are dealing with dynamic 

processes on microsecond time scales that are mostly relevant for transverse relaxation. For 

example the averaging of anisotropic interactions by MAS can partly be cancelled by 

dynamic processes [75,76]. Interference between MAS and RF irradiation is extensively 

used in solid-state NMR to generate effective Hamiltonians during selected time periods of 

experiments [77-80]. Such recoupling processes may be altered by a stochastic dynamics on 

the same time scale [81,82]. We will highlight the effects of such interference effects in 

Sections 3.3.3 and 3.3.5.
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As pointed out above, line width (i.e., decay of coherence) in liquid-state NMR is very well 

understood and measurements of transverse relaxation data are straightforward. The main 

source of line broadening besides relaxation processes are B0-field inhomogeneities or 

susceptibility effects that can be averaged by a simple Hahn-echo sequence [83] if we 

neglect transport processes like diffusion. In solid-state NMR the situation is more complex 

since there are additional factors that induce a decay of both polarizations and coherences 

that is not always easy to distinguish from relaxation-induced decays. In a static solid 

samples, the large anisotropic interactions lead to powder patterns that are tens of kilohertz 

large. Under MAS, the Hamiltonian describing these interactions becomes time dependent 

with integer multiples of the rotation frequency. Under rotor-synchronized detection 

conditions, we can use average Hamiltonian theory [55,72] to characterize the effective 

Hamiltonian under MAS through a series of time-independent average Hamiltonians of 

increasing order:

(31)

To understand the behavior of NMR spectra under MAS, we can use the classification of 

Hamiltonians introduced by Maricq and Waugh [75] into “inhomogeneous” and 

“homogeneous”. Inhomogeneous Hamiltonians are characterized by the fact that all terms in 

the Hamiltonian commute (e.g., only anisotropic chemical shifts and heteronuclear dipolar 

couplings or a single homonuclear dipolar coupling) leading to sharp spectra even at 

moderate spinning frequencies since the spectrum is fully characterized by the first-order 

average Hamiltonian. This is a consequence of the fact that all commutators are zero and, 

therefore, all higher orders of the average Hamiltonian expansion are also zero. If we release 

the restriction of rotor-synchronized detection, we observe a side-band manifold but for 

MAS frequencies approaching the magnitude of the interactions, we obtain almost perfect 

averaging represented by solution-state like spectra. In the case of a homogeneous 

Hamiltonian (e.g., a homonuclear dipolar coupling and a heteronuclear dipolar coupling or a 

CSA tensor or multiple homonuclear dipolar couplings), the higher-order terms are not zero 

leading to a residual line broadening under MAS. Assuming that the second-order average 

Hamiltonian is the dominating term, the residual line width scales with 1/νr and even at the 

fastest MAS frequencies available today (νr = 130 kHz) there is still significant line 

broadening observable (see Figure 8).

Particularly in protonated systems where one has multiple strong homonuclear dipolar 

couplings, proton as well as 13C/15N coherences will decay due to the evolution under the 

terms of the second-order average Hamiltonian. Therefore, the apparent decay rates of spin 

coherences are not only reflecting relaxation, but they contain also a large contribution from 

coherent dephasing under the second-order average Hamiltonian term. These terms cannot 

be refocused easily, which makes it in practice difficult to obtain quantitative information 

Schanda and Ernst Page 21

Prog Nucl Magn Reson Spectrosc. Author manuscript; available in PMC 2017 February 01.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



about dynamics from the measurement of coherence decay rates. The same Hamiltonian will 

lead also to a polarization-transfer process between 1H or 13C/15N spins which is called spin 

diffusion [84-86] that can lead to changes in apparent T1 times.

The above considerations point to two possible ways of reducing the effect of coherent 

contributions and thus providing access to quantitative relaxation-rate constants. The first 

one is the chemical dilution of the strong 1H-1H dipolar network by using deuterated 

samples. The deuterium spin (2H) has a roughly six-fold lower gyromagnetic ratio compared 

to protons, thus significantly reducing dipolar dephasing. Deuteration and partial re-

protonation is, therefore, an important approach for dynamics studies but also for studies of 

structure and interaction [87-93]. The second route to quantitative relaxation measurements 

comes from the realization that the second-order average Hamiltonian term scales with the 

inverse of the MAS frequency. Thus, the use of the highest possible MAS frequencies 

(currently 130 kHz) reduces coherent contributions to longitudinal or transverse decays. In 

practice, fast MAS is not sufficient to eliminate coherent contributions in all situations and 

the two approaches, deuteration and fast MAS, need to be combined to obtain quantitative 

data. We will discuss the requirements in more detail in the next two Sections that deal with 

longitudinal and transverse relaxation.

3.2 Longitudinal Relaxation Parameters in Solid-State NMR

Longitudinal relaxation times of low-γ nuclei are relatively easy to measure and evaluate 

compared to transverse relaxation times. This is due to the fact that only a single coherent 

mechanism, namely spin diffusion, can lead to a coherent time evolution of the Sz operator 

under MAS. Spin diffusion under MAS is mediated by second-order cross terms between 

two homonuclear dipolar couplings or a cross term between a homonuclear and a 

heteronuclear dipolar coupling [85] (for more details see Section 3.1). Spin diffusion leads 

to polarization transfer that can often be described by a kinetic rate equation [84] which 

leads to a coupling of the relaxation decays of different spins [94]. We can exemplify this 

with a simple example of two spins i and j that relax with different rate constants R1i and 

R1j. Without spin diffusion, the two spins will relax with their respective longitudinal 

relaxation-rate constants. If we include spin diffusion, we have to add a spin-diffusion rate 

constant kij and the decays of the two spins become coupled and are now described by a 

system of coupled differential equations

(32)

The general solution is always a bi-exponential decay with the effective relaxation-rate 

constants

(33)
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If the spin-diffusion rate constant kij is small compared to the difference of the relaxation-

rate constants, the two spins will relax with R1i+kij and R1j+kij, respectively. If the spin-

diffusion process is fast compared to the difference of the longitudinal relaxation-rate 

constants, we will observe the same effective relaxation for both spins which is described by 

a bi-exponential decay with rate constants (R1i+R1j)/2 and (R1i+R1j)/2+2kij. In the 

intermediate regime, the behavior is more complex. These results for a model two-spin 

system can be generalized to multi-spin systems and show that it is important for measuring 

accurate longitudinal relaxation-rate constants to have spin-diffusion rate constants that are 

small compared to the relaxation-rate constants and also to the differences of the relaxation 

rate constants that one wants to observe. Figure 9 shows numerical simulations of the 

difference of the effective relaxation rate constant  (obtained from a mono-exponential fit 

of the bi-exponential decay) and the correct rate constant R1i as a function of the difference 

of the two relaxation-rate constants R1i and R1j and the spin-diffusion rate constant kij (see 

Eqs. (32) and (33)).

The role of spin diffusion in the measurement of 15N R1 rate constants has been addressed 

experimentally and through simulations [94-96]. The 15N-15N proton-driven spin diffusion 

rate constant has been estimated in a protonated protein at 10 kHz MAS to approximately 

0.025 s−1. At ambient temperature, backbone 15N sites have typical R1 rate constants of the 

order of 0.01 to 0.5 s−1 [96-100]; rate constants for side chain NH2 groups (Asn, Gln) and 

Trp NHε have been reported of the order of 0.15 to 1 s−1 [101]; NH3
+ groups may have 

significantly higher rate constants. As the spin-diffusion rate constants are only slightly 

smaller than backbone R1 rate constants, one may thus expect that spin diffusion has a 

noticeable effect on the measured rate constants. Indeed, Chevelkov et al have reported a 

significant difference between R1 rate constants measured at 13-24 kHz MAS frequency in a 

sample of protonated SH3, and a highly deuterated sample in which spin diffusion is 

strongly suppressed. These finding suggest that for protonated protein samples, MAS 

frequencies on the order of 20 kHz are not sufficient to quench the effect of spin diffusion to 

below detection levels. MAS frequencies in excess of 40-50 kHz in protonated systems, or 

deuteration (allowing for lower MAS frequencies) seem to provide accurate values.

It is noteworthy that the importance of spin diffusion depends, of course, on the absolute 

numbers of the relaxation-rate constants, and these change with temperature. For example, at 

very low temperatures, R1 rate constants may become very small, such that at low 

temperature the spin diffusion may be the dominant factor governing the apparent relaxation 

rate constants. At high temperature, where R1 rate constants are higher, spin diffusion may 

have a small or negligible effect, i.e. the actual relaxation-rate constant may be measured 

accurately. In contrast to relaxation, the spin-diffusion rates are not expected to vary much 

with temperature. This is important to keep in mind when measuring R1 relaxation over a 

wide range of temperatures: in such a case one may go through a “transition” between a 

regime where spin diffusion is dominant (at low temperature) to a regime where it is 

negligible. The apparent relaxation rate would thus show some discontinuity, which one may 

erroneously interpret as distinct motional modes with different activation energies.

For 13C the situation is more challenging than for 15N, as spin-diffusion rate constants are 

higher. For example, for protonated alanine spinning below 20 kHz MAS, the 13C relaxation 
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rate constants of carbonyl, Cα and methyl-13C are essentially the same (about 1.5 to 2.5 s−1) 

[102]. When increasing the MAS frequency to 60 kHz the respective rates differ between 

each other by almost a factor 50, showing that spin diffusion is strongly reduced (although 

the rates still may not necessarily reflect the actual relaxation rate constants). It was 

proposed that ~60 kHz MAS frequency may suffice to provide site-specific R1 relaxation 

rate constants [102]. However, a recent study challenged this view, and showed that for 13Cα 

sites fast MAS alone is insufficient, and even deuteration and >50 kHz MAS (in a fully 13C-

labeled protein) is insufficient to suppress the effect of spin diffusion on 13Cα R1 relaxation-

rate constants. Only the combination of partial deuteration, sparse 13C labeling and > 55 kHz 

MAS provided relaxation-rate constants that are bona fide without significant contributions 

from spin-diffusion effects [87].

The second questions related to experimental measurements of longitudinal relaxation-rate 

constants, is the inability to saturate the protons efficiently during the relaxation delay 

[52,103]. Such saturation is commonly used in liquid-state NMR to simplify the system of 

coupled differential equations in order to measure the real T1 time. All longitudinal normal 

modes are coupled by cross relaxation [103] and for a heteronuclear I-S (e.g., 1H-15N) two-

spin system we find the following system of coupled differential equations that describe the 

time evolution of the polarization:

(34)

In principle, the time evolution of any of the coupled operators will be described by a tri-

exponential function where the effective time constants and the weights of the three 

exponentials depend on all six relaxation-rate constants. By saturating the I spins (protons) 

by continuous on-resonance radio-frequency fields, we ensure that ⟨Iz⟩(t) = ⟨2IzSz⟩(t) = 0 and 

the differential equation simplifies to

(35)

and the decay of the magnetization becomes mono-exponential with the decay time Γ Sz ,Sz 
= 1/T1S. Since typical longitudinal relaxation-rate constants of 15N and 13C are in the order 

of seconds, high-power proton irradiation of several seconds would be required in order to 

saturate the protons in solids. This is experimentally impossible with current probe designs 

and to our knowledge all measurements of longitudinal relaxation-rate constants in solid 

proteins have been done without proton saturation during the relaxation delay 

[96,98,99,104-106]. This is justified by the action of proton spin diffusion in solids that 

leads to an effect that is very similar to proton saturation. If the proton spin diffusion is fast, 

the apparent T1 of the proton (and of the two-spin term) become very short (see above) and 

we can assume that the proton polarization and the two-spin polarization is always very 
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close to the equilibrium value. Under these conditions we can make similar assumptions as 

in the case of the saturation of the protons and obtain

(36)

which describes a mono-exponential decay towards the equilibrium value for the Sz 

magnetization. This is also illustrated in Figure 10 where we have plotted the analytical 

solutions for an inversion-recovery experiment on the S spin as a function of the I-spin 

relaxation-rate constant. In these simulations we have neglected the cross-correlated cross 

relaxation to the two-spin term. One can clearly see that for sufficiently large spin-diffusion 

rate constants on the protons, the mono-exponential decay of the 15N spin is recovered 

without the need to apply proton saturation during the relaxation delay.

3.2.1 T1 Relaxation—We have already seen in Section 2.2.2 that T1 relaxation is most 

sensitive to motions with correlation times in the ns region since the spectral-density 

functions are sampled at sums and differences of the Larmor frequency which is typically in 

the 50-1000 MHz region. In a heteronuclear two-spin system the functional form of T1 

relaxation times are given by Eq. (29) which simplifies under the assumption of a simple 

single-time scale model-free approach to

(37)

where the spectral-density function is given by

(38)

and the anisotropy of the dipolar coupling is defined by  while the 

anisotropy of the chemical-shielding tensor is δCSA =−γB0(σzz – σiso). Here, we assume an 

axially-symmetric CSA tensor, e.g., the asymmetry is η = 0.

Figure 11 clearly shows that the T1 auto-relaxation rate constant shows a maximum for a 

correlation time around 1 ns, which comes from the dependence of T1 on the spectral-

density function at the Larmor frequency. Unless the time scale of motion is close to this 

maximum, T1 rate constants depend only weakly on S2. Since the overall shape of the 

dependence on τc and S2 does not change as a function of the static magnetic field, even 

measurements at multiple B0 fields will lead to a high correlation between the two 

parameters. The solution to this problem is the independent measurement of transverse 

relaxation parameters, which depend on the spectral density at different frequencies than T1 

(see Section 3.3) and/or the direct measurement of motionally averaged dipolar couplings, 

which directly provide information about the order parameters (see Section 3.4). As 
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discussed in Section 3.5, the inclusion of dipolar-coupling measurements greatly improves 

the accuracy of such fits.

3.2.2 Heteronuclear Cross Relaxation (NOE)—The heteronuclear cross relaxation-

rate constant ΓIz ,Sz , i.e. the transfer of polarization from 1H to 15N or 13C is, in the form of 

the steady-state NOE, a commonly measured parameter in liquid-state NMR. Saturating the 

I spins before the start of the experiment will lead to a change in the steady-state value of the 

S spins which is given by

(39)

with the cross-relaxation rate constant given by

(40)

If the T1 times of the S-spin are known, the cross-relaxation rate constant can be back 

calculated from the steady state NOE value η.

Figure 12a) and b) shows a plot of the steady state NOE η as a function of the order 

parameter and the correlation time which shows that the NOE does not give any additional 

information about the order parameter compared to the T1 time. For the case of methyl 

groups, this correlation of longitudinal 13C relaxation and heteronuclear NOE has been 

experimentally reported recently [107]. This correlation is a consequence of the fact that the 

dependence on the order parameter in the model-free approach is the same for all relaxation 

parameters.

Measuring the longitudinal heteronuclear cross-relaxation rate constant in the form of a 

steady-state NOE is straightforward but often impractical because of the low sensitivity and 

long relaxation times of 13C/15N coherences in the absence of cross polarization as an initial 

step of the pulse sequence. A different way to measure the NOE is in the form of a transient 

NOE by inverting the protons before the acquisition of the 13C/15N spectra [97,107]. A 

direct measurement of the cross-relaxation rate constant as a polarization-transfer step is 

difficult due to the proton spin diffusion which is in many cases much faster than the 

heteronuclear transfer step (see Figure 12c) and d)).

3.2.3 Longitudinal Cross-Correlated Cross Relaxation—In principle, one can also 

measure the longitudinal dipolar/CSA cross-correlated cross-relaxation rate constant

(41)
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where the spectral density function is now a cross-correlated spectral density function 

defined as

(42)

Here the θ describes the angle between the main axes of the CSA tensor and the dipolar-

coupling tensor and P2 is the second-order Legendre polynomial. Measuring the cross-

correlated cross-relaxation rate constant requires the measurement of polarization transfer 

from the one-spin Sz term to the two-spin 2IzSz term (Figure 13). Such a transfer step can 

only be measured quantitatively if the proton spin-diffusion process is much slower than the 

transfer process. This condition is generally not fulfilled, and, to the best of our knowledge, 

such measurements have not yet been reported on the literature.

3.3 Transverse Relaxation Parameters in Solid-State NMR

We have analyzed in the previous section how longitudinal relaxation parameters depend on 

amplitudes and time scales of motions. Longitudinal relaxation parameters are proportional 

to the spectral density at integer multiples of the Larmor frequency of the involved nuclei 

(see Eq. (29)), i.e., they probe motions occurring on the time scale of nanoseconds, but they 

are hardly sensitive to motions on longer time scales (see Figure 11 to Figure 13). In this 

section we consider transverse relaxation-rate constants. We investigate the dependence of 

different transverse relaxation parameters on the time scale and amplitude of motion, and 

discuss the challenges of measuring such relaxation rates quantitatively. We show that the 

primary experimental challenge is to disentangle decay of coherences due to relaxation from 

coherence decay that is due to incompletely averaged anisotropic interactions (in particular 

dipolar dephasing). We also need to review the validity of Redfield theory for transverse 

relaxation-rate constants, as the “weak-collision” assumption underlying the derivation of 

this theory, i.e. the assumption that the motion is very fast compared to the change of the 

density operator (see Section 3.3.5) may not be valid in the regime of time scales that 

transverse relaxation parameters are sensitive to. In addition, we have assumed in Eq. (26) 

that we can average over the sample rotation if the stochastic motion is much faster than the 

sample rotation. For slow motions and fast MAS, this approximation might not be valid and 

has to be discussed in more detail.

3.3.1 T2 Relaxation in Solids—Transverse relaxation, i.e. the decay of single-quantum 

coherence (S+) under free precession in the absence of decoupling or spin lock, due to 

dipolar couplings and CSA tensors in static solids is characterized by

(43)

Schanda and Ernst Page 27

Prog Nucl Magn Reson Spectrosc. Author manuscript; available in PMC 2017 February 01.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



It is sensitive to the J(0) term of the spectral-density function, and, therefore, it provides 

access to slow motions. It is interesting to note here also the limits of Redfield theory. 

Equation (43) predicts that due to the dependence on the J(0) term the T2 rate constant 

increases monotonously as the time scale of the motion becomes slower. This leads to the 

unphysical situation that infinitely slow motion leads to infinitely fast relaxation. This 

contradiction can be understood remembering the assumption that was made in Redfield’s 

derivation, which is that the time scale of the motion is much faster than the change of the 

density operator. Therefore, any “slow” motions in static solids lead to a breakdown of the 

Redfield treatment for transverse relaxation and other treatments to describe relaxation have 

to be used [108]. As shown below, in a rotating sample the J(0) terms are replaced by terms 

at the MAS frequency, which at least in part resolves this situation. We will address the 

validity of Redfield theory under MAS in Section 3.3.5. This is much less of a problem in 

liquid-state NMR where fast rotational tumbling masks slow motions that modulate the 

anisotropic interactions. However, even in liquid-state NMR, the Redfield treatment has to 

be amended if slow motions lead to line broadening due to a modulation of the isotropic 

chemical shift (“chemical-exchange” broadening) [24].

As pointed already out in Section 2.2.1, magic-angle spinning leads to an additional 

modulation of the correlation function that leads to a sampling of the spectral-density 

function at frequencies that are offset by one or two times the spinning frequency Since the 

Larmor frequency is typically at least three orders of magnitude larger than the spinning 

frequency, these offsets are ignored for all terms except for the J(0) term. Therefore, under 

MAS the usual form of Eq. (43) is given by [63]

(44)

Assuming again a single time-scale model-free spectral-density function of the form

(45)

we obtain a transverse relaxation-rate constant of the form

(46)
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Equations for T2 relaxation in the presence of a 1H decoupling rf field have also been 

reported. In the presence of a continuous-wave decoupling RF field, the ωr terms are then 

replaced by terms containing the difference between the rf-field strength and multiples of ωr 

[109].

Figure 14 shows the calculated transverse relaxation-rate constant R2 for a 15N spin due to 

the dipolar interaction to a directly-bonded proton spin, and the 15N CSA tensor, as derived 

from Eq. 46. These data show that transverse relaxation is sensitive to motion occurring on 

time scales of nanoseconds to milliseconds, and has a maximum in the microsecond time 

scale, depending on the MAS frequency. There is some qualitative similarity with 

longitudinal relaxation rate constants, which, however, have their maximum on a 

nanosecond time scale. The reason for this difference is the dependence on the spectral 

density at the MAS frequency in the case for R2, or on the spectral density at the Larmor 

frequencies, in the case of R1. Although both R1 and R2 are in principle modulated by the 

MAS frequency, the change of R1 with MAS frequency can be safely neglected, because the 

relevant frequencies for R1 (Larmor frequencies) are very large compared to the MAS 

frequency.

Accessing the R2 relaxation-rate constant experimentally is a challenge. This is because the 

decay of spin coherence in solids can be due to stochastic processes (dynamics), but it can 

also arise from coherent dephasing arising from the presence of additional spins (in 

particular 1H due to their large gyromagnetic ratio), as described in detail in Section 3.1. As 

shown in Figure 8, the line width, or (equivalently) the transverse relaxation-rate constant in 

the presence of multiple dipolar couplings contains a large contribution from coherent 

dephasing from the second-order average-Hamiltonian term. This makes it in practice 

difficult to interpret experimentally observed coherence decay rate constants, which contain 

both the actual relaxation and the effect of dipolar dephasing (the observed decay time 

constant in the FID is often referred to as T2
*, to distinguish it from the actual transverse 

relaxation time constant T2 = 1/R2). Another important quantity in this context is the T2' 

decay-time constant which is the decay of transverse magnetization under a spin-echo 

sequence (τ - 180° - τ). The spin-echo sequence will refocus isotropic chemical shifts, 

heteronuclear J couplings and also partially the second-order coherent contributions to the 

transverse decay rate. As discussed in Section 3.1, the coherent contribution to dephasing 

depends on the strength of the dipolar interactions, as well as the MAS frequency, 

suggesting that dipolar dephasing is potentially less problematic for 15N than for 1H or 13C, 

and that deuteration and high MAS frequencies may help reducing this contribution.

It is instructive to examine whether fast MAS combined with deuteration is sufficient to 

obtain 15N T2' time constants that are free from dipolar dephasing. We investigate this 

question by analyzing experimental 15N relaxation data from the microcrystalline protein 

ubiquitin. The 15N nucleus is particularly attractive for such studies because its relaxation 

properties can be described to a good approximation by considering only the H-N dipole and 

the 15N CSA tensor, and the dipolar dephasing contribution is smaller than for 1H or 13C. 

For the case of ubiquitin, dynamics have been studied extensively [44,98,110,111], such that 

it is known relatively well what the actual transverse relaxation rate constants (i.e. without 

coherent contributions) are. Figure 15 shows different 15N relaxation-rate constants: data 
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shown in black denote the predicted R1ϱ rate constants, which are calculated based on 

dynamical amplitudes and time scales that have been determined from an extensive set of 

experimental data (dipolar order parameters, T1 times, cross-correlated relaxation) [110]. 

They agree quite well with the experimental R1ϱ rate constants shown in red. These rate 

constants serve thus as a proxy for the “true” transverse relaxation-rate constants expected 

for each residue assuming that the dynamics are characterized well by the model. They were 

determined using Eq. (52) based on a correlation function using the extended model-free 

approach. As a comparison, experimental R2' data obtained with a highly deuterated sample 

are shown in blue and green, where the blue data set was collected without proton 

decoupling, and the green data set employs 3.1 kHz WALTZ decoupling. In the sample all 

non-exchangeable sites are deuterated at >97%, and exchangeable sites (amides, NH2, OH) 

are deuterated at 80%. This labeling leaves 1H spins overall only in ~5% of all hydrogen 

sites in the protein. Interestingly, even in this very highly-deuterated sample, and at high 

MAS frequency (57 kHz), the measured R2' rate constants are much higher than the 

predicted ones (black and red lines). The most likely explanation for this observation is that 

even under these favorable experimental conditions, R2' rate constants do not properly 

reflect the dynamics of 15N sites, but that a significant fraction of the observed rate is due to 

dipolar dephasing. Interestingly, the experimental R2' relaxation-rate constants certainly 

contain some dynamic information. For example, increased R2' for residues 23, 27 and 55 

are, at least in part, due to conformational exchange [44]. However, the data in Figure 15 

clearly show the large “background” from coherent contributions, hampering quantitative 

analysis.

Several routes have been proposed to circumvent this inherent difficulty to obtain 

quantitative measures of transverse relaxation. One approach is to measure the difference 

between two transverse relaxation-rate constants. As long as both rate constants are equally 

impacted by dipolar dephasing, their difference can be quantitatively analyzed in terms of 

dynamics. A first example is the measurement of the transverse relaxation of the two 

multiplet components of a 15N[1H] doublet (i.e., measuring the relaxation decay of 2NxHα 

and 2NxHβ). These two components decay with rates of R2'+ΓCSA/D and R2'-ΓCSA/D, i.e., 

their difference corresponds to the CSA-dipole cross-correlated cross relaxation rate 

constant (CCR) [112]. This CCR rate is proportional to the spectral density at J(n ωr), where 

n = ±1,2 (see below) and, therefore, provides insights into dynamics on time scales longer 

than nanoseconds. A second example is the measurement of the decay of zero- and double-

quantum coherences [44]. We will discuss these cross-correlated relaxation rate constants in 

more detail in Section 3.3.2.

A second approach is to identify relaxation-rate constants, which do not suffer from dipolar 

dephasing. It has been shown previously that under suitable experimental conditions (partial 

deuteration and fast MAS) the 15N R1ρ relaxation-rate constant can be quantitatively 

analyzed in this context [113],[114]. The data set shown in red in Figure 15 shows 

experimentally determined R1ϱ relaxation-rate constants. The close match between these 

experimental R1ϱ rate constants (red) and the predicted ones (black) suggests that one can 

indeed measure 15N R1ϱ rate constants without significant contributions from dipolar 

dephasing. T1ϱ relaxation will be discussed in more detail in Section 3.3.3.
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In principle, a third possible route is to employ even higher MAS frequencies, possibly 

combined with deuteration, to suppress coherent contributions, such that R'2 (i.e. the decay 

in a spin-echo sequence) would be accessible. However, currently available MAS 

frequencies (on the order of 100 kHz) and deuteration do not suffice to suppress coherent 

contributions to the transverse decay of 15N spins.

3.3.2 CSA/D and CSA/CSA Cross-Correlated Cross Relaxation—Cross-correlated 

cross relaxation, i.e., relaxation that arises from interference between two different 

interactions is one possibility towards obtaining quantitative transverse relaxation data. In 

this section we review two recently proposed approaches, namely relaxation due to 

correlation of a dipolar and a CSA interaction, and cross-correlated relaxation due to 

interference of two chemical-shift tensors. In principle, additional cross-correlated relaxation 

rates could be exploited to study dynamics, such as dipole-dipole cross-correlated relaxation, 

which have been used in solution state [115-119] but, to our knowledge, this has not yet 

been implemented experimentally.

CSA/dipole interference: The two components of a J-coupled doublet, for example the 

2NxHα and 2NxHβ components in a scalar-coupled 1H-15N spin pair, may show different 

line widths. The physical origin of this apparent asymmetry of the doublet is the interference 

between two anisotropic interactions, namely the H-N dipolar coupling and the 15N CSA 

tensor. We can distinguish different mechanisms that lead to the observed asymmetry, 

namely (i) a coherent mechanism that does not depend on dynamics, and (ii) an incoherent 

mechanism, which is due to dynamics, i.e. it depends on the amplitude and time scale of a 

motional process that reorients the two involved interactions.

Let us first discuss the coherent mechanisms leading to doublet asymmetry. Consider the 

case of a static sample (no MAS) and a rigid heteronuclear I-S spin pair and assume we 

observe coherences of the S spin. The local field at the location of the S spin that is due to 

the dipolar interaction of the I spin will have the same or opposite sign as the local field due 

to the S spin CSA depending on the spin state of the I spin. In the case that the I spin is in 

the α state (spin up) the two fields add up, while the two fields partially cancel if the I spin is 

in the β state (spin down). In the case of a non-spinning sample, the multiplet component 

belonging to the I-spin α state would, therefore, show a broad powder pattern, while the 

other multiplet component would show a narrower powder pattern (Figure 16). Under MAS 

the different line width of the two components is retained as an asymmetry of the intensity 

of the two respective center bands. For spinning frequencies exceeding the typical strength 

of the heteronuclear dipolar coupling, the two lines will show the same intensity.

In addition to this coherent interference between the S spin CSA tensor and the 

heteronuclear dipolar coupling, there is also a coherent interference effect between the 

homonuclear dipolar coupling between two S spins with the S spin CSA tensor. Since the 

two contributions to the Hamiltonian (CSA, homonuclear dipolar coupling) do not commute, 

the second-order average Hamiltonian (see Section 3.1) will be non-zero and lead to a line 

broadening that is different for the two multiplet lines. This coherent mechanism of 

differential line broadening has long been recognized [120-123]. It is reduced with 

increasing MAS frequency, because it is coherent in nature and the result of a second-order 
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average Hamiltonian term. This effect is only important for systems with homonuclear J 
couplings (e.g., samples which are fully 13C labeled) and does not affect 15N measurements. 

Since 13C-13C homonuclear dipolar couplings are typically small (δCC/(2π) ≈ 4.5 kHz) this 

effect can be neglected at spinning frequencies above 20 kHz even in fully-labeled samples. 

In the further discussion we will neglect these two coherent mechanisms of doublet 

asymmetry, and focus on the incoherent part.

To discuss the incoherent contributions to the line widths, we consider the situation where a 

H-N spin pair undergoes re-orientational dynamics. In this case, interference of the 15N CSA 

and H-N dipolar coupling induces differential relaxation of the N-[Hα] and N-[Hβ] doublet 

components [115,116]. The differential relaxation of the two components arises because the 

relaxation of one component is given by the sum of the two relaxation contributions, i.e. 

the 15N CSA and the 1H-15N dipolar coupling, whereas the relaxation of the other 

component is given by their difference. This effect, which is known in solution-state NMR 

as “transverse-relaxation optimized spectroscopy” (TROSY) [124] effect has first been 

reported in solids by Chevelkov and Reif [112,125]. For solution-state NMR, these cross-

correlated relaxation effects can be fully described within the framework of Redfield theory, 

and they have been extensively reviewed [115,116,126]. Due to the absence of overall 

tumbling, the dependence of the CSA/D CCR on the motional parameters in MAS solid-

state NMR is different from what is observed in solution, and we investigate the properties 

of the differential relaxation in the following briefly. The reader is also referred to a 

comprehensive computational study of these effects [127].

The CSA/dipolar cross-correlated relaxation-rate constant within the framework of Redfield 

theory is given by:

(47)

where the cross-correlated spectral-density function J(IS ,S)(ω) is defined as in Eq. (42) and 

P2(cosθ) is the second-order Legendre polynomial of the angle between the principal axes of 

the dipolar-coupling tensor and the S-spin CSA tensor, and δD and δCSA are the anisotropies 

of the two tensors. Here we have assumed that the CSA tensor is axially symmetric. Note 

that in previous studies the two terms depending on J(ωr) have been replaced by J(0) 

[98,128]. This way of neglecting the MAS frequency is not rigorous, as discussed in section 

2.2.1, but as long as the motion is much faster than the MAS frequency the resulting errors 

are negligible.

In Figure 17 we investigate the CSA/dipole cross-correlated relaxation using numerical 

simulations of a jump model with two discrete states (Figure 17a). The 15N spectra reveal 

differential line broadening of the two doublet components, and this line broadening is 

dependent on the time scale (and amplitude) of the exchange process (Figure 17b). In Figure 

17c we show the cross-correlated relaxation rate constant ΓI+ ,I+Sz , which for simplicity we 

will call here ΓCSA/D, as a function of the time constant of motion, for different MAS 

frequencies, while Figure 17d shows additionally the dependence on the amplitude of 
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motion. This relaxation-rate constant can be determined from the difference of the spin-echo 

coherence-decay rate constants of the two doublet components R2'(NxIα)= R2'ΓCSA/D and 

R2'(NxIβ) = R2'-ΓCSA/D , where R2' denotes the spin-echo decay time constant of the 

decoupled line due to incoherent as well as coherent contributions. For typical experimental 

signal-to-noise ratios, the differential relaxation can be detected if it exceeds approximately 

1 s−1; dashed lines in Figure 17 indicate that this implies that motions on a time scale from 

several nanoseconds to about 1 ms can be detected.

The experimental measurement of this cross-correlation effect typically involves measuring 

the spin-echo decay-rate constant of the two components of the scalar-coupled doublet. 

Experimentally it may be difficult to resolve the two components, because it requires that 

the 15N doublet can be measured in the absence of 1H decoupling. Only the use of 

deuteration schemes have allowed resolving 15N-[1Hα]/15N-[1Hβ] doublets [112]. Fast MAS 

helps in addition to increase resolution, and the longer coherence life times (smaller R2') that 

result from fast MAS and deuteration increase sensitivity and facilitate spin-state selective 

transfers that allow separating the two components in two sub spectra. Experimentally, 

CSA/D cross-correlated relaxation-rate constants have been measured in SH3 [112,129] and 

later in ubiquitin [98], and these rate constants have been used for quantifying backbone 

dynamics [98,110,128]. The TROSY effect in solids can also be exploited for increasing 

sensitivity in NMR spectra for residues undergoing slow motion. It has been shown that 

several residues in the protein SH3 show greatly improved signal-to-noise ratio in spin-state 

selective polarization-transfer experiments (based on selection of the slowly-relaxing 

doublet component) as compared to CP transfer and scalar decoupling [130]. This idea is the 

same as the TROSY-type correlation experiments applied in solution state to study slowly 

tumbling (i.e., large) molecules.

Differential relaxation due to interference of two chemical-shift tensors: As a second 

example of differential relaxation we investigate the differential decay of zero-quantum 

(I+S− and I−S+) and double-quantum (I+S+ and I−S−) coherences. We first consider the 

relaxation of double- and zero-quantum terms due to the dipolar coupling between the two 

spins and the two CSA tensors. This leads to relaxation-rate constants given by:

(48)

and
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(49)

where the cross-correlated spectral-density function J(I ,S)(ω) is defined in analogy to Eq. 

(42). The difference between zero-quantum and double-quantum relaxation due to dipolar 

and CSA interactions is obtained from these equations as

(50)

Here the first term is a heteronuclear NOE term (see Eq. (40)), which turns out to be very 

small (below about 0.3 s−1 for H-N, see Figure 12) and can safely be neglected. The second 

term is a cross-correlated cross-relaxation term between the two CSA tensors.

In addition to the CSA and dipolar-coupling contribution, we also need to consider the effect 

of isotropic chemical-shift fluctuations on the zero- and double-quantum relaxation-rate 

constants. In the presence of conformational exchange that modulates the isotropic chemical 

shift of the two nuclei by ΔωI and ΔωS, the chemical-shift modulation of the zero-quantum 

coherence is  and the corresponding chemical-shift difference for the 

double-quantum term is . The differential MQ relaxation rate constant 

in the case of a two-site exchange is given by [131]:

(51)

Here, pA and pB are the relative populations of the two states, and kex is the exchange rate 

constant defined by (kex = kAB+kBA = kBA(1+pB/pA)), where kAB and kBA are forward and 

backward rate constants.

In the above discussion we have considered only the two isotropic chemical shifts, the two 

CSA tensors and the dipolar interaction between the two spins involved in the MQ 

coherence, but neglected the relaxation of any of the two spins due to dipolar interactions to 

remote spins. This contribution can also lead to differential MQ relaxation [132]. 

Experimentally, the remote-spin contribution is best suppressed by extensive deuteration of 

the sample [44].
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Summing up, differential relaxation of zero- and double-quantum coherences can arise from 

four contributions: (i) correlated fluctuation of two CSA tensors via the cross-correlated 

relaxation term in Eq. (50), (ii) correlated fluctuation of the two isotropic chemical shifts 

shown in Eq. (51), (iii) fluctuation of the dipolar coupling, via the heteronuclear NOE term 

in Eq. (50) which is often negligibly small, and (iv) dipolar relaxation by external spins 

which we will not consider further.

In Figure 18, we investigate differential relaxation of 1H-15N ZQ and DQ coherences by 

means of numerical simulations. The conformational exchange in our model occurs between 

two distinct states, similar to the model shown in Figure 17a. For this simulation, we assume 

that the CSA tensors of 1H and 15N have different orientations in the two exchanging states 

but each tensor retains its anisotropy δCSA in the two states. (Note that for these calculations 

one could of course also use the Redfield-theory Eq. (50) for the CSA/CSA contribution, 

and Eq. (51) for the isotropic CS interference. Indeed Eq. (51) is exactly identical to the 

result of numerical simulations [44]; however, in principle the Redfield approach is not 

strictly valid in the slow motional regime and we will compare numerical and Redfield-

theory results for the CSA/CSA term in section 3.3.5.) Figure 18a investigates the case 

where the two states have identical isotropic chemical shifts, but the CSA tensors both 

change in the exchange process. In this case, differential relaxation is found (ΔRMQ ≠ 0) 

whenever the dynamic process is on a time scale from nanoseconds to about 1 millisecond. 

Largest ΔRMQ values are found for microsecond motions while motions occurring on 

picosecond time scales, or slower than milliseconds do not lead to significant cross-

correlated relaxation. This dependence is similar to the CSA/D cross-correlated relaxation 

described above. One can show that differential relaxation is only found if both CSA tensors 

are modulated, as expected for a cross-correlated relaxation (see also the JI,S terms in Eq. 

(50)). Furthermore, the sign of ΔRMQ depends on the relative angle of the fluctuations of the 

two tensors, reflected by the product δCSA,HδCSA,N [44,131]. Figure 18b shows that, just like 

for the CSA/D cross-correlated relaxation, the relaxation rate constant on the “slow branch” 

is MAS dependent, i.e. the maximum depends also on the MAS frequency. This is expected 

because of the dependence on the spectral-density terms at the MAS frequency, and 

qualitatively, it can be understood by the fact that a MAS frequency that is high compared to 

the motion leads to efficient averaging of the anisotropic interactions.

In these simulations we have assumed that the two states have identical 1H and 15N chemical 

shifts in the two exchanging states. In panel (c) we consider the differential ZQ/DQ 

relaxation induced by correlated fluctuations of the two isotropic chemical shifts. Chemical-

shift fluctuations induce differential relaxation whenever the exchange-rate constant is in the 

range of microseconds to a few milliseconds, depending on the chemical-shift differences, 

the exchange rate constant, and the populations of the involved states. Of note, only 

fluctuation of both chemical shifts lead to differential relaxation (i.e. fluctuation of only one 

chemical shift does not lead to differential relaxation). The sign of ΔRMQ depends on the 

relative signs of the chemical-shift fluctuations of the two nuclei. This can be readily seen 

from Eq. (51). Finally, panel (d) shows the general case, in which a dynamic process alters 

both the isotropic and anisotropic chemical shifts.
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In summary, correlated fluctuation of isotropic and anisotropic chemical shifts can be 

detected through the different relaxation behavior of ZQ and DQ coherences. A MAS 

dependence of ΔRMQ arises if the differential relaxation is due to CSA fluctuations, and if 

the motion is on the “slow branch”, i.e., in the microsecond to millisecond time scale. The 

quantitative measurement of differential relaxation relies on the assumption that coherent 

contributions impact both the ZQ and DQ relaxation to similar extent. Differential ZQ/DQ 

relaxation has been studied recently using highly deuterated ubiquitin in the solid state [44].

3.3.3 Relaxation in the Presence of a Spin-Lock Field: T1ϱ Measurements—As 

outlined above, the challenge of accessing quantitative transverse relaxation parameters is 

separation of incoherent relaxation effects due to stochastic processes from signal decay that 

arises from coherent evolution under incompletely averaged anisotropic interactions. The 

observables introduced in the previous sections circumvent this problem by measuring the 

difference between two decay parameters assuming that the coherent dephasing contributes 

similarly to both quantities.

Alternatively, one may identify conditions where the coherent contributions to a particular 

transverse relaxation-rate constant are sufficiently suppressed, such that they become 

negligible compared to the incoherent part. As coherent dephasing is due to incomplete 

averaging of anisotropic interactions, in the sense of second- or higher-order terms in the 

average-Hamiltonian expansion (see Section 3.1), this contribution is reduced by (i) 

eliminating some of the interactions (e.g., by deuteration) and/or (ii) by increasing the MAS 

frequency. As discussed in Section 3.3.1 (Figure 14) even combining high levels of 

deuteration and the fastest MAS frequencies available today is insufficient to suppress 

coherent contributions to R2' rate constants. However, this may not be the case for relaxation 

under a spin-lock, i.e., R1ϱ.

Lewandowski et al have shown that the coherent contributions are strongly reduced when 

measuring 15N T1ϱ time constants, i.e., the decay of 15N coherence in the presence of a spin-

lock field at MAS frequencies of 40 kHz or higher [114]. It was estimated that the coherent 

dephasing contribution to 15N R1ϱ rate constants are smaller than approximately 0.27 s−1 in 

protonated proteins at MAS frequencies exceeding 40 kHz. Thus, it becomes negligible 

compared to the actual 15N R1ϱ relaxation-rate constants, which are typically in the order of 

>2 s−1 for the backbone amides of proteins. The coherent dephasing is reduced significantly 

by the presence of a spin-lock field, compared to free evolution and proton decoupling. This 

effect is not yet fully understood or explained.

Prior to the study of Lewandowski et al mentioned above, there have also been reports of 

measurements of 15N R1ϱ relaxation-rate constants in highly-deuterated proteins at lower 

MAS frequency of about 10-20 kHz [113], and over the last years several other studies of 

R1ϱ rate constants have been reported under different conditions of sample deuteration, MAS 

frequency, and RF-field strengths [45,100,110,133,134]. The conditions under which 

coherent dephasing is sufficiently suppressed depends on the choice of the labeling scheme 

(in particular deuteration), the MAS frequency, and the RF field strength. The precise ranges 

of these three parameters that allow one to neglect coherent dephasing are not yet entirely 

clear, and need further experimental investigation.
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For a quantitative description of the T1ϱ experiment we need to consider three time-

dependent processes, (i) MAS, (ii) the RF-field amplitude of the spin lock and (iii) the 

stochastic process, which modulates the anisotropic interactions and leads to relaxation. In 

addition, we also need to consider that the dynamic process is sensitive to differences in the 

isotropic chemical shifts. We defer the latter effect to a paragraph later in this section.

The analytical equation describing T1ϱ relaxation of a spin due to the CSA and the 

heteronuclear dipolar coupling are given by

(52)

where the magnitude of the effective field  and the direction of the 

effective field are given by θeff = arccos(Ω/ωeff). The analytical expression for T1 can be 

found in Eq. (37) while the analytical expression for the on-resonance T1ϱ (T1ρ (0)) is 

equivalent to the T2 expression of Eq. (46) with the zero frequency replaced by the effective 

field strength. It is important to remember (see Section 2.2.1) that the frequencies sampled 

by the spectral-density functions have to be adjusted and corrected for the RF-field 

amplitude. These expressions can be written in a more compact way following Ref. [135]:

(53)

where

(54)

Here, we have already made the assumption that the Larmor frequencies are much larger 

than the effective field and the MAS frequency, and that both are only considered for their 

contributions to the J(0) term of T2 relaxation. The term R1Δ is sensitive to the spectral-

density function at frequencies corresponding to sums and differences of the RF-field 

strength and MAS frequency. Thus, R1ϱ relaxation-rate constants depend on the MAS 

frequency and the rf-field amplitude. Note that such a MAS dependence is not seen for 

longitudinal relaxation-rate constants, because the relevant spectral densities are the sums 

and differences of the MAS frequency (tens of kilohertz) and the Larmor frequency 

(hundreds of megahertz). As the Larmor frequency is much larger than the MAS frequency, 

these terms are essentially independent of the MAS frequency. It should also be noted here, 

that the T1ϱ relaxation for homonuclear dipolar couplings has a different form and samples 
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the spectral-density function at different frequencies. An alternative formulation of the 

expression for T1ϱ under MAS has been reported [136].

Figure 19 shows calculated R1ϱ rate constants for a fixed MAS frequency and three different 

spin-lock RF field strengths. These simulations indicate that for RF-field amplitudes 

approaching the MAS frequency, the R1ϱ rate constant increases if the motion is in the 

microsecond regime, while for correlation times in the nanosecond time scale R1ϱ rate 

constants are unaltered. This dependence on the MAS frequency and RF-field strength 

comes from the spectral density terms sampling sums and differences of MAS frequency 

and rf-field amplitude (see Eq. (54)). It is similar to the MAS dependence of the cross-

correlated relaxation rate constants discussed above (see Figure 17 and Figure 18). The 

dependence of the R1ϱ rate constant on MAS frequency and RF field strength has been 

exploited previously to study microsecond motion [45,133,137].

It is noteworthy that the three transverse relaxation parameters we have considered so far 

(CSA/D cross-correlated relaxation, CSA/CSA cross-correlated relaxation and R1ϱ 

relaxation) are all sensitive to similar frequencies of the spectral density, although there are 

some differences. This becomes evident when comparing Figure 17 and Figure 19. It is 

interesting to compare how for a given sample the measured relaxation-rate constants 

compare, given that they should in principle have some similarity. Figure 20 shows a 

comparison between two different rate constants measured on ubiquitin. Although there are 

differences, which might be due to the somewhat different sensitivity to the spectral density 

function, it is evident that the two measurements provide a similar picture of the motion in 

this protein.

We have so far only considered R1ϱ relaxation due to stochastic modulation of anisotropic 

interactions. In this last paragraph we consider the effect of isotropic chemical-shift 

fluctuations on R1ϱ relaxation-rate constants. The isotropic chemical-shift modulation is the 

basis of solution-state experiments that address conformational exchange processes on 

microsecond-to-millisecond time scales. In (isotropic) solution, the isotropic chemical-shift 

fluctuation is the only way of accessing dynamics on time scales longer than the overall 

tumbling correlation time (typically tens of nanoseconds). The effects of chemical-shift 

modulation in solution-state NMR are well described by the Bloch-McConnell formalism 

[138]. We use here numerical simulations to investigate common features as well as 

differences between the well-known solution-state case and the situation under MAS. Figure 

21 shows the R1ϱ relaxation rate constant of a 15N spin bound to a 1H spin, which undergoes 

exchange between two states. In these simulations we assume that the two states differ by 

the orientations of the 1H-15N dipolar coupling and the 15N CSA tensor, or by the 

isotropic 15N chemical shift, or both. We first consider the case where the two states differ 

only by the isotropic chemical shift, while all anisotropic interactions remain unchanged by 

the dynamic process (Figure 21, solid black curve). In this case the heteronuclear dipolar 

coupling and CSA are perfectly averaged by MAS, and the situation is identical to the one in 

solution-state NMR. We observe an amplitude-dependent R1ϱ relaxation-rate constant 

(relaxation dispersion) in the low rf-field range that is due to the isotropic chemical-shift 

modulation fully described by the Bloch-McConnell formalism. The relaxation-dispersion 
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profile depends on (i) the relative populations of the involved states, (ii) the exchange 

kinetics, and (iii) the isotropic chemical-shift difference.

In the case where the two exchanging states differ also in the orientations of dipolar-

coupling and CSA tensors, the situation becomes more complex: as the RF-field amplitude 

approaches the rotary-resonance conditions [139,140] (ν1 = n νr where n = 1,2), we observe 

an increased R1ϱ decay-rate constant [45,133,134]. This is expected, as the spectral density 

at the difference between MAS frequency and the RF-field amplitude is relevant for R1ϱ (see 

Eq. (54)). In the context of our exchange model, the shape of this relaxation-dispersion 

profile depends on (i) the populations of the involved states, (ii) the exchange kinetics and 

(iii) the strength of the involved interactions and the angle by which they are modulated 

along the exchange process. Note that in solution-state NMR overall tumbling averages 

anisotropic interactions to zero on a nanosecond time scale. Thus, microsecond fluctuations 

of bond orientations in isotropic solution are undetectable by solution-state NMR. This is 

not the case for liquid-crystalline solution and it has been shown that bond-vector orientation 

changes can be detected in such systems [141]. In the general case, both isotropic chemical-

shift changes as well as bond-vector orientation changes are expected to occur in any 

motional process. The expected evolution of R1ϱ with the RF-field amplitude is thus the sum 

of the two limiting cases, a Bloch-McConnell-type of dispersion, and a dispersion in the 

vicinity of the rotary-resonance conditions. Solid-state R1ϱ relaxation-dispersion 

experiments have been shown to probe isotropic chemical-shift changes and bond-vector 

changes in proteins [45].

T1ϱ experiments in proteins have so far primarily been used with 15N spins. The reasons for 

focusing on this nucleus is that its relaxation is well described by taking into account only 

the 15N CSA tensor and the heteronuclear dipolar interaction to the directly-bonded proton. 

The case of 13C T1ϱ relaxation in fully 13C labeled proteins is more complicated. The 

evolution of homonuclear dipolar and scalar couplings during the spin-lock period renders 

quantitative analyses more difficult. Similar challenges have been addressed in solution-state 

NMR [2,142]. The solutions primarily involve selective labeling schemes or a restriction to 

the carbonyl 13C nucleus. Since it is well-separated from other 13C spins in terms of 

resonance frequency, the application of selective RF irradiation is straightforward. The 

stronger 1H-13C dipolar coupling also means that the second-order AHT term (Eq. (31)) is 

larger. Thus, it is more difficult to suppress coherent dephasing for the case of 13C transverse 

relaxation, as compared to 15N relaxation.

3.3.4 Carr-Purcell-Meiboom-Gill (CPMG) Relaxation Dispersion—We have seen in 

the previous section that fluctuation of the isotropic chemical shift leads to increased R1ϱ 

rate constants. Likewise, such fluctuations also lead to increased R2' relaxation, i.e., 

enhanced coherence decay in a spin-echo experiment. This can be seen by considering the 

evolution of a spin in a spin-echo sequence. In the absence of conformational exchange, the 

spin accumulates a phase during the first delay τ, according to its chemical shift; the 

refocusing pulse and subsequent delay refocus this accumulated phase, resulting in full echo 

formation. In the presence of stochastic exchange of the molecule between two (or more) 

conformations, the phase that a spin accumulates depends on the time the molecule spends 

in each of the states, and their respective chemical shifts. As the exchange process is 
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stochastic, the trajectory that the molecule undergoes during each of the two delays differ, 

and therefore the phase accumulated during the first delay differs from the one in the second 

delay, such that the echo formed at the end of the second delay is incomplete. When 

considering the ensemble of molecules we study, each undergoing different stochastic 

exchange, the result is an increased apparent R2' rate constant. This exchange-broadening 

can be reduced if the delays are reduced (such that the accumulated phase is smaller, which 

can be done by applying a train of closely-spaced refocusing pulses instead of a single 

refocusing pulse. This idea is at the basis of what is known as Carr-Purcell-Meiboom-Gill 

relaxation dispersion (RD) experiments [73,74]. Figure 22a shows the principle of such 

experiments; the coherence decay is measured in different experiments, where the repetition 

rate of the refocusing pulses is changed. In the presence of exchange the effective relaxation-

rate constant varies with the CPMG frequency (Figure 22c), (νCPMG = 1/(4τ)) in a manner 

that depends on (i) the isotropic chemical-shift difference of the considered nucleus in the 

exchanging states, (ii) the exchange-rate constant and (iii) the relative populations of the 

exchanging states. Therefore, fitting CPMG RD profiles allows us to obtain these 

parameters, similarly to R1ϱ relaxation dispersion experiments [2,40,42].

In order to allow a quantitative analysis of the exchange process, one needs to assure that the 

dependence of the relaxation-rate constant on the CPMG frequency is solely due to 

exchange. This is not always the case, and eliminating or quantifying other contributions is 

one of the main challenges in CPMG experiments. For example, during the free-evolution 

delays, an initial in-phase operator Nx evolves under the scalar coupling to anti-phase 

2HzNy; although the subsequent π pulse and the delay will refocus this term, the effective 

relaxation rate is the weighted average of the relaxation rates of Nx and 2HzNy, and the 

relative weight of these two coherences depends on the length of the delay. The relaxation of 

in-phase and anti-phase magnetization is generally different, and consequently, in 

experiments with different delays (i.e., CPMG frequencies) the relaxation rate is expected to 

differ even without the presence of conformational exchange. This hampers quantitative 

analysis of CPMG dispersion data. In solution-state NMR this issue has been solved either 

by ensuring that the time during which Nx and 2HzNy are present is constant and 

independent of the CPMG frequency [143], or by preventing the buildup of the anti-phase 

term by scalar decoupling. Using either implementation leads to CPMG RD measurements 

that are robust and reliable. In practice, such experiments are most often performed using a 

constant-time delay, while applying an increasing number of refocusing pulses (see Figure 

22a). The CPMG frequency is then ν = n / (2T) , where n is the number of applied pulses 

and T is the total relaxation delay.

In the solid state, the coherence decay in a spin-echo experiment (R2') contains also 

contributions from dipolar dephasing, and the decay rate constant itself is not amenable to 

quantitative interpretation. However, in the context of studies of conformational exchange 

the absolute values of the R2' rate constants are not relevant, and in solution-state NMR the 

“plateau” value of R2' (at infinite νCPMG) is independent of conformational exchange and is 

usually not further interpreted. Thus, CPMG RD experiments may be applied to MAS NMR 

even though the R2' rate constants contain coherent dephasing. However, in order to apply 

and quantitatively interpret CPMG RD data in MAS NMR a number of conditions need to 

be verified. (i) It must be assured that the coherent contributions to R2' are independent of 
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νCPMG or that the dependence is precisely known. This basically means that the dipolar 

dephasing should be independent of νCPMG and that recoupling of anisotropic interactions 

by the train of π pulses can be excluded. (ii) From a practical perspective, the relaxation-rate 

constant should be sufficiently small such that a long total relaxation delay can be chosen. 

This is because the minimum CPMG frequency depends on the relaxation delay as νmin = 

1/(2T). Note that the duration of the pulses is generally short compared to the inter-pulse 

delay, and the relaxation during the pulses is generally neglected.

Figure 22(c)-(f) investigates the properties of 15N CPMG RD experiments under MAS, 

using the pulse-sequence element in panel (b). In the first case we investigate an exchange 

process in a H-N two-spin system with two states that differ only by the isotropic 15N 

chemical shift, while the orientations and anisotropies of the CSA and dipolar-coupling 

tensors are fixed. In this case MAS perfectly averages the static anisotropic interactions and 

the RD profile can be predicted using the Bloch-McConnell formalism (Figure 22c). In the 

case where the exchange process also alters the anisotropic interactions, the R2' rate 

constants are increased (Figure 22d, e). This is expected, as fluctuation of CSA and dipolar-

coupling tensors leads to relaxation (see Figure 14).

Additional protons render the situation somewhat more complex, as shown in panels (d) to 

(f). The presence of an additional proton spin increases the apparent R2' relaxation rate 

constant. If this increase is uniform, i.e. independent of the CPMG frequency, such an 

increase does not have any effect of fitted exchange parameters. The increase is indeed only 

slightly νCPMG-dependent in the simulations, although the remaining coherent contributions 

may generally lead to inaccuracies. Numerical simulations (such as those shown in panel (f)) 

can be used to quantitatively investigate the impact of these contributions to the fitted 

parameters [44].

CPMG relaxation-dispersion MAS NMR has been used only recently, in an application to 

microcrystalline ubiquitin [44]. In this study, a highly deuterated protein sample was used, in 

order to reduce the effects of remote proton spins and increase 15N coherence life times. 

Data were obtained at two different static magnetic field strengths, and fit using the Bloch-

McConnell formalism as usually applied in solution-state NMR. By comparison with 

relaxation-dispersion measurements in solution state, it was found that the motions are 

slowed down by the crystalline environment (see Section 4).

3.3.5 The Validity of Redfield Theory in Solids—The discussion so far has mostly 

been based on the Redfield treatment of relaxation. As outlined in Section 2.1, an important 

assumption in the derivation of Redfield theory is that the motional process is very fast 

compared to the change of the density operator. For the motion on a microsecond time scale 

that we study with transverse relaxation-rate constants, this assumption is not a priori 
granted. It is, therefore, important to compare numerical simulations based on the stochastic 

Liouville approach [69-71] for the transverse relaxation-rate constants discussed (cross-

correlated relaxation and T1ϱ relaxation), with their analytical results based on Redfield 

theory.

Schanda and Ernst Page 41

Prog Nucl Magn Reson Spectrosc. Author manuscript; available in PMC 2017 February 01.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Figure 23 compares 15N R1ϱ rate constants calculated with the analytical Redfield treatment 

(Figure 23a) and rate constants obtained by stochastic numerical simulations in the rotating 

frame (Figure 23b). For both simulations we assumed an identical two-site exchange model, 

similar to the simulations shown in Section 2.2.2. The comparison shows that on the “fast 

branch”, i.e. when the correlation time is 10−8 to 10−6 s, the two approaches result in 

essentially identical 15N R1ϱ rate constants. For faster motions, there are significant 

differences that are due to the fact that the stochastic simulations are carried out in the 

rotating frame. As soon as the correlation times approach the magnitude of the inverse of the 

Larmor frequencies, this approach is no longer correct. Essentially, the spectral densities at 

multiples of the Larmor frequencies are not sampled by the stochastic Liouville simulation 

in the rotating frame. For slower motion (10−6 to 10−2.5 s), there is a clear difference 

between the two approaches with the Redfield method based data being larger. The source of 

this discrepancy is an interference between the stochastic time-dependent process and the 

MAS rotation, which are on the same time scale. For even longer correlation times, the 

agreement gets better again since the time scales of the deterministic and stochastic time 

dependence get separated again. Although the deviation is small, quantitative analyses of 

dynamics in this time regime need to take this into account.

Similar differences are found in comparisons of the CSA/D (Figure 24) and CSA/CSA 

(Figure 25) cross-correlated relaxation rate constants. Figure 26 shows a comparison of two 

slices for order parameters of 0.982 and 0.95, which illustrates again the differences between 

the Redfield and the stochastic Liouville approach.

These illustrations show that the relaxation-rate constants predicted by Redfield theory are 

generally incorrect in the microsecond to millisecond regime. This is expected from the 

assumptions made in the derivation of Redfield theory. We have not considered here 

relaxation in the presence of heteronuclear decoupling, which are sometimes used in 

protonated proteins. Approximate solutions to such experiments have been proposed 

[76,109].

Taken together, in this section we have presented transverse relaxation parameters and their 

dependence on dynamics, and also their sensitivity to factors that are unrelated to dynamics 

(in particular dipolar dephasing). Under experimental conditions reported so far, free-

evolution decay rate constants (R2) cannot be quantitatively analyzed, as the coherent 

contribution to decay is often dominant. We have presented three experimental parameters 

that are sensitive to dipolar and/or CSA fluctuations, and which can be quantitatively 

measured, namely CSA/D cross-correlated relaxation, CSA/CSA cross-correlated relaxation 

and R1ϱ relaxation. These relaxation rate constants are sensitive to the spectral density 

function at the MAS frequency (and, for R1ϱ, the RF field strength). In the “slow end” of the 

sensitivity range of these parameters (microseconds), these relaxation rate constants are thus 

sensitive to the MAS frequency, and MAS-dependent measurements, or RF-field dependent 

measurements of R1ϱ can provide direct evidence for such slow motions. We also showed 

that isotropic chemical-shift fluctuations can be probed by R1ϱ- or CPMG relaxation 

dispersion, or via the differential relaxation of ZQ and DQ coherences. Section 3.5 will 

investigate how transverse and longitudinal relaxation rate constants, together with the 
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amplitudes of motion obtained from dipolar-coupling derived order parameters (Section 3.4) 

can inform about physical parameters of the dynamics.

3.4 Direct Measurement of Motional Amplitudes from Incompletely-Averaged Anisotropic 
Interactions

Fluctuation of NMR interactions, in particular dipolar couplings, chemical-shift 

anisotropies, and quadrupolar couplings (only for spins with quantum numbers I > 1/2) lead 

to nuclear spin relaxation. The induced relaxation-rate constants depend on the strengths of 

the interactions, the amplitude of motion, and the time scale at which the fluctuation occurs, 

as discussed in the previous sections. In addition, the incomplete averaging of these 

interactions due to dynamics in solids provides another, complementary probe of molecular 

dynamics. Unlike relaxation, the averaged values of the anisotropic interactions do not 

explicitly depend on the time scale of motion. In this section we will discuss how motional 

processes lead to incomplete averaging of anisotropic interactions, and how information 

about the motional amplitude and their symmetry can be obtained from measurements of 

scaled anisotropic interactions.

The NMR interactions can be described by a Hamiltonian, which in the case of an 

interaction between two spins (k ≠ n) has the following form in Cartesian notation:

(55)

Such a Hamiltonian describes the interaction between two (nuclear or electron) spins, such 

as the scalar, the dipolar, or the hyperfine coupling. The quadrupolar coupling is described 

by the same type of Hamiltonian with k = n. The interaction of a spin with a classical 

magnetic field (Zeeman interaction, radio-frequency fields, chemical shift, or magnetic 

susceptibility) is described by a Hamiltonian, which has a similar form

(56)

In all cases of NMR interactions, the matrix A describes the strength and orientation-

dependence of the interaction. It is often convenient to decompose the general 3×3 matrix in 

three components,

(57)

where
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(58)

with

(59)

This component is invariant under rotation, i.e., isotropic, and is referred to as rank-0 

component of A. In the case of the chemical-shift interaction, this component is referred to 

as the isotropic chemical shift while in the case of the J coupling, it is referred to as the 

scalar coupling. For dipolar and quadrupolar coupling this component does not exist.

The traceless and symmetrized part of A, the component A(2), is given by

(60)

and has the rotation properties of a rank-2 tensor. In the present section we focus on this 

component of the interaction tensors in particular for the cases of the chemical-shift, the 

dipolar and the quadrupolar interactions. The remaining component, A(1), is traceless and 

antisymmetric. It has rank-1 tensor properties, and it is usually not discussed in NMR since 

it is not visible in high-field NMR spectra. However, it can contribute to relaxation 

phenomena and while it has been measured in selected cases [144], its magnitude is often 

not known and it is difficult to quantify its contribution.

The Cartesian rank-2 tensor is diagonal in the principal-axis system of the interaction:

(61)

Here, Axx, Ayy and Azz are the diagonal elements of the tensor A in the principal axis 

system and δA is the anisotropy and ηA = (Ayy – Axx) / Azz is the asymmetry of the 

interaction. The asymmetry assumes values 0 ≤ ηA ≤ 1, implying that ∣Ayy∣≤∣Axx∣≤∣Azz∣. 

These definitions follow the conventions proposed by Mehring [55].

In the case of a dipolar coupling, i.e. the direct through-space interaction between two spins 

n and k, the magnitude of the anisotropy is determined by the nature of the involved nuclei 

and their relative distance, i.e.,
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(62)

The magnitude of the dipolar coupling depends only on the distance between the two spins 

and is axially symmetric, i.e., ηD = 0. The dipolar coupling is, therefore, described by an 

axially-symmetric tensor and is traceless, i.e., it is averaged to zero in isotropic solution. The 

anisotropy of the dipolar coupling tensor, δD, is unambiguously defined by Eq. (62), and we 

will use this definition throughout. For a 1H-15N spin pair separated by 1.02 Å, the tensor 

anisotropy is δD/2π = 22.954 kHz. Sometimes the term dipolar-coupling constant is used, 

which corresponds to the splitting observed in a static powder spectrum, which is for a 

heteronuclear spin pair δD/4π.

As already discussed in the Introduction, the J coupling has, in principle, all three 

components (rank-0, rank-1 and rank-2 tensor components). However, the rank-2 part of the 

dipolar coupling is typically small for light elements and for practical purposes absorbed 

into the dipolar coupling. There is not much information available about the antisymmetric 

part of the J coupling and usually only the isotropic part of the J coupling is considered in 

the form of the scalar coupling.

The quadrupolar coupling exists only for spins with I > 1/2, such as deuterium. It arises from 

the interaction of the quadrupole moment of the spin (Q) with the electric field gradient. The 

source of the electric field gradient is the non-spherical distribution of the electron density 

around the nucleus. The anisotropy of the quadrupolar-coupling tensor is

(63).

Unlike the dipolar-coupling tensor, quadrupolar-coupling tensors are generally not axially 

symmetric, i.e. η ≠ 0. The electric-field gradient tensor is traceless, implying that in solution 

the nuclear quadrupole interaction has an average of zero and, therefore, no isotropic 

component.

The chemical shift is due to the magnetic field induced by the electrons surrounding a 

nucleus. Unlike the dipolar and quadrupolar coupling interactions, the rank-0 component of 

the chemical-shift tensor does not vanish, i.e. the chemical-shift tensor has a non-zero 

isotropic average. Fluctuation of this isotropic component is not the focus of this section; we 

recall here that we have discussed in Section 1 the cases of fast/slow exchange with respect 

to the isotropic chemical shift, and in Section 3.3 we investigated how isotropic chemical-

shift fluctuation on a time scale commensurate with the magnitude (in Hertz) of the 

fluctuation leads to line broadening, and how it can be measured by CPMG relaxation 

dispersion, R1ϱ relaxation dispersion, or differential ZQ/DQ relaxation.

The rank-2 component is referred to as chemical-shift anisotropy (CSA). It is generally 

asymmetric, i.e. ηCSA ≠ 0. For certain sites, such as the backbone 15N spin, it can be 
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approximated well by an axially-symmetric tensor, i.e., ηCSA = 0. Determining CSA tensors 

from ab initio quantum-chemical calculations currently remains challenging [145]. This 

means that the rigid-limit CSA tensors are generally not known to high precision, making it 

difficult to interpret measured CSA parameters in terms of dynamics.

It is instructive to visualize the rank-2 tensors in terms of graphical representations, to get an 

intuitive understanding for the motional averaging of anisotropic interactions. Figure 27a 

shows such representations for a symmetric second-rank tensor (i.e. η = 0), such as a 

dipolar-coupling tensor or an axially symmetric CSA tensor. The anisotropic nature of this 

interaction is readily visible because the function along different spatial directions takes 

different values. This space-dependence is described by the second-order Legendre 

polynomial P2 (cosθ) = (3cos2θ – 1)/2, where θ is the angle between the z axis of the tensor 

(i.e., the internuclear vector for a dipolar interaction) and the static magnetic field B0. In the 

representation of Figure 27, cyan portions correspond to orientations in which the value of 

the interaction (e.g. the dipolar coupling) is positive, whereas red portions correspond to 

orientations with a negative values of the interaction. In Figure 27a the internuclear vector 

would thus point along the vertical axis. If we assume that the B0 field is along the same 

axis, the spin pair would have a large and positive dipolar coupling.

When motion is present, different states are inter-converting, and these states generally differ 

in terms of the orientation of the interaction and possibly the magnitude of the tensor 

anisotropy δD, but we neglect this here for simplicity. For example, consider the dipolar 

coupling between two spins, which would only change in terms of its orientation. If the 

inter-conversion between these states is fast compared to the interaction strength – we will 

illustrate the time scale considerations further below – the resulting measurable interaction 

tensor corresponds to the average over all sampled orientations. Figure 27B shows this 

averaging process for the case of the dipolar-coupling tensor of a system undergoing a two-

site exchange process. The plot shows the resulting tensor of the averaging process for a 

range of different relative populations between the two states which differ by an angle of 

90°. Figure 27C shows the tensors resulting from dynamic averaging in a three-site 

exchange process. One can see in this example that if only one state is populated, i.e., in the 

absence of motion (the tensors in the corners of the triangle), the dipolar-coupling tensor is 

axially symmetric and corresponds to the rigid-limit value. Whenever there is dynamic 

averaging between different conformers, the anisotropy of the averaged tensor will be 

smaller than the static value. Furthermore, in the general case the averaged tensor will 

become asymmetric, even though each of the rigid-limit tensors is axially symmetric.

Such a simple graphical representation of the dynamic averaging process indicates that the 

averaged interaction tensors directly report on the amplitude of the underlying motion. Thus, 

if one can measure experimentally the averaged tensor, and if one knows the anisotropy and 

asymmetry of the tensors in the static case, one can get direct insight into the amplitude of 

the motion underlying the averaging process. Often only the anisotropy of the interaction is 

quantified, as it is generally easier to measure, and the reduction of the tensor anisotropy is 

reported as the order parameter S,
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(64)

Note that the order parameter S is obtained here, not S2, which is obtained from relaxation 

measurements; this is because a product of interactions enters in the relaxation equations, 

and the scaling of the interactions thus enters as a product (see Eq. (23)). Measuring 

motional amplitudes through motionally-averaged anisotropic interactions, therefore, 

requires (i) that the interaction tensor can be measured with a high accuracy and precision 

and (ii) that the rigid-limit values of the tensors are known. In this context, the dipolar 

coupling between directly bonded nuclei is particularly attractive, because the rigid-limit 

dipolar-coupling tensor can be readily computed from the vibrationally-averaged bond 

length, and the gyromagnetic ratios of the involved nuclei. However, also CSA and 

quadrupolar tensors can provide rich information about motional amplitudes.

Measurements of anisotropic interactions under MAS can be done with different approaches. 

If the magic-angle spinning frequency is small compared to the magnitude of the anisotropy 

of the interaction, the spinning side-band manifold can be used to characterize the 

anisotropic interaction tensor directly. This is mainly the case for quadrupolar couplings 

which are often much larger than typical spinning frequencies. For dipolar-coupling and 

CSA interactions, measuring anisotropic interactions under MAS often requires a recoupling 

sequence [77-80], which reintroduces the interaction that is otherwise averaged by MAS in 

first order on the time scale of τr. The recoupling can be seen as an interference between two 

time-dependent processes, the sample rotation and the pulse sequence. If molecular motion 

is present, this stochastic dynamic process is a third time dependence; it leads to an 

averaging of the anisotropic interactions (which is the desired information), and it may also 

interfere with the MAS averaging and the recoupling sequences. We investigate in the 

following the effect of dynamics on the apparent recoupling behavior one can observe. This 

is best done using numerical simulations (performed here with GAMMA [146]), which take 

into account (i) magic-angle sample spinning, (ii) a recoupling sequence, and (iii) a dynamic 

process, here modeled as a jump between discrete sites. Interferences between these three 

different processes are used to illustrate the time scales over which dynamic averaging 

occurs. For these simulations, a widely used heteronuclear dipolar-recoupling technique, the 

Rotational Echo DOuble Resonance (REDOR) recoupling sequence is used [147]. In 

REDOR, a train of rotor-synchronized π pulses is applied twice per rotor period, in order to 

counteract the averaging of the dipolar coupling by MAS. The outcome of this experiment is 

a (normalized) signal amplitude which is modulated over the course of a recoupling period 

with a frequency that reflects the tensor anisotropy and to some extent also the tensor 

asymmetry, as shown further below. In our simulations, the MAS and the inversion pulses, 

as well as the dynamic process are explicitly taken into account; the dynamics are modeled 

using an explicit two- and three-site jump model, similar to the numerical simulations in the 

previous sections about relaxation.

Figure 28 shows REDOR curves for a system undergoing a symmetric three-site exchange 

process, occurring on a range of time scales from 10 ns to 1 s. In the case that the exchange 

process is very slow (top left panel) the REDOR oscillation is fast, reflecting a large tensor 
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anisotropy (i.e. a strong dipolar coupling). This large and non-averaged dipolar coupling is 

expected for slow dynamics, because in the limiting case of infinitely slow motion the 

system behaves like a fully rigid system with the full (symmetric) dipolar coupling. On the 

other end of the time scale, if the motion is very fast, the resulting REDOR oscillation is 

slow. As the motional model used here is a symmetric three-site jump model (θ = 70.5°, ϕ = 

120°) with equal populations, the scaling of the dipolar coupling is a factor P2 (cosθ ) = −1/3 

in the fast-exchange limit, and the time evolution is thus simply scaled by a factor of 1/3 as 

compared to the rigid-limit case. In between these two limiting cases, fast and slow motion, 

one can see a transition area. Figure 28 shows that this “coalescence” regime occurs when 

the rate of the dynamic process is about k = 100 s−1 to 5000 s−1. In this “transition” regime, 

the REDOR curve appears “damped”. The range of rate constants at which this intermediate 

regime is reached directly depends on the interaction strength, as well as some pulse-

sequence related factors that translate into a “scaling factor” of the interaction measured by 

the sequence [148,149]. Thus, for a smaller interaction strength the interaction is averaged 

up to longer time scales. Experimental approaches to characterizing this intermediate regime 

have been discussed [150,151].

Note that the averaging process of anisotropic interactions revealed by Figure 28 is 

analogous to the averaging of isotropic chemical shifts, which is a more widely known 

phenomenon in NMR: the separation between “fast exchange”, characterized by the 

observation of a single averaged chemical-shift value and “slow exchange”, in which case 

individual peaks for the involved states are observed, depends on the chemical-shift 

difference. Fast exchange is defined as k ≫ ΔΩ, while for slow exchange k ≪ ΔΩ, and in 

the intermediate regime line broadening is observed. Similarly, the REDOR curves in the 

slow exchange regime can be seen as a superposition of individual REDOR recoupling 

curves. In our examples, the different exchanging states were assumed to have identical 

(rigid-limit) tensor parameters; thus a single recoupling behavior is observed. In the “fast 

exchange” regime, one also sees a single recoupling curve, which represents the averaged 

dipolar coupling tensor. These findings are thus analogous to chemical-shift averaging. The 

situation is complicated by the fact that in a powder sample different crystallites have 

different values of the dipolar coupling. Therefore, we see a superposition of curves where 

different crystallites can be in different exchange regimes.

In the above example we have studied the case of a three-fold symmetric exchange process 

with equal populations. In such a case of C3 symmetry (or in cases of higher symmetry) and 

equal populations the resulting averaged tensor is itself axially symmetric, just as the rigid-

limit tensors are axially symmetric. We now consider the more general case of a lower 

symmetry. Figure 29 shows the case of a two-site jump model. Similar to the case described 

above, we find fast, intermediate and slow exchange regimes, but in the fast-exchange limit 

we get a recoupling curve that does not look like a typical REDOR curve. This is due to the 

fact that the averaged dipolar coupling is no longer axially symmetric. One can also see the 

asymmetry of the interaction arising from the motion by inspection of the corresponding 

tensors, shown in Figure 27. It was found there that motion generally leads to asymmetric 

tensors, unless the motion has three-fold (C3) or higher symmetry and equal populations.

Schanda and Ernst Page 48

Prog Nucl Magn Reson Spectrosc. Author manuscript; available in PMC 2017 February 01.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



In the overwhelming majority of cases reported in the literature on dipolar-coupling 

measurements, the asymmetry of the averaged dipolar-coupling tensor is ignored, and only 

the scaling of the anisotropy is considered. The reason for this is that while the anisotropy is 

rather straightforward to measure (reflected by the oscillation frequency in the time domain, 

or a splitting observed in the frequency domain), the effects of tensor asymmetry are more 

subtle. The asymmetry is primarily manifest as a distortion of the recoupling curve. This is 

illustrated for the case of REDOR recoupling using a two-site jump model in Figure 29. 

However, in many recoupling sequences, a damping or distortion of the recoupling can also 

arise from experimental imperfections, remote spins or relaxation during the recoupling 

sequence [149,152,153]. In most experiments, the recoupling curves (or Fourier transforms 

thereof) need to be fitted with empirical parameters such as a zero-frequency component or a 

damping, thus masking asymmetry effect. One notable exception is the REDOR experiment 

that has a built-in normalization, which eliminates the need to use ad hoc empirical fit 

parameters. In a recent application, REDOR has been applied to characterize non-symmetric 

side-chain motions [154].

3.4.1 Experimental measurement of anisotropic interactions—The amplitudes of 

motion (reflected in order parameters, S, and tensor asymmetry η) can be obtained by 

comparing the dynamically-averaged anisotropic interaction to the respective rigid-limit 

value. The accuracy to which motional amplitudes can be obtained depends thus on the 

accuracy with which the tensor parameters can be obtained experimentally, and the precision 

of knowledge of the rigid-limit tensor. Accuracy is in fact quite critical, if one wants to 

interpret motional amplitudes quantitatively or combine them with relaxation data, as 

illustrated by a simple calculation: consider the case of N-H backbone order parameters in a 

protein. Typically, amide sites have a squared order parameter, S2, of approximately 0.85, or 

an order parameter S = 0.921. If the measurement of the dipolar coupling has a systematic 

error of −5% (or if the uncertainty of the rigid-limit value is of this order of magnitude) one 

would calculate an order parameter of S = 0.875 (or, more relevant when combining with 

relaxation data, S2 = 0.766). When viewed on an absolute scale of amplitude (1-S2), this 

difference is substantial (1-S2 = 0.234 instead of 0.15), which shows that for absolute 
interpretation of motional amplitudes, and also for joint analyses with relaxation data, one 

needs to know precisely the rigid-limit value, and one needs experimental approaches that 

have an accuracy better than 1-2%. We review some common measurement schemes below.

CSA tensors can be measured in solid-state NMR by Herzfeld-Berger analysis of the 

spinning sideband manifold under slow MAS conditions [155,156], single-crystal 

measurements [157] or static measurements. However, due to limited resolution under these 

conditions, and difficulties in obtaining single crystals, these approaches are not generally 

applicable to proteins. As CSA tensors are relatively small (generally a few kHz), the 

spinning sideband manifold rapidly disappears when reaching MAS frequencies required for 

high resolution. Thus, the use of recoupling sequences is required under MAS. Among the 

currently most-often used approaches are symmetry-based [158] recoupling sequences, such 

as the C-type-based ROCSA (Recoupling Of CSA) experiment [159] ,which has been used 

for measuring CSA tensors in several proteins [99,106,156,159,160], and R-type sequences 

[161]. As is generally the case for recoupling sequences, the precision and accuracy with 

Schanda and Ernst Page 49

Prog Nucl Magn Reson Spectrosc. Author manuscript; available in PMC 2017 February 01.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



which tensor parameters are obtained are impacted by experimental imperfections such as 

RF-field inhomogeneity or phase transients. Even if CSA tensors can be obtained accurately, 

the interpretation in terms of dynamic amplitudes is challenged by the fact that the rigid-

limit tensor parameters are generally not precisely known. CSA tensors vary from site to site 

due to differences in local structure, and, for example, hydrogen bonding, particularly 

for 15N and 13C' sites. Therefore, it is currently difficult to obtain quantitative order 

parameters from CSA measurements.

Compared to CSA tensors, quadrupolar-coupling tensors are large (about 200 kHz for 2H), 

and therefore the spinning sideband manifold is readily visible even at MAS frequencies 

beyond 10-20 kHz. Spinning sidebands can be fitted to extract tensor parameters, which has 

been reported for proteins [22]. An experimental challenge comes from the fact that the 

sideband manifold is very large, and exciting it uniformly requires very large RF field 

strengths (which are generally not available). If uniform excitation cannot be assured, the 

sideband intensities are skewed, somehow challenging the precision of fits. New 2H 

excitation and cross-polarization methods may at least partly solve this problem [162,163]. 

As with the CSA tensors, it is generally difficult to obtain the rigid-limit quadrupolar-

coupling tensor parameters, as they depend on the local electron density. This makes 

absolute quantitative statements about the motional amplitudes difficult.

Dipolar couplings are in this respect more straightforward to interpret, as the rigid-limit 

coupling tensor is symmetric (see above) and its anisotropy can be readily computed from 

the type and distance of the involved nuclei, which, for directly bonded nuclei, is generally 

known to good accuracy. Measuring dipolar-coupling tensors under MAS requires the use of 

recoupling techniques. A number of approaches have been proposed for measurement of 

dipolar couplings. They all consist of a rotor-synchronized pulse sequence that counteracts 

the MAS averaging. The most commonly used approaches are cross-polarization (CP) 

buildup measurements [164,165], Lee-Goldburg CP [111,166], phase-inverted CP [167,168], 

DIPSHIFT experiments [169,170], R-sequences [153,158,171,172], homonuclear SPC5 

[173], T-MREV [174], or variants of REDOR [147] and TEDOR recoupling [106,175]. 

Systematic errors of dipolar-coupling measurements often are a challenge, and may arise 

from: (i) Experimental imperfections of the pulse sequence, in particular RF-field 

inhomogeneities or missetting of the applied RF-field amplitude. Besides these, the effects 

of phase transients can also play an important role; phase-transient compensated pulses 

might be a way to avoid such effects for some of the pulse sequences [176,177]. (ii) Artifacts 

that are due to other interactions than the one to be measured. Particularly, the measurement 

of a dipolar coupling between directly bonded nuclei may be impacted by the recoupling of 

the coupling to other spins. The potential systematic errors due to experimental imperfection 

have been investigated in a number of studies, such as in references [149,152,153,168], and 

we do not review all the different sequences here. In our view, the REDOR sequence appears 

to be among the most robust experiments for measuring heteronuclear dipolar couplings (as 

long as fairly isolated X-H spin systems are prepared, e.g. by deuteration), and we use this 

sequence here to exemplify the effects of RF field inhomogeneities.

Figure 30 shows the effects of RF-field amplitude missetting on 1H and 15N RF channels on 

the apparent (measured) dipolar-coupling tensor anisotropy. Panel (a) shows the pulse 
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sequence used for measuring H-N dipolar couplings in deuterated amide-protonated 

proteins. Panel (b) shows a typical RF inhomogeneity profile of a contemporary MAS probe. 

RF field distributions of the order of 5-10% across the sample volume are generally 

observed. The observed recoupling curves will, therefore, always be a sum over recoupling 

curves from different parts of the sample, with different effective recoupling behavior. In 

addition to this distribution of fields, one also needs to consider the impact that a 

misadjusted RF-field amplitude has on the recoupling curve. Panels (c) and (d) investigate 

the effect of RF missetting for the 1H RF field on the measured dipolar coupling, while 

panel (e) considers the effect of 15N RF missetting (which is very small). Missetting of 

the 1H RF field by about 10% can lead to an underestimation of the dipolar coupling by 

about 5%. Note that for other recoupling sequences the errors can be substantially larger. 

Accurate measurement of dipolar couplings, thus, requires, in addition to choosing a pulse 

sequence that is as robust as possible, that the RF fields are carefully adjusted, and possibly 

that RF field inhomogeneities are taken into account when fitting the data. Furthermore, the 

effects of CSAs and remote spins need to be considered, and these generally vary between 

different recoupling sequences; CSA effects in some sequences are negligibly small, e.g. in 

REDOR, or they can be explicitly measured and accounted for in fits of the dipolar coupling 

[172].

Figure 31 shows experimentally determined 1H-15N dipolar-coupling derived order 

parameters (plotted here as S2) in microcrystalline ubiquitin as a function of the amino acid 

residue. The order parameter profile shown in black was obtained by careful calibration of 

the RF field strength of the 1H and 15N π pulses; furthermore, when analyzing these data, 

the previously measured RF field distribution in the coil was taken into account explicitly by 

applying a scaling factor [110]. Data sets shown in red and blue were recorded with slightly 

miscalibrated RF field strengths. One can see that as a result, the order parameters are 

underestimated; this is in agreement with numerical simulations and experimental 

investigations shown in Figure 30 (c) and (d). Interestingly, the systematic underestimation 

is, to a good approximation, a uniform scaling factor, as the close agreement between the 

three data sets after best-fit scaling shows (Figure 31b). This indicates that the relative order 

parameters between different sites can be obtained very reproducibly, even if the RF field is 

not very accurately set. With correct setting of the RF field strength one can obtain absolute 

order parameters. Interestingly, these order parameters are very similar to order parameters 

determined by relaxation-based solution-state NMR methods, panel (c), indicating that the 

sub-microsecond motion in solution and crystals is similar; we will further address this 

question in Section 4.

To summarize this section, the measurement of dynamically-averaged anisotropic 

interactions (dipolar couplings, CSAs and quadrupolar couplings) provides direct insight 

into the amplitude of motions. The time scale over which motions are averaged depends on 

the interaction strength (and some experimental details), and typically the averaging is over 

time scales shorter than microseconds. Averaged anisotropic interactions provide 

information about the amplitude and, if the asymmetry can be measured, also about the 

geometry of the motion. For a quantitative analysis the rigid-limit tensor parameters have to 

be known, which is most easily available for dipolar couplings. Dynamically-averaged 

anisotropic interactions are complementary to relaxation data. While the former provide 
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rather straightforward information about amplitudes, the latter are sensitive to both 

amplitudes and time scales. A combined use of both observables is thus an attractive route to 

jointly characterizing rates and amplitudes. The following section illustrates such combined 

approaches.

3.5 Combination of Averaged Anisotropic Interactions and Relaxation Data to Obtain 
Information About Motion

The ultimate goal of dynamics studies is an atomic description of the motion of a molecule. 

In the ideal case, one would like to know all the three-dimensional structures that are inter-

converting, as well as their relative populations and the height of the energy barriers between 

them. Obviously, no experimental technique can currently provide such information directly 

and we always need to use simplified approaches that characterize approximately the 

conformational space sampled by a given group of atoms. The best model to choose depends 

on the type of motion that is expected, which in turn depends primarily on the time scale of 

the considered motion, and, therefore, on the energy barrier between the involved states. 

Motions occurring on time scales shorter than microseconds connect states separated by 

rather low energy barriers. Often these states have similar relative populations, and differ 

mostly in local bond orientations (bond libration motions). Therefore, most commonly such 

motions are described with a parameter that describes the effective motional amplitude, and 

a parameter that describes the time scale of motion. A common model is restricted rotational 

diffusion (wobbling in a cone). Its advantage is that an (approximate) analytical equation is 

available for this model [60,101,178-180], and the difference between the different spectral 

densities J0(ω), J±1(ω), J±2(ω) can be accounted for [181] (see Section 2.2.1). Other models 

have also been used for this purpose, such as Gaussian-Angle Fluctuation (GAF) models 

[100]. Alternatively to these explicit geometrical models, the “model-free” approach is 

commonly used. It makes the assumption that the different spectral density functions are all 

equal, which is incorrect but seems to have essentially no consequences for the analysis (see 

Section 2.2.1). This approach is based on an assumption about the functional form of the 

correlation function (exponentially decaying correlation function) rather than a geometrical 

model, and can be expanded in a straightforward manner to include more than one 

exponentially decaying component. This is of advantage when modeling several dynamics 

processes on different time scales from experimental data. We will use this model here to 

investigate how available experimental data (relaxation data and dipolar-coupling derived 

order parameters) can be used in a joint fit of amplitudes and time scales of motions.

Figure 32 recapitulates the functional dependence of 15N relaxation rate constants as a 

function of the motional parameters in the “model-free” approach (S2 and τ). Calculations 

for different static magnetic fields are shown, and in the case of R1ϱ, also different RF-field 

amplitudes are considered. Combining several measurements, i.e., R1 and R1ϱ measurements 

at different fields might be a way to obtain the amplitudes and time scales of the underlying 

motion. Is such a fit possible – in other words, is the solution one obtains unique and 

unambiguous, or is it ill-defined? This question has been addressed in detail and by different 

means by a few recent studies [110,154,178,180,182], and we aim to summarise the main 

conclusions in Figure 32g and h. To this end, we assume a certain motional model, i.e. we 

assume an N-H site that undergoes motion described by an order parameter (S2 = 0.85) and a 
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time scale of either 100 ps (panel g) or 50 ns (panel h). No matter if the motion is on a 

picosecond or nanosecond time scale, if only longitudinal relaxation-rate constants obtained 

at different B0 field are combined, the amplitude of motion is very poorly defined. This is 

due to the fact that R1 relaxation-rate constants have only a weak dependence on the B0 

field, and combining several measurements does not provide a strong constraint on the fitted 

value of S2. The obvious solution is to combine such data with other data that have a very 

different dependence on S2 and τ. This can be achieved by adding transverse relaxation 

parameters, such as 15N R1ϱ, or cross-correlated relaxation-rate constants, discussed in 

Section 3.4. In Figure 32 we explore the use of 15N R1ϱ rate constants. Figure 32g shows 

that in the case that the motion is fast (sub-nanosecond), the 15N R1ϱ measurement hardly 

provides any additional information. This is because when the motion is fast the absolute 

value of the relaxation rate constant is far below the experimental error, or the contributions 

of coherent dephasing to R1ϱ. Only if the motion is slow (nanosecond-to-microsecond 

regime), the transverse relaxation rate constant allows restraining the parameter space. In 

practice, however, one can expect that there is always fast local motion, such that combining 

R1 and R1ϱ measurements to extract order parameters and time scales of motion generally 

fails (see below). Another possibility is to use relaxation parameters from other nuclei, e.g. 

carbonyl-13C or 13Cα, which are sensitive to different frequencies of the spectral-density 

function. Such an approach has been proposed recently [178]; it depends on specific 

assumptions about the backbone motion, such as rigidity of the peptide plane limiting 

motions to those affecting 15N and 13CO equally. Another approach is to measure directly 

the dipolar-coupling derived order parameter, and use it in a combined fit with relaxation 

data [98,128,178].

Several recent studies investigated the outcome of model-free analyses of experimental or 

in-silico data of protein backbone motion [99,110,178,180,183]. These studies suggest that 

fits of relaxation data alone, without fixing the order parameter to an independently 

determined dipolar-coupling derived order parameter leads to systematically overestimated 

values of S2, and erroneous detection of nanosecond motion. Figure 33 demonstrates for a 

case study of ubiquitin, in which 6 different relaxation data sets were fitted with or without 

dipolar-coupling based S2 values, that inclusion of dipolar-coupling derived order parameter 

is essential to obtain physically meaningful dynamics parameters.

In practice, the simple model we have considered so far, namely that the motion can be 

described by a single motional process, is likely to be too simplistic. The relaxation-rate 

constants considered are sensitive to motions occurring on time scales from picoseconds to 

several milliseconds (see Figure 32), and it seems likely that more motional modes have to 

be included. Two-time scale model-free fits have been employed previously 

[98,110,128,178,180], and even three-time scale models have been fitted, and there seemed 

to be evidence that such a complex model is statistically justified [101]. Of course, such 

multi-parameter models are a challenge in terms of uniqueness of the solution; furthermore, 

some of the motional components may have extremely low motional amplitude, if they occur 

on the time scale to which the relaxation-rate constant is most sensitive. When it comes to 

fitting very low-amplitude motional modes, one also needs to consider the potential 

influence of systematic errors on the raw data, e.g., residual spin diffusion or dipolar 
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dephasing, or failure of the Redfield theory to accurately describe the relaxation-rate 

constants outside the regime of this theory.

In the above discussion, we have only considered spin relaxation arising through fluctuation 

of dipolar couplings and CSA tensors. In principle, the fluctuation of the chemical shift can 

also be exploited to gain information about motion on longer time scales (microseconds to 

milliseconds). In this time scale, coherence decay (transverse relaxation) can be induced by 

fluctuations of any of these parameters, i.e. isotropic or anisotropic chemical shifts, and 

dipolar couplings (see Figure 32 and the discussion about relaxation dispersion in Section 

3.3.3). Fitting dynamics over time scales from picoseconds to milliseconds will require a 

combined use of Redfield-theory based equations, and approaches used for analyzing, e.g., 

relaxation-dispersion data (see Section 3.3.3). Such an analysis may be complicated by the 

fact that slower motions may be diffusion-like, i.e. may be described by an order parameter, 

but microsecond motion may also involve higher-energy barriers, and involve few distinct 

states. Global models that attempt to describe motions on a wide range of time scales will 

need to model such complex motions, and deal with the problem of over-fitting which is 

often incurred.

4 Selected Examples of Recent Applications: How do Protein Motions in 

Crystals Differ from those in Solution?

In this last section, we show a few selected examples in which MAS solid-state NMR has 

been used to characterize protein dynamics. There is a growing number of interesting 

dynamics studies that address proteins of increasing complexity and biological interest, such 

as membrane proteins [104,184,185] and amyloid fibrils [106,186,187]. For reasons of 

limited space we focus here only on one particular aspect of biomolecular dynamics. We 

want to review how protein dynamics in crystals differ from the dynamics in solution. Does 

the crystalline lattice limit the motional freedom of proteins, or change the relative 

populations of states? Or is the water-rich environment of a crystal (filled to about 50% with 

water) essentially identical to free solution, where protein motions are concerned? As 

crystalline preparations are the most extensively studied ones by solid-state NMR, a 

coherent picture is emerging now about protein motion in crystals, in particular for model 

systems such as SH3, GB1 and ubiquitin.

When comparing protein dynamics in solution and solids, one needs to remember the 

methodological differences; in particular, relaxation-derived order parameters in solution 

report only on motions faster than the overall-tumbling correlation time (typically a few 

nanoseconds). In contrast, solid-state relaxation-rate constants probe internal motion over 

much wider time scales, as overall tumbling is absent; likewise, dipolar-coupling order 

parameters also probe motions from pico- to microseconds. In the light of these differences 

it is interesting to note that order parameters of SH3 and ubiquitin in solution and crystals 

are very similar. Figure 34 shows experimental S2 values for chicken α-spectrin SH3 and 

ubiquitin obtained in the solid state as well as in solution; furthermore, simulated order 

parameters, derived from MD simulations of a representative portion of a crystal lattice, and 

a molecule in solution, respectively, are shown. Overall, the absolute amplitude of motion 
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appears to be very similar for most of the residues. Small exceptions could be identified. For 

example, the loop around residues 7-11 in ubiquitin shows somewhat larger amplitudes in 

solution; likewise, residue Q62 in ubiquitin, also located in a loop region, appears more 

mobile in solution than in the crystal. In SH3, curiously, residue Asn38 becomes more 

mobile in the crystal than in solution, as seen by MD simulations [182] (residue not in the 

experimental data of Figure 34a). This residue seems to co-exist in two conformations in the 

crystal, stabilized by intermolecular interactions, and exchanges between them; in contrast, 

in solution it is only in one conformation, which explains why it has less mobility in solution 

than in the crystal. Taken together, these data suggest that the backbone motion on sub-

microsecond time scales is very similar in solution and crystals, with a handful of exceptions 

located primarily in loop regions. Qualitatively, this picture has also been seen in other 

proteins, such as thioredoxin [99] and GB1 [179,180].

There is further support for the conclusion that the crystal lattice has rather limited impact 

on fast motions. Figure 35 shows two examples that suggest that side-chain motions also 

behave similarly in solution and in crystals. Figure 35a presents a comparison between 13C 

R1 relaxation rate constants of 13CHD2-labeled Val/Leu methyl groups in the protein 

chicken α-spectrin SH3 in solution and in a crystal. For this comparison, the overall-

tumbling contribution to the solution-state rate constants has been subtracted. The R1 rate 

constants are clearly highly correlated, showing that the pico- to nanosecond motions probed 

by this rate constant are hardly affected by the crystalline environment. Another 

investigation of side chain dynamics has been reported for the protein ubiquitin, shown in 

Figure 35b-e. Here we look at H-C (asymmetric) dipolar couplings of Val residues, labeled 

with 13CHD2 in an otherwise deuterated background. While three out of the four valines 

show a rather large, and essentially symmetric dipolar coupling tensor, Val 70 has a lower 

tensor anisotropy, and non-zero asymmetry. These data show that Val 70 samples different 

rotamer states, while the other valines populate primarily one rotamer state. Interestingly, 

solution-state NMR comes to the same conclusions [188], and even the relative rotamer 

populations are in good agreement with the crystal data (see panel d), suggesting that side 

chain motions (at least for these particular methyl-bearing side chains) behave similarly in 

solution and crystals.

Another view of the impact of the crystalline environment on protein motion comes from 

comparisons of a given protein in different crystal packing arrangements. Recently, Ma et al. 
have studied dynamics of ubiquitin in three different crystal forms (crystallizing in different 

space groups) [189]. Figure 36 compares (panels a and b) observables that are primarily 

sensitive to sub-microsecond motions. These observables (15N R1 rate constants and dipolar 

order parameters) are, overall, similar. Exceptions, for which the dynamics are clearly 

different between the different crystal forms, are found in the loop (residues 7-11) and for 

residue Q62; in these two regions of the protein the amplitudes of motion differ, pointing to 

hindered motion through crystal contacts. Interestingly, this finding mirrors the picture 

provided by the comparison between solution and crystal data (Figure 34): also there, 

differences in motions were found for exactly the same regions, while the majority of the 

protein had very similar motional parameters. MD simulations on different crystal forms of 

ubiquitin support this view [183,189]. The picture that emerges from the various 

comparisons above is, therefore, that the crystalline environment does not detectably alter 
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the dynamics on sub-microsecond time scales, except for a few residues located in loop 

regions.

In the light of this view, it appears somewhat surprising that R1ϱ rate constants in different 

crystals are rather different, at least for the cases reported for ubiquitin, as shown in Figure 

36c and d. In fact, one of the studied crystals has a systematically higher level of R1ϱ that is 

to reasonable approximation uniform across the sequence. This offset can be explained by a 

global motional process of the molecule, i.e. residual overall “rocking” motion. Such a 

rocking motion predicts also that X-ray diffraction resolution should be lower, and that the 

Wilson B-factor (reflecting the precision with which the atomic positions can be determined) 

is higher. These predictions are indeed found experimentally found (Figure 36e). The 

rocking motion should also lead to slightly lower order parameters, and also this observation 

is experimentally found (see panel b). Additional support for such overall “rocking” motion 

in the crystal comes from MD simulations of the different crystals, which detects significant 

overall residual motion for cubic-PEG-ub [189]. It may be that such overall motion, found 

here in one particular crystal form, is a general contribution to resolution of solid-state NMR 

spectra. Further cases need to be studied to draw broad conclusions about the generality of 

rocking motion in crystals, and also higher-order assemblies.

Finally, we turn to slower motional processes, of microseconds or slower. In Section 3.3 we 

have discussed methods that allow study of conformational exchange processes on these 

time scales. In particular, we have discussed differential ZQ/DQ relaxation, CPMG 

relaxation-dispersion and R1ϱ relaxation dispersion measurements that provide 

complementary views on exchange dynamics. For the case of ubiquitin, all these 

experiments have been performed. The picture emerging from these data shows that there is 

an exchange process in a well-defined region, enclosing the loop of residues D52-T55 

(which forms a so-called type-II β-turn structure in microcrystals), as well as the 

neighboring helix. The exchange process is thought to correspond to a flip of peptide plane 

D52/G53, and some rearrangement of hydrogen bonds and side chain orientations, as 

discussed before [44,190,191]. The fitted exchange rate is about 3000 s−1, and the relative 

populations are approximately 90:10. Interestingly, in the solution state the exchange 

process is clearly different [190,192]. Although the same residues show exchange, the 

populations and kinetics are different. At the temperature at which large relaxation-

dispersion profiles were seen in solid-state NMR experiments (300 K), the corresponding 

solution-state dispersion profiles are completely flat, and only at temperatures more than 20 

K lower can one observe the exchange process, which is about one order of magnitude faster 

than in crystals even at this low temperature. Thus, we have here a clear impact of the crystal 

packing on the dynamics. This apparently slower dynamics in the crystal can be understood 

by steric clashes of side chains, which hamper the transition between the two involved 

conformations, as indicated in Figure 37. Furthermore, the order of the two conformations 

seems to be reversed: the state that has the higher population in the microcrystal seems to 

correspond to the lower-populated state in solution and vice versa (see Figure 37). Taken 

together, these data show unambiguously that microsecond exchange processes between 

distinct states are altered by crystal packing. Differences in slow motion have also been 

observed for another protein, SH3 [27].
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To summarize, we have provided a short review of some recently reported studies that 

provide insight into the impact of the crystalline environment on protein dynamics. The 

picture emerging from the cases reported here (SH3, ubiquitin, and also GB1) is the 

following. Fast dynamics, on picosecond time scales, generally correspond to very local 

motions, arising primarily from local bond librations. Residues in densely packed structures 

(secondary structures, hydrophobic core) often are in this category. As one may expect, such 

motions are hardly impacted by crystal packing, because they are only sensitive to the very 

local environment. The comparison of sub-microsecond motions discussed above seems to 

confirm this view: most residues in secondary structures, as well as methyl-bearing side 

chains, which are mostly in the hydrophobic core, have basically the same motional 

amplitudes in solution and crystal. Some effect of steric hindrance is seen in loop regions. 

Again, this seems physically reasonable, as loops often undergo larger-amplitude motions 

that involve several residues. When going to even longer time scales (microseconds) the 

available data from ubiquitin suggests that the crystalline environment slows down the 

motion considerably. Again, given the more concerted nature of such slow motions this is 

not surprising. One may thus draw a first conclusion and say that the more a particular 

motion is collective, the more likely it is to be impacted by packing interactions. Although 

this finding seems physically reasonable, further studies on additional systems will be 

needed to evaluate the generality of the findings on these first few model protein systems.

5 Conclusions

We have hopefully provided here an overview of the theory relevant to the measurement of 

molecular dynamics by magic-angle solid-state NMR. From a theoretical standpoint, MAS 

NMR provides a wealth of information about dynamics, arguably significantly more that its 

solution-state counterpart. This is because MAS-NMR-derived relaxation parameters are 

sensitive to a wider range of time scales than those from solution studies, and averaging of 

both isotropic and anisotropic interactions can be used to characterize dynamics. The fact 

that there is no molecular tumbling in the solid state therefore means that one can potentially 

study motion in great detail. On the other hand, it is exactly this presence of multiple 

interactions that represents a challenge for quantitative measurements of dynamic 

parameters. We have discussed the challenges of discriminating dynamics-related 

parameters from other contributions in detail for the case of transverse relaxation-rate 

constants.

Continuous improvement in MAS NMR hardware, in particular faster sample spinning, in 

sample preparation and isotope labeling, as well as in new experimental approaches, and the 

interplay between these different advances, is nowadays rapidly providing new avenues for 

studying (bio-)molecular motion at increasing levels of detail. Given the new areas of 

application of MAS NMR to challenging biological systems one can expect to witness a 

growing importance of this technique in elucidating the role of dynamics in molecular 

function.
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Glossary

AHT average-Hamiltonian theory

CCR cross-correlated relaxation

CEST chemical-exchange saturation transfer

CODEX centerband-only detection of exchange

CPMG Carr-Purcell-Meiboom-Gill

CSA chemical-shift anisotropy

DQ double quantum

EXSY exchange spectroscopy

GAF Gaussian axial fluctuations

MAS magic-angle spinning

MPD methyl-pentane-diol

MQ multiple quantum

NMR nuclear-magnetic resonance

NOE nuclear Overhauser effect

PEG poly-ethylene-glycol

RD relaxation dispersion

REDOR Rotary Echo Double Resonance

RF radio frequency

ROCSA Recoupling of CSA

TROSY transverse-relaxation optimized spectroscopy

ZQ zero quantum
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Figure 1. 
Interactions in NMR spectroscopy, NMR observables probing molecular motion, and time-

dependence of NMR parameters. (a) Interactions in NMR and their respective interaction 

strengths (in Hz), top of figure. (b) The time scales over which these interactions are 

averaged; for dynamics occurring on at a rate higher than the interaction strength (in Hz), the 

observed interaction strength is the average over the sample conformations (“fast” regime). 

(c) Methods for detecting dynamic process that are slow compared to the interaction strength 

(“slow” regime). (d) Methods for probing “intermediate” regime dynamics. (e) Time scales 
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probed by spin relaxation measurements (upper two: longitudinal relaxation; lower two: 

transverse relaxation). (f) Typical time scales of changes of the density operator; the 

evolution of the spin states can be due to either relaxation processes (due to stochastic 

motion), or due to deterministic processes (i.e. non-stochastic processes ). In order to 

quantitatively measure relaxation parameters, one has to ensure that the coherent evolution is 

negligible compared to the dynamics-induced evolution (as marked with question marks 

here). (g) Time scales of magic-angle spinning and typical spin nutation frequencies under 

RF fields.
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Figure 2. 
Coordinate systems and rotations required for the transformation of the space tensor of an 

NMR interaction from the principal-axis system into the laboratory-frame coordinate system 

for the example of a C-H dipolar coupling in a CH3 group.
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Figure 3. 
a) Plot of the magnitude of the T1 relaxation rate constants in a static solid as a function of 

the crystallite orientation for a model of restricted rotational diffusion (dipolar relaxation in 

a NH spin system, θ = 45°, Dw = 2.525 106 s, 500 MHz). Plotted on top of the tensor are 

MAS trajectories (for different angles βMR) that show the partial averaging of the T1 

relaxation-rate constants by MAS. b) The contour plot on the right-hand side shows the 

dependence of the relaxation-rate constant under MAS on the rotor angle αRL (t) = −ωrt and 

βMR. The trajectories are indicated by dashed lines. c) The lower three panels show as cones 

the trajectories along which a given tensor, aligned at an angle of βMR (three different 

values, as indicated).
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Figure 4. 
R1 as a function of α and β for a N-H spin system (δD/2π = 22954 Hz, δCSA/2π = 6867 Hz) 

at 600 MHz: a) two-site jump model (τc = 1 ns, γ0 = 30°) and b) a restricted-rotational 

diffusion model (Dw = 2 106 s−1 , θ = 30°).
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Figure 5. 
Simulated decay of the magnetization in a powder using averaged decays (blue) and 

approximations using averaged rate constants (red) and a mono-exponential fit (green) of the 

powder-averaged decays up to a value of 5% of the initial intensity for a) a two-site jump 

model and b) a restricted rotational diffusion model with the same parameters as in Fig. 4. 

The black dashed line indicates the cut-off value used in the fitting of the rate constants.
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Figure 6. 
Plot of the longitudinal 15N relaxation-rate constant for a two-site jump model and dipolar 

relaxation at a static magnetic field of 14.1 T (corresponding to a 1H resonance frequency 

600 MHz) as a function of the correlation time τc and the jump angle θ. a) Powder-averaged 

rate constant for a two-site jump model, b) mono-exponential fit of the averaged decays for a 

two-site jump model, and c) model-free calculation. The relative differences between the 

powder-averaged rate constants and the model-free calculations are shown in d) while e) 

shows the relative difference between the mono-exponential fits and the model-free rate 

constants. f) Relative difference between the averaged rate constants and the mono-

exponential fits.
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Figure 7. 
Plot of the longitudinal 15N relaxation-rate constant for a restricted rotational-diffusion in a 

cone model and dipolar relaxation at a static magnetic field of 14.1 T (corresponding to a 1H 

resonance frequency 600 MHz) as a function of the correlation time τc and the cone opening 

angle θ. a) Powder-averaged rate constant for the wobbling-in-a-cone model, b) mono-

exponential fit of the averaged decays for the wobbling-in-a-cone model, and c) model-free 

calculation. The relative differences between the powder-averaged rate constants and the 

model-free calculations are shown in d) while e) shows the relative difference between the 

mono-exponential fits and the model-free rate constants. f) Relative difference between the 

averaged rate constants and the mono-exponential fits.
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Figure 8. 
Simulation of the MAS spectrum of a proton spin system consisting of (a) 2 and (b) 3 

protons with identical chemical shifts and dipolar couplings of 10 kHz between all protons 

as a function of spinning frequency. The spectrum of the two-spin system is independent of 

the spinning frequency. The spectra have been horizontally shifted to improve the visibility.
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Figure 9. 
Plot of the changes in the longitudinal relaxation-rate constant R1i = 0.05 s−1 as a function of 

the difference of the two relaxation-rate constants R1i and R1j and the spin-diffusion rate 

constant kij (see Eqs. (32) and (33)). This clearly shows that for reliable results, the spin-

diffusion rate constant must significantly smaller than the difference of the two relaxation-

rate constants.
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Figure 10. 
Time evolution of the inverted 15N polarization in a N-H two-spin system at 600 MHz 

Larmor frequency under restricted rotational diffusion with Dw = 108 s−1 and θ = 40° 

leading to T1H = 5.3 s, T1N = 1.6 s and ΓHN = 0.11 s−1. The red line shows the mono-

exponential decay with the time constant of T1N while the blue one shows the multi-

exponential decay obtained from the system of coupled differential equations of Eq. (34). 

Increasing the 1H auto-relaxation rate constant by 1 s−1 and 3 s−1 leads to the decay shown 

in green and cyan, respectively. An increase to 10 s−1 leads to the black dashed line that is 

almost equivalent to the mono-exponential decay shown in red.
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Figure 11. 
Dependence of R1 = 1/T1 on the correlation time and the order parameter for a single time-

scale model-free approach for an H-N two spin system at (a) 600 MHz and (b) 1100 MHz 

proton Larmor frequency. The anisotropy of the dipolar coupling was assumed to be δNH / 

2π = 22954 Hz and the anisotropy of the axially-symmetric CSA tensor δN / 2π = 113 ppm.
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Figure 12. 
Dependence of the steady-state NOE η and the cross-relaxation rate constant σNH = ΓIz ,Sz 
on the correlation time and the order parameter for a simple single time-scale model-free 

approach for an H-N two spin system. (a) η at 600 MHz and (b) η at 1100 MHz, (c) σNH at 

600 MHz and (d) σNH at 1100 MHz proton Larmor frequency. The anisotropy of the dipolar 

coupling was assumed to be δNH / 2π = 22954 Hz.
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Figure 13. 
Dependence of the dipolar/CSA cross-correlated cross-relaxation rate constant ΓSz ,2IzSz on 

the correlation time and the order parameter for a simple single time-scale model-free 

approach for an H-N two spin system at (a) 600 MHz and (b) 1100 MHz proton Larmor 

frequency. The anisotropy of the dipolar coupling was assumed to be δNH / 2π = 22954 Hz 

and the anisotropy of the axially-symmetric CSA tensor δN / 2π = 113 ppm.
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Figure 14. 
15N R2 relaxation-rate constant, obtained from Eq. (46). In the contour plot on the left, a 

MAS frequency of 20 kHz was assumed; the right panel shows traces at an order parameter 

of S2 = 0.9 for three MAS frequencies, as indicated. In all cases a magnetic field strength of 

14.1 T was assumed.
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Figure 15. 
15N transverse decay rate constants in crystals of deuterated ubiquitin. The R2’ data set in 

blue was recorded on a perdeuterated sample, re-protonated on amide sites to 20%, at a 

MAS frequency of 57 kHz and a B0 field strength of 19.9 T (850 MHz 1H Larmor 

frequency). In this experiment, a simple delay – π pulse – delay sequence without any 1H 

decoupling was used. In the data set in green, the same experimental conditions were 

chosen, but a 3.1 kHz WALTZ decoupling on 1H was applied. The data set shown in red is 

the 15N R1ϱ relaxation rate constant (on-resonance), which was measured at 39.5 kHz MAS 

frequency at a B0 field strength of 14.1 T in the presence of a 15 kHz spin-lock RF field 

strength (without 1H decoupling). The sample used for this measurement was perdeuterated 

at non-exchangeable sites, and re-protonated to 50% at exchangeable sites (prepared in a 

H2O/D2O mixture under conditions that allow full equilibration at all sites at the desired 

ratio). The data set in black is the predicted 15N R1ϱ relaxation rate constant, which is based 

on amplitudes and time scales of amide motion, as obtained from a model-free fit [110]. For 

this latter, a set of up to six relaxation rate constants and the motional averaged H-N dipolar 

coupling anisotropy was used in a fit. The three residues indicated have been shown to 

undergo conformational exchange on a microsecond time scale, contributing the their 

transverse relaxation rate constants.
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Figure 16. 
a) Coherent contributions to the two 15N multiplet lines from CSA/dipole interference at 600 

MHz 1H Larmor frequency in the static case. The dipolar coupling has an anisotropy of 

δNH/2π = 22954 Hz and the CSA tensor anisotropy is δN/2π = 6867 Hz pattern (black line) 

and the two multiplet lines (blue lines) corresponding to the proton spin in α and β state, 

respectively. b) shows the center band of the MAS manifold as a function of the spinning 

frequency (νr = 1, 2, 5, 10, 20, 50, 100 kHz, for color code see legend in figure). One can 

clearly see the intensity difference between the two multiplet lines at lower spinning 

frequencies due to the different width of the powder patterns. At MAS frequencies above 20 

kHz the difference becomes small.
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Figure 17. 
1H-15N dipolar/15N CSA cross-correlated relaxation, from numerical simulations. (a) 

Exchange model used for these simulations. The exchange occurs between two distinct 

states, in which the peptide plane is rotated along the Cα-Cα axis by an angle ϕ. The 1H-15N 

dipolar interaction (1.02 Å distance) is inclined with respect to this rotation axis by an angle 

θD = 77°, and the 15N CSA tensor (assumed to be axially symmetric, with Δσ = −170 ppm) 

is inclined by θCSA = 97°. The jump angle can be related to a generalized order parameter S2 

as S 2 = (1+3 cos2ϕ)/4. Panel (b) shows 15N spectra resulting from free evolution of 15N 
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coherence without 1H decoupling. The asymmetry of the line width of the doublet 

components is evident. Two different MAS frequencies are shown, as indicated. All spectra 

are normalized to the height of the larger peak. (c) Cross-correlated relaxation rate constant 

ΓCSA/D as a function of the jump time constant for three different MAS frequencies, as 

indicated. The lower plot is a logarithmic plot of the rate constant. The value of ΓCSA/D = 1 

s−1, which is the approximate detection limit. The exchange jump angle was assumed as θ = 

26.5°, corresponding to an order parameter S2 = 0.85. Panel (d) shows ΓI+ ,I+Sz as a function 

of the amplitude of motion and the time constant. The MAS frequency was set to 50 kHz.
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Figure 18. 
Simulation of the differential DQ/ZQ relaxation, ΔRMQ, The simulation assumed a two-site 

exchange model (the same as in Figure 17), in which the axially symmetric 15N CSA tensor 

had a Δσ = 6800 Hz (−170 ppm at 14.1 T), and the assumed axially symmetric 1H CSA 

tensor had a Δσ = 480 Hz. The 1H CSA tensor was inclined relative to the 15N tensor by 10 

degrees. In this simulation we followed a previously employed experimental scheme in 

solution [132] in which the buildup of 2HyNy from 2HxNx is monitored. This buildup arises 

from differences in relaxation rate constants of ZQ and DQ coherences, as can easily be 

verified by expressing these product operators in raising/lowering operator basis. The 

differential relaxation rate constant ΔRMQ can be obtained from <2HyNy>/<2HxNx> = 

tanh(ΔRMQ t/2). Panel (a) shows the differential relaxation rate constant ΔRMQ as a function 

of time scale and amplitude of the motion, assuming that all isotropic chemical shifts are 

equal in the two states. The jump angle was converted to an order parameter S2 as S2 = (1+3 

cos2ϕ)/4. Panel (b) shows the MAS dependency of ΔRMQ as a function of the time scale of 

motion, for a jump amplitude of ϕ = 5°. In both (a) and (b) we assumed that the isotropic 

chemical shift is identical in the two exchanging states, and that the two states are populated 

equally. In panel (c) it is assumed that the two CSA tensors and the dipolar coupling are 
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unchanged by the exchange process, and the isotropic chemical shifts of 1H and 15N vary. 

Two different assumptions about the Δω values and different relative populations show the 

MAS dependence of ΔRMQ, due to CSA/CSA modulation. Panel (d) shows a general case, 

which involves fluctuation of both the isotropic and anisotropic components of the two 

chemical shifts. Here Δσ15N = 6800 Hz, ηCSA,15N = 0, Δσ1H = 3600 Hz, ηCSA,1H = 0.9 and 

the exchange occurred between two states (90%/10% population) in which the orientations 

of the tensors are inclined by 30°, and the isotropic chemical shift changes are Δν15N = 160 

Hz, Δν1H = 800 Hz.
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Figure 19. 
15N R1ϱ rate constants for a MAS frequency of 40 kHz and three different RF-field 

amplitudes, 10 kHz, 30 kHz and 35 kHz. The data were calculated based on the analytical 

expressions (Eq. (53)) derived within the Redfield-theory framework. The 15N CSA was set 

to 6800 Hz and the dipolar coupling to 22.9 kHz (1.02 Å distance).
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Figure 20. 
Comparison of two different 15N relaxation rate constants, measured in deuterated ubiquitin 

at fast MAS. Shown in red and black are the 15N R1ϱ (at 39 kHz MAS and 15 kHz spin-

lock) and the 1H-15N dipolar/15N CSA cross-correlated relaxation [98], respectively. The 

insert shows a correlation between these two.
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Figure 21. 
Conformational exchange as seen by 15N R1ϱ relaxation-dispersion experiments under MAS, 

obtained by stochastic Liouville simulations. An exchange between two states is assumed 

populated to 90% and 10% respectively, and differing in the bond orientation (CSA, dipole), 

and the 15N isotropic chemical shift (Δν = 300 Hz). Different jump angles are simulated, as 

shown in the figure, and the exchange rate was 1000 s−1. The MAS frequency was 40 kHz, 

and the B0 field strength was 14.1 T. The red dashed area is shown in a zoom view on the 

right. Dashed curves show the case in which the isotropic chemical shift difference between 

the two states is zero, i.e. where only fluctuations of the anisotropic interactions occur.
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Figure 22. 
Carr-Purcell-Meiboom-Gill (CPMG) relaxation dispersion experiments in rotating solids. (a) 

Illustration of the CPMG pulse sequence element; shown are four different repetition rates of 

the refocusing pulse train, applied to the 15N nucleus. (b) Implementation of the CPMG 

pulse element in a so-called relaxation-compensated scheme [143]. In this scheme, an in-

phase-to-anti-phase element is inserted in the middle of the constant-time relaxation delay. 

(c) CPMG dispersion profiles, i.e. effective R2 rate constants, determined from a 40 ms 

constant-time relaxation delay, as a function of the CPMG frequency. These profiles were 

obtained from numerical integration of the Bloch-McConnell equation; they are identical to 

numerical simulations, assuming that the two states differ exclusively in their 15N isotropic 

chemical shift, i.e. that the two states are identical in terms of dipolar coupling and CSA. 
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The two exchanging states (populated to pA = 90%, pB = 10%) have a 15N isotropic 

chemical-shift difference of ∣Δω15N∣ = 300 Hz, and different exchange rate kAB as indicated 

in the legend. (d) Numerical simulations of the exchange process in a three-spin system, as 

shown in the insert, in which the NH bond undergoes a jump. In one simulation an 

additional remote 1H spin (fixed in space) is included. Here, kex = kAB+kBA = 2112 s−1, pB 

= 10%, ∣Δω15N∣ = 760 Hz and different jump angles are assumed as indicated. (e) Two-spin 

(HN) simulations, assuming ∣Δω15N∣ = 0, pB = 10%, and different kAB. The jump angle θ = 

20° (f) Four-spin simulations (HN pair and two space-fixed remote protons) of CPMG 

relaxation dispersion, showing the deviation of the dispersion profiles from the Bloch-

McConnell-type dispersion curves. The four-spin simulations (triangles) show a “scatter” 

around the curves corresponding to the Bloch-McConnell calculations for the same 

exchange parameters. Consequently, the fits (dashed lines) result in systematic errors; the 

size of these errors, which in this case are within the experimental noise, can be estimated 

through numerical simulations. Details about these simulations are provided in the 

Supporting Information of Ref. [44].
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Figure 23. 
Comparison of log10(R1ϱ) rate constants calculated with (a) Redfield theory [135] (Eqs. (53) 

and (54)), and (b) obtained from stochastic Liouville simulations (νr = 40 kHz, ν1 = 12 

kHz). Panel (c) shows the ratio of the Redfield and the stochastic calculations while (d) 

shows the relative difference between the two with the stochastic calculation. The two 

methods agree very well in the range of correlation times from 10−8 s to 10−6 s. For longer 

correlation times, there is a clear difference with the rates calculated by the Redfield 

approach being larger. For very long correlation times, the agreement becomes better again. 

For correlation times shorter than 10−8 s, there is again a discrepancy between the two 

methods, which is due to the stochastic simulations being carried out in the rotating frame. 

As soon as the correlation times approach the Larmor frequencies, such an approach gives 

wrong results.
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Figure 24. 
Comparison of the CSA/D cross-correlated cross-relaxation rate constants log10 (ΓCSA/D) 

calculated with (a) Redfield theory and (b) obtained from stochastic Liouville simulations 

(νr = 40 kHz, ν1 = 12 kHz). Panel (c) shows the ratio of the Redfield and the stochastic 

calculations while (d) shows the relative difference between the two with the stochastic 

calculation.
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Figure 25. 
Comparison of the CSA/CSA cross-correlated cross-relaxation rate constants log10(ΔRMQ) 

(Eq. (50)) calculated with (a) Redfield theory and (b) obtained from stochastic Liouville 

simulations (νr = 40 kHz). Panel (c) shows the ratio of the Redfield and the stochastic 

calculations while (d) shows the relative difference between the two with the stochastic 

calculation.
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Figure 26. 
Slices from Figure 23-Figure 25 at two values of the order parameters. this illustrates the 

differences between the Redfield and stochastic Liouville approach if the MAS spinning 

frequency and the stochastic motion are of the same order of magnitude. The differences for 

very short correlation times are due to the fact that the stochastic simulations are carried out 

in the rotating frame and do not sample spectral densities at the Larmor frequency and 

higher.
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Figure 27. 
Graphical representation of a second-rank tensor, and dynamic averaging. (A) 

Representation of a dipolar-coupling tensor, a symmetric rank-2 tensor. (B) Visualization of 

the tensor-averaging by a stochastic two-site jump. Here it is assumed that the two 

conformations, shown in blue and red in the top part are separated by an angle of 90°; the 

averaged tensors are shown for different relative populations of the two states, ranging from 

100% state A (left) to 100% state B (right). As one can readily see, the averaged tensors 

have a smaller magnitude (tensor anisotropy), and they are generally not axially symmetric 

any more (η > 0). (C) Investigation of the tensor averaging resulting from a three-site jump. 

The three conformations span a tetrahedral geometry (lower right part). The resulting tensors 

from fast exchange between these states are depicted, as a function of the relative 

populations of the states; the tensors in the corners of the triangle correspond to 100% of a 

given conformer. For three examples the tensors are encircled and the corresponding 

REDOR curves are shown in panel (D). The red curve corresponds to equal population of 

Schanda and Ernst Page 99

Prog Nucl Magn Reson Spectrosc. Author manuscript; available in PMC 2017 February 01.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



the three states (C3 symmetry), and the REDOR curve is simply scaled relative to the rigid-

limit case (blue). In the general case (black), the functional form of the REDOR curve 

deviates from the simple behavior, which is due to the asymmetry of the averaged tensor.

Schanda and Ernst Page 100

Prog Nucl Magn Reson Spectrosc. Author manuscript; available in PMC 2017 February 01.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Figure 28. 
REDOR curves and averaging of motion occurring at different time scales. These 

simulations assumed a N-H dipolar coupling with an anisotropy of δNH/(2π) = 20 kHz at a 

MAS frequency of 40 kHz. In order to sample the REDOR curve sufficiently during the 

initial increase, a shifted finite-pulse REDOR sequence [98,148,161] was used with a time 

shift of 10 μs. Simulated REDOR curves for a shifted finite-pulse REDOR experiment (νr = 

40 kHz, τs = 10 μs, ν1I = ν1S = 100 kHz, δNH/(2π) = 20 kHz) on a two-spin N-H system. The 

motional model is a symmetric three-site jump model (θ = 70.5°, ϕ = 120°) where the rate 

constant was varied between the values 1 s−1 and 108 s−1.
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Figure 29. 
Simulated REDOR curves for a two-site exchange process. Simulated REDOR curves for a 

shifted finite-pulse REDOR experiment (νr = 40 kHz, τs = 10 μs, ν1I = ν1S = 100 kHz, 

δNH/(2π) = 20 kHz) on a two-spin N-H system. The motional model is a two-site jump 

model (θ = 70.5°) where the rate constant was varied between the values 1 s−1 and 108 s−1. 

One can clearly see that for large rate constants one does not obtain a typical REDOR curve 

due to the fact that the averaged dipolar coupling in this case is not axially symmetric.
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Figure 30. 
The effect of RF field misadjustment on apparent dipolar coupling strengths. (a) The pulse 

sequence used here, a time-shifted REDOR experiment, for measurement of 1H-15N dipolar 

couplings [98]. (b) RF field distribution in a 1.6 mm HXY probe, obtained by Fourier 

transformation of a nutation curve. (c) Simulated REDOR curves, obtained with the 1H RF 

pulses applied at different field strengths (x-axis) were fitted to obtain the apparent dipolar 

coupling strength (y-axis). A perfect π pulse here has an RF field strength of 100 kHz (5 μs 

duration). Deviations of the apparent dipolar coupling from the nominal value (red line) are 

seen when the RF field is misadjusted. The dashed line results when RF inhomogeneity is 

included explicitly in the simulations. (d) Experimental verification of the data in panel (c). 

1D REDOR curves were measured with different RF field settings (x-axis) and the apparent 

dipolar coupling was extracted by numerical fits of the REDOR curves. Similar to the 

simulated case, the dipolar coupling is underestimated when the RF field is misset. (e) 

Similar simulations and experiments, with the 15N RF field being varied. Details can be 

found in reference [110].
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Figure 31. 
REDOR-derived HN order parameters in ubiquitin. (a) Three different measurements of 

dipolar order parameters, using best-possible RF calibration, and explicit consideration of 

the RF inhomogeneity upon fitting (black), as well as two measurements with slightly misset 

RF field strengths (blue, red). In (b), the red and blue data set have been multiplied by a 

factor that minimizes the offset to the black data set. Panel (c) shows a comparison to 

solution-state order parameters (derived from relaxation measurements). See reference [110] 

for details.
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Figure 32. 
15N relaxation rate constants as a function of motional parameters within the model-free 

approach. Panels (a), (b) and (c) represent 15N R1 relaxation rate constants at field strengths 

corresponding to 400, 600 and 1000 MHz 1H Larmor frequencies, respectively. Panels (d), 

(e) and (f) show 15N R1ϱ relaxation rate constants, at 40 kHz MAS frequency. The B0 field 

strength and spin-lock RF field strengths are indicated above the panels. Note that the 

vertical axis in panels (a)-(c) range from 1 ps to 10 μs, while in panels (d)-(f) it extends from 

100 ps to 100 ms. Panels (g) and (h) illustrate two concrete examples of motional scenarios, 

and how given motional parameters are reflected in relaxation rate constants. In (g) it is 

assumed that the motion is described by an order parameter S2 = 0.85, and a correlation time 

constant τ = 100 ps, as indicated by a cross. The relaxation rate constants (R1 at 14.1 T, R1 

at 23.5 T and R1ϱ at 14.1 T, 40 kHz MAS and 10 kHz spin-lock) were calculated, and 

realistic noise levels were added to these rate constants (0.009 s−1 for R1, 0.4 s−1 for R1ϱ). 

The grey area represents the regions of the parameter space (S2, τ) which are in agreement 

with the relaxation rate constants. It is evident that the two R1 relaxation rate constants fail 

to restrain the S2 values; the possible parameter space for the R1ϱ measurement is very large, 

owing to the fact that for such fast motions the R1ϱ rate constant is very small compared to 

its uncertainty. Thus, the amplitude of such fast motion can hardly be fitted from any 

relaxation measurements. Panel (h) shows a similar analysis for slower motion (S2 = 0.85, τ 

= 50 ns). As R1ϱ is sensitive to such slower motion, the combined information from R1 and 

R1ϱ measurements allows the motional parameters to be defined. See text for further 

discussion.
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Figure 33. 
Model-free fits of backbone dynamics in microcrystalline ubiquitin. For these fits, 15N R1 

rate constants (3 different B0 fields), 1H-15N dipolar-15N CSA cross-correlated relaxation (2 

different B0 fields) and 15N R1ϱ rate constants were used, as well as 1H-15N dipolar-

coupling derived order parameters. (a) Order parameters S2 obtained from three different fit 

approaches: (i) fitting relaxation data without the dipolar order parameters (red), (ii) 

including the dipolar-S2 in the fit, but not fixing the order parameter to the dipolar-S2 (blue) 

and (iii) fixing the S2 to the dipolar-S2 (black). (b) Zoom into part of the β-strand that has 
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alternating pattern of high/low S2 values, and alternating H-bonding pattern. (c) Plot of S2 

values on the structure. The corresponding time scales for the three cases are shown in (d), 

(e) and (f), respectively. Panel (g) shows the correlation times from panel (f) on the structure. 

Note that the dipolar-S2 are very similar to solution-state S2 (see Figure 31), whereas a fit of 

R1 and R1ϱ leads to systematically higher S2 and detection of nanosecond motion for all 

residues. Figure reproduced from reference [110].
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Figure 34. 
Backbone NH order parameters in solution and crystals in SH3 (a) and ubiquitin (b,c). Data 

in panels (a) and (b) are from HN dipolar couplings obtained on crystalline SH3 [182] and 

ubiquitin [110], respectively, or from 15N spin relaxation measurements (for the 

corresponding solution-state samples). In panel (a), only those residues are shown for which 

both solution- and solid-state data are available. Data in panel (c) are from MD simulations. 

For the simulation of the crystalline protein an explicit crystal lattice, composed of 48 

molecules was simulated, according to the crystalline arrangement in the experimental 
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structure. Water was explicitly simulated in both the solution- and crystal-state MD 

simulation. Details can be found in reference [189].
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Figure 35. 
Methyl side chain dynamics in solution and crystal as seen by solid- and solution-state 

NMR. (a) 13C R1 relaxation rate constants in CHD2-labeled Val/Leu methyl groups in the 

protein SH3. The effect of overall tumbling on the solution-state rate constants has been 

subtracted out. A high degree of correlation is evident, providing evidence that sub-

microsecond side chain motions in solution and crystals are similar. Panels (b) to (e) show 

Val methyl side chain dynamics in the protein ubiquitin. Here, the focus is on side chain 

rotamer jumps; possible rotamer states for Val side chains are depicted in panel (b). 
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Asymmetric dipolar couplings (c), characterized by their tensor anisotropy δD and 

asymmetry η show that Val 70 has a higher amplitude of motion than Val 5, 17 and 26 [154]. 

In (d) these data were used to compute relative rotamer populations for valines in the crystal 

sample, assuming the three-site jump model from panel (b). For each Val residue, three bars 

are shown, representing the populations of the three rotamer states (ordered by decreasing 

population level, as the populations cannot be unambiguously assigned to gauche+, gauche 

and trans states). Also shown in (d) are solution-state rotamer populations [188], obtained 

from analysis of J-couplings. As in the crystal, Val 70 populates all three rotamers, while Val 

5, 17 and 26 populate essentially only one rotamer. (e) Location of the Val residues in the 

ubiquitin structure.
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Figure 36. 
Backbone dynamics in different crystal forms of the protein ubiquitin. All data shown in 

black are from ubiquitin crystals obtained with the precipitant MPD (which is the crystal 

form used in all discussions above), data in red are from cubic-shaped crystals obtained with 

the precipitant PEG, and data in blue are from rod-shaped ubiquitin crystals with PEG. 

Panels (a)-(c) show residue-wise comparisons of 15N R1 rate constants, HN dipolar order 

parameters and 15N R1ϱ rate constants, respectively. While 15N R1 rate constants and S2 

values are similar in the two crystals, the 15N R1ϱ rate constant is clearly offset in cubic-

PEG-ub, as compared to MPD-ub (c). In (d) a histogram of 15N R1ϱ rate constants is shown 

for the two crystal forms shown in panels (a)-(c), as well as the third crystal form, rod-PEG-

ub. The overall increased 15N R1ϱ in cubic-PEG-ub points to an overall motion of the 

molecule in this crystal form. Panel (e) provides evidence that such a restricted overall 

motion also has consequences for X-ray observables: cubic-PEG-ub crystals diffract to 

lower resolution, and the Wilson-B factor is higher than in the other two crystal forms (two 

independent data sets are reported for the PEG-derived crystals). Reproduced with 

permission from reference [189].
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Figure 37. 
Conformational exchange processes on μs time scales in ubiquitin in solution and crystals. 

(a) Zoom into the crystal structure of the crystals used for solid-state NMR studies. The 

peptide plane 52/53, which presumably undergoes an exchange process, is highlighted. The 

hydrogen bonding of this β-turn loop to the adjacent helix is also indicated. Molecules 

shown in blue are neighboring molecules in the crystal. (b) Zoom into the equivalent part in 

the solution-state structure. Note that the hydrogen bonding is changed, the peptide plane 

52/53 is flipped relative to its orientation in (a), as indicated by colored circles, and the side 

chain of E24 is pointing outward. Panels (c) and (d) show schematic free-energy landscapes 

(free energy is increasing vertically); the exchange rate constant and the populations of the 

“minor state”, as determined from relaxation-dispersion NMR in solids and solution, 

respectively, are indicated. The slowing-down of the exchange process in crystals may be 

explained by steric hindrance of side chain E24 which contacts E64 of a neighboring 

molecule in the crystal, and the stabilization of the peptide plane conformation of D52/G53 

(water-mediated H-bond to K63 of neighboring molecule).
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