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Abstract
13C metabolic flux analysis (13C-MFA) has been widely used to measure in vivo enzyme

reaction rates (i.e., metabolic flux) in microorganisms. Mining the relationship between envi-

ronmental and genetic factors and metabolic fluxes hidden in existing fluxomic data will lead

to predictive models that can significantly accelerate flux quantification. In this paper, we

present a web-based platform MFlux (http://mflux.org) that predicts the bacterial central

metabolism via machine learning, leveraging data from approximately 100 13C-MFA papers

on heterotrophic bacterial metabolisms. Three machine learning methods, namely Support

Vector Machine (SVM), k-Nearest Neighbors (k-NN), and Decision Tree, were employed to

study the sophisticated relationship between influential factors and metabolic fluxes. We

performed a grid search of the best parameter set for each algorithm and verified their per-

formance through 10-fold cross validations. SVM yields the highest accuracy among all

three algorithms. Further, we employed quadratic programming to adjust flux profiles to sat-

isfy stoichiometric constraints. Multiple case studies have shown that MFlux can reasonably

predict fluxomes as a function of bacterial species, substrate types, growth rate, oxygen

conditions, and cultivation methods. Due to the interest of studying model organism under

particular carbon sources, bias of fluxome in the dataset may limit the applicability of

machine learning models. This problem can be resolved after more papers on 13C-MFA are

published for non-model species.

Author Summary

Metabolic information is important for disease treatment, bioprocess optimization, envi-
ronmental remediation, biogeochemical cycle regulation, and our understanding of life’s
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origin and evolution. 13C-MFA can quantify microbial physiology at the level of metabolic
reaction rates. To speed up microbial characterizations and fluxomic studies, we hypothe-
size that genetic and environmental factors generate specific fluxome patterns that can be
recognized by machine learning. Aided by constraint programming and quadratic optimi-
zation, our platform based on machine learning (ML) can predict meaningful metabolic
information about bacterial species in their environments. Further, it can offer constraints
to improve the accuracy of flux balance analysis. This study infers that the bacterial meta-
bolic network has a certain degree of rigidity in allocating carbon fluxes, and different
microbial species may share common regulatory strategies for balancing carbon and
energy metabolisms. As a proof of concept, we demonstrate that the use of data-driven
artificial intelligence (AI) approaches, e.g., ML, may assist mechanistic based models to
elucidate the topology of microbial fluxomes.

Introduction
With the advent of systems biology tools, such as genomics, transcriptomics, proteomics, and
metabolomics during the last decade, the understanding of intracellular metabolisms from
genotype to phenotype has been dramatically boosted. Notably, 13C metabolic flux analysis
(13C-MFA) enables the quantification of metabolic reaction rates in vivo [1]. It determines car-
bon metabolic fluxes using the mass isotopomer distribution (MID) of proteinogenic amino
acids or free metabolites from 13C labeling experiments. 13C-MFA is considered as a reliable
measurement of central metabolic reaction rates [2], which has demonstrated its power in dis-
covering novel pathways [3, 4], validating gene functions [3], verifying engineered strains [5,
6], and revealing energy metabolism of host strains [7]. In the past decade, advanced parallel
bioreactor systems, mass spectrometry, and computational tools resolving metabolic fluxes
have been developed [8–11], which improved the precision of flux profiles [12] and extended
13C-MFA’s application to the non-stationary metabolic phase [13, 14]. On the other hand,
broad applications of 13C-MFA are still hindered because 13C experiments, biomass analysis,
and flux calculations are expensive and time-consuming [15]. Moreover, some microbial sys-
tems may not be amenable to 13C-MFA if they require complex nutrients or their genome
annotation is incomplete [16]. Before performing 13C-MFA on non-model species, laborious
work is needed to examine extracellular metabolites, to characterize unknown pathways, and
to analyze biomass compositions.

This study aims to employ an artificial intelligence (AI) approach called machine learning
(ML) to investigate bacterial fluxomics patterns. ML is a powerful tool in systems biology [17]
and has demonstrated successes in omics studies [18, 19]. For example, the precision of
genome annotation on the model species C. elegans has been significantly enhanced by
employing a simplified Support Vector Machine (SVM) method. Researchers have reached an
accuracy of 75% on controversial genes [20]. At the transcriptomics level, ML approaches have
been frequently used for disease identification. For instance, SVM has successfully recognized
the gene expression patterns of hepatocellular carcinoma (HCC) [21], diffuse large B-cell lym-
phoma (DLBCL) [22] and ovarian cancer [23]. At the proteomics level, Supek et al. have
employed a combined approach by integrating the Principal Component Analysis (PCA)
method with SVM, to enhance analytic power in identifying “fingerprint” proteins (i.e., unique
proteins in each tissue) from different horseradish tissues (leaf, teratoma, and tumor) grown in
vitro [24]. In metabolomics, an SVMmethod can resolve the NMR data of metabolites in urine
samples from different groups of people (healthy vs. pneumonia) [25]. In metabolic modeling,
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Karp’s group have adopted ML algorithms to predict the existence of various pathways for met-
abolic network reconstruction in different organisms [19].

The general idea of ML is to statistically build a numerical predictivemodel or an estimator
which is a function f : X 7! y that maps a vector of numbers called the feature vector to a vector
of numbers called the target or the label. In many cases, the target is a 1-D vector, or a scalar.
One may consider the feature vector as the input and the target as the output of the model. If
the target takes discrete values, we call the ML model a classifier. Otherwise, a regressor. A com-
monly used classifier is binary classifier, where the cardinality (size) of the target set y is 2, e.g.,
y = {+1,−1}. In this paper, we build a regressor f : Rn 7!R for each flux, where R stands for the
set of all real numbers. In supervised ML, a pair of a feature vector and a target form a training
sample. Given a finite set of N samples {(X1, y1), . . ., (XN, yN)}, an ML algorithm will find such
a function, usually through solving a numerical optimization problem, to minimize the predic-
tive error. Samples used to train a model form the training set while those for testing the perfor-
mance form the test set. Given a new piece of data, numerically represented as a vector Xnew,
the model f will predict the target f(Xnew), e.g., a flux value given reaction parameters where are
represented by the vector Xnew in this paper. The models learned through ML are usually not
analytical models that can be represented using equations. Rather, they are numerical opera-
tors. For example, an artificial neural network (ANN) model can be represented by a series of
weight and bias matrices, each of which is for one layer. A poor model can only predict well on
the training set as if it only “remembers” the training samples, while a good model can learn
the patterns among data and still be accurate on samples it has never “seen”. Hence, researchers
make the training and test sets mutually exclusive. A mechanism called cross validation is used
to ensure the mutual exclusiveness of training and test sets while making full use of the dataset.

A distinct advantage for ML applications is that they can reduce the need for costly experi-
mental supplies and time-consuming benchwork. Despite the progress in utilizing MLmethods
in systems biology, there is no similar application in the fluxomics field to predict the flux pro-
file. Therefore, we conceived the idea of integrating ML strategies with fluxomics research. To
efficiently employ ML methods, a dataset with a sufficient number of samples is a prerequisite.
Recently, a 13C-MFA dataset named CeCaFDB has been constructed, which includes more
than 100 papers mostly on prokaryotic species [26]. Based on this dataset, five categorical and
sixteen continuous features were initiated to describe the environmental and genetic factors
involved in 13C-MFA of bacterial species. Unlike most omics projects employing ML
approaches, this work built regressors rather than classifiers: 29 lumped central metabolic
fluxes were adopted as the outputs to describe the central carbon metabolism of bacteria spe-
cies. A 10-fold cross validation evaluated the performance of different algorithms. Further-
more, we included a knowledge-based system to check whether user inputs were biologically
meaningful. Lastly, quadratic programming was employed to adjust the fluxes predicted by ML
to satisfy stoichiometric constraints. Our web-based platform MFlux provides reasonable pre-
dictions for central metabolic flux profiles on 30 bacteria species, and it can be accessed online
at http://mflux.org along with the training data. Although our platform is still in the early
phase, our trial to integrate AI approaches with mechanistic models will have broad impacts on
both systems biology and metabolic engineering fields.

Methods

Data collection
The dataset used to build MFlux are constructed from the literature. The total uptake rate of
carbon sources is normalized as 100; all other fluxes are normalized based on the uptake rate of
carbon sources. We obtained 13C-MFA information for bacterial species from the CeCaFDB
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dataset and added a few recent papers (approximately 120 papers in total, as of January 2015).
13C-MFA data related to photosynthetic bacteria was excluded in ML study because of their
diverse CO2 fixation pathways, light-sensitive fluxomes, and insufficient sampling sizes for
ML. For photosynthetic species, MFlux currently only reports a general description of their
fluxomic features based on corresponding references.

In heterotrophic microorganisms, interconversions between glycolysis metabolites (phos-
phoenolpyruvate and pyruvate) and TCA cycle metabolites (oxaloacetate and malate) involve a
set of anaplerotic reactions (e.g., phosphoenolpyruvate carboxylase, phosphoenolpyruvate car-
boxykinase, pyruvate carboxylase, and malic enzyme) serving as a key switch point for carbon
flux distribution in bacteria [27]. These reactions balancing both carbon and cofactors may be
employed by different microbial species. For example, E. coli anaplerotic pathways involve
phosphoenolpyruvate carboxylase and malic enzyme, while Bacillus species furnish pyruvate
carboxylase (the pyruvate shunt). In the case of Corynebacterium, both phosphoenolpyruvate
carboxylase and pyruvate carboxylase are functional [28, 29]. These anaplerotic pathways can
re-route fluxes when central pathway such as pyruvate kinase is knocked out. To ease the ML
efforts, the anaplerotic pathways were lumped into two routes that exchanges fluxes between
the TCA cycle and the glycolysis nodes: (MAL! PYR + CO2 and PEP + CO2 ! OAA). This
simplification also considered the fact that 13C-MFA has poor resolutions on anaplerotic fluxes
because various combinations of these reactions could generate similar labeling patterns in
amino acids [30].

Feature vector for ML
As mentioned earlier, supervised ML builds models based on the samples, each of which is a
pair of a feature vector and a target. Based on published 13C-MFA methodologies and micro-
bial physiologies, we proposed five categorical features: species, nutrient types, oxygen condi-
tions, engineering method, genetic background, and cultivation methods. There were two
considerations when choosing those features. First, genetic modifications can significantly re-
organize fluxomes. To improve the predictability on mutant strains, our platform allows tog-
gling on or off certain central pathways (by manually setting the flux boundaries) in engineered
strains. Second, the factor of cultivation method aims to reveal fluxome differences between
shake flask cultures (a pseudo-steady state approach) and bioreactor cultures (a well-controlled
fermentation or chemostat cultivation). Meanwhile, we introduced sixteen continuous features:
growth rate, substrate uptake rate, and the ratio of multiple substrate uptakes (glucose, fructose,
galactose, gluconate, glutamate, citrate, xylose, succinate, malate, lactate, pyruvate, glycerol,
acetate and NaHCO3, as shown in Fig 1). Since the features include both categorical and con-
tinuous ones, one-hot encoders were used to convert categorical feature values into real num-
bers. Each feature was then standardized into zero mean and unit variance as assumed by
many ML approaches. For each predicted flux, or the target/label in ML terminology, we scaled
it into the interval [0, 1] by the min-max method. In addition to the min-max method, we also
tested unit-variance-zero-mean standardization for scaling flux values, and the result was quite
similar.

Machine learning algorithms
The problem of predicting fluxes was modeled as a regression problem in ML where a com-
puter program learns from existing data to estimate continuous variables. Twenty-nine regres-
sors were trained to predict the 29 fluxes. We tested three widely-applied ML algorithms,
including k-nearest neighbors (k-NN), decision tree, and SVM. To ensure a fair comparison,
we performed a grid search for the best parameter set of each algorithm. The detailed
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Fig 1. A universal central metabolic pathway for bacteria. The central carbon metabolic pathway is simplified into 29 fluxes, used as the outputs of our
model.

doi:10.1371/journal.pcbi.1004838.g001
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parameter sets for 29 SVM-based regression models can be found from our web page. The pro-
gramming language used for this project was Python 2.7 and the numpy and scikit-learn mod-
ules were utilized for machine learning [31]. Program files for training the models and testing
them are wrapped in S1 Program. Full version including web-end code is released under GNU
GPL v3 at https://bitbucket.org/forrestbao/influx

Model evaluation and cross validation
Considering the limited number of samples in the current dataset, we adopted a 10-fold cross
validation. AnN-fold cross validation works as follows. All samples in our dataset are spliced
intoN equal parts. In each iteration, N − 1 parts are used as the training set, while the remaining
as the test set. In the next iteration, the test set will be rotated to another part of the data, and the
training set will consist of all other samples. This procedure will stop when all parts of the data
have been incorporated into the test set exactly once, and training set exactly N − 1 times. Finally,
the accuracy of the model can be calculated by checking the prediction result for each sample.
For each flux, the error in cross validation is computed using Mean Squared Error (MSE).

Stoichiometric constraints and boundary
One unique feature of our method is incorporating the overall mass balance through central
metabolic pathways. The stoichiometric equations in Fig 1 under steady state are summarized
as follows:

G6P : v1 ¼ v2 þ v10 þ vbmg6p ð1Þ

F6P=FBP : v2 þ v15 þ v16 þ 100 � ratiofructose ¼ vbmf 6p þ v3 ð2Þ

DHAP : v3 þ 100 � ratioglycerol ¼ v4 ð3Þ

GAP : v3 þ v4 þ v14 þ v15 þ v25 ¼ v5 þ v16 þ vbmgap ð4Þ

3PG : v5 ¼ v6 þ vbm3pg ð5Þ

PEP : v6 ¼ v7 þ v28 þ vbmpep ð6Þ

PYR : v7 þ v25 þ v29 þ 100 � ratiopyruvate ¼ v8 þ v27 þ vbmpyr ð7Þ

AceCoA : v9 þ v17 þ v24 þ v26 þ vbmaccoa ¼ v8 ð8Þ

Ru5P : v11 ¼ v12 þ v13 ð9Þ

R5P : v13 ¼ v14 þ vbmr5p ð10Þ

E4P : v15 þ vbme4p ¼ v16 ð11Þ

S7P : v14 ¼ v16 ð12Þ

X5P : v12 þ 100 � ratioxylose ¼ v14 þ v15 ð13Þ
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6PG : v10 þ 100 � ratiogluconate ¼ v11 þ v25 ð14Þ

CIT : v17 þ 100 � ratiocitrate ¼ v18 ð15Þ

ICIT : v18 ¼ v19 þ v24 ð16Þ

AKG : v19 þ 100 � ratioglutamate ¼ v20 þ vbmakg ð17Þ

SUC : v20 þ v24 þ 100 � ratiosuccinate ¼ v21 þ vaa1 ð18Þ

FUM : v21 þ vaa2 ¼ v22 ð19Þ

MAL : v22 þ v24 þ 100 � ratiomalate ¼ v23 þ v29 ð20Þ

OAA : v23 þ v28 ¼ v17 þ vbmoaa ð21Þ

Specifically, v1 represents the flux from carbon substrate (either glucose or galactose) to
G6P since both glucose and galactose can be catabolized to G6P, vaa1 and vaa2 represent fluxes
involved in biomass building block synthesis or extracellular products, while vbm represents
carbon fluxes going to biomass from different precursors [32].

A series of linear constraints can be derived from the stoichiometric equations above and
used to restrain fluxes predicted by the ML methods:

v1 � 100 � ðratioglucose þ ratiogalactoseÞ ¼ 0 ð22Þ

v3 � v4 þ 100 � ratioglycerol ¼ 0 ð23Þ

v11 � v12 � v13 ¼ 0 ð24Þ

v14 � v16 ¼ 0 ð25Þ

v10 � v11 � v25 þ 100 � ratiogluconate ¼ 0 ð26Þ

�v17 þ v18 � 100 � ratiocitrate ¼ 0 ð27Þ

�v12 þ v14 þ v15 � 100 � ratioxylose ¼ 0 ð28Þ

�v18 þ v19 þ v24 ¼ 0 ð29Þ

�v22 þ v23 � v24 þ v29 � 100 � ratiomalate ¼ 0 ð30Þ

Among equations listed above, Eq 22 indicates the case for co-metabolism of both C6 sug-
ars. Meanwhile, a list of inequality constraints can be drawn, given that all biomass fluxes are
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non-negative:

v1 � v2 � v10 � 0 ð31Þ

v2 � v3 þ v15 þ v16 þ 100 � ratiofructose � 0 ð32Þ

v3 þ v4 � v5 þ v14 þ v15 � v16 þ v25 � 0 ð33Þ

v5 � v6 � 0 ð34Þ

v6 � v7 � v28 � 0 ð35Þ

v7 � v8 þ v25 � v27 þ v29 þ 100 � ratiopyruvate � 0 ð36Þ

v8 � v9 � v17 � v24 � v26 � 0 ð37Þ

v13 � v14 � 0 ð38Þ

�v15 þ v16 � 0 ð39Þ

v19 � v20 þ 100 � ratioglutamate � 0 ð40Þ

�v17 þ v23 þ v28 � 0 ð41Þ

�v21 þ v22 � 0 ð42Þ

Among all inequality constraints, Eq 39 works well except for the case of zwf knockout,
where the direction of Eq 39 could be reversed [33].

Flux adjustment using stoichiometric constraints
We adopted a quadratic programming method similar to minimization of metabolic adjust-
ment (MOMA) [34], to tune fluxes to satisfy the stoichiometric constraints. The CVXOPT
package for Python was employed here for quadratic programming [35]. The optimization
problem is modeled as

Minimize f ðvÞ ¼
X29
i¼1

ScaledðviÞ � Scaledðv̂ iÞð Þ2

Subject to S � v ¼ 0;

A � v � 0;

ð43Þ

where the vector v̂ ¼ ½v̂1; . . . ; v̂29� is the flux values predicted by ML, the vector v = [v1, . . .,
v29] is the flux values to be solved in this optimization problem, the function Scaled(�) using
Min-Max scaling to scale all fluxes into the range [0, 1], the matrix S is obtained from all equal-
ity constraints from Eq 22 to Eq 30, and the matrix A is obtained from all inequality constraints
from Eq 31 to Eq 42. Notably, the biomass composition for a same species varies significantly
under various conditions. Therefore, the quadratic programming looses mass balance con-
straints toward biomass synthesis. The purpose of scaling fluxes into the same range is to avoid
the bias because fluxes have different dynamic ranges. The objective function f(v) can be
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rewritten into a standard quadratic programming problem using the following steps:

f ðvÞ ¼
X29
i¼1

ScaledðviÞ � Scaledðv̂ iÞð Þ2 ¼
X29
i¼1

vi �Mini

Maxi �Mini

� v̂ i �Mini

Maxi �Mini

� �2

¼ 2 �
X29
i¼1

1

2

v2i
ðMaxi �MiniÞ2

þ �1 � vi � v̂ i

ðMaxi �MiniÞ2
þ 1

2

v̂2
i

ðMaxi �MiniÞ2
 ! ð44Þ

whereMini andMaxi are the range of the i-th flux. Since the last term 1
2

v̂ i
Maxi�Mini

� �2

and the

coefficient 2 are constants, they can be omitted from the objective function. Hence, Eq 43 can
be rewritten in standard quadratic programming form as

Minimize f ðvÞ ¼ 1

2

X29
i¼1

ðviÞ2
ðMaxi �MiniÞ2

þ
X29
i¼1

�1 � vi � v̂ i

ðMaxi �MiniÞ2

Subject to S � v ¼ 0;

A � v � 0:

ð45Þ

For the upper and lower boundaries of each flux, i.e.,Maxi andMini, we used the maximal
and minimal values observed in multiple datasets as the default values. Users can manually set
desired values for the upper/lower bound of any specific flux in MFlux webpage, or they can
opt to not use any boundaries. For instance, users can simply set the boundary of a certain flux
as zero if this specific gene is knocked out.

Constraint programming and input checking
To ensure user inputs, e.g., growth rates, oxygen usage, and substrate uptake rates, are biologi-
cally meaningful, MFlux first checks the satisfiability (e.g., whether cell growth rate is realistic)
of input values [36]. The biological meaningfulness is represented using constraint program-
ming [37], where each input is treated as a variable of a given domain. A set of inputs lacking
of biological meaning will cause those constraints to be unsatisfied and MFlux will report an
error message to warn the user. The Python module python-constraint [38] is used as the con-
straint solver.

Overall system design
Different parts of MFlux mentioned above are put together as illustrated in Fig 2. The predic-
tion on 29 fluxes is done via an RBF-kernel SVM, whose outcome will be finalized by quadratic
programming. Users can set boundary constraints to represent information about genes that
are knocked out on the species, and such information will be used in quadratic programming.
If parameters set by the user are not biologically meaningful, a warning message will be dis-
played. In the future, users will also have the option to enter flux constraints and settings of
their own experiment to improve the prediction accuracy of MFlux.

Results

Pathway map and statistical analysis
The core metabolism of bacteria is summarized into a pathway map in Fig 1. Considering the
availability of information, 29 major fluxes with 14 potential substrates were used to represent
a universal heterotrophic carbon metabolism for non-photosynthetic bacteria species, which
includes glycolysis, the tricarboxylic acid (TCA) cycle, the pentose phosphate (PP) pathway,
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the Entner–Doudoroff (ED) pathway, the glyoxylate shunt and the anaplerotic pathway. It is
difficult for 13C-MFA to precisely resolve the anaplerotic pathway fluxes [39]. Information on
the anaplerotic pathway is either incomplete or not precise in many publications in our dataset.
Consequently, we simplified the anaplerotic pathway into two reversible fluxes. Similarly, we
ignored several overflow fluxes which occasionally appear in 13C-MFA anaerobic metabolisms
(e.g., the secretion of formate, butyrate, or pyruvate), because of lacking sufficient samples for
machine learning. The omission of those fluxes can also partially explain the high prediction
error in some fluxes (e.g., v8: Pyruvate! Acetyl-CoA).

By statistical analysis, we determined the variation between each flux profile and the average
flux profile from our 13C-MFA dataset. The average value, the range, and the 95% confidence
interval for each flux are shown in Fig 3. The most conservative fluxes from our dataset include
the non-oxidative pentose phosphate pathway and the glyoxylate shunt. The former pathway
supplies precursors for bio-synthesizing amino acids (i.e., histidine, phenylalanine, and tyro-
sine) and nucleotides. The latter acts as an alternative carbon reserving path to the TCA cycle
and is inhibited by the presence of glucose (most 13C-MFA is based on the glucose metabo-
lism). All 29 fluxes are found to have a relatively narrow confidence interval compared to possi-
ble flux ranges, suggesting that fluxes of different bacteria species varies in a relatively small
range. This is because most 13C-MFA studies are focusing on models species (e.g., E. coli and B.
subtilis) and glucose based metabolism, while there are much less MFA efforts to study non-
model species or metabolism of carbon substrates other than sugars (i.e., bias of fluxome
research across).

Fig 2. The flowchart of MFlux algorithm.

doi:10.1371/journal.pcbi.1004838.g002
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Optimization of algorithms and parameters
To decide the most suitable ML algorithm, we first performed a grid search in the parameter
space, using a dataset of wild type (WT) samples only. The best results of three different algo-
rithms (for SVM, linear kernel only here) are presented in Fig 4. SVMmakes better predictions
than either the decision tree or k-NN on most fluxes. After this step, we carried out a second
round of grid search to optimize parameters and improve the performance of SVM on the
whole phenotype (WP) dataset (both WT and engineered). Both the linear kernel and radial
bias function (RBF) kernel were included in this round of grid search.

Fig 3. Overview of central metabolic fluxes collected in our dataset. “Flux range” represents the variation of each flux in the 13C-MFA dataset. “95%
confidence interval” indicates that 95% of flux data were within a small range. “Average flux value” is the average value in each flux based on all data in our
13C-MFA dataset.

doi:10.1371/journal.pcbi.1004838.g003

Fig 4. A comparison of three ML algorithms: SVM, k-NN, and decision tree. The best cross-validation results on 29 fluxes are compared. All tests in this
step were performed on the WT dataset only.

doi:10.1371/journal.pcbi.1004838.g004
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Better cross validation was expected from the SVMmodels trained on the WT dataset,
rather than on the WP dataset, while sophisticated genetic variations are not included in the
WT dataset. However, cross-validation results refuted our initial thought: the models from the
WP dataset demonstrated significantly better performance than those trained on the WT data-
set (data shown in Fig 5). This result can be interpreted as that the size of the training set is a
major factor affecting the model quality, especially when the training set is relatively small (the
sizes of WT and WP datasets are about 150 and 450 samples, respectively). We also compared
the SVM results using the linear kernel with those using the RBF kernel, and the RBF kernel
showed slightly better performance (Fig 6). The parameter set producing the most accurate
cross-validation result was used to configure MFlux. Notably, prediction on v11 (the second
step of the oxidative PP pathway) and v24 (the glyoxylate shunt) have relatively large variations.
Two factors may contribute to this fact. Both v11 and v24 have relatively narrow ranges (see

Fig 5. Best results by SVM onWT andWP datasets.Grid searches are performed on both linear and RBF kernels. The results fromWP dataset are much
better than those from the WT dataset. The result indicated that the size of the dataset is an important factor affecting the predictive power of machine
learning models.

doi:10.1371/journal.pcbi.1004838.g005

Fig 6. A comparison between linear-kernel SVM and RBF-kernel SVM. The best cross-validation results
of linear kernel and RBF kernel after grid searches onWP dataset are very similar. The RBF kernel is
employed in the final model for flux prediction.

doi:10.1371/journal.pcbi.1004838.g006
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Fig 1) and consequently even small numerical variations will generate larger relative errors for
both fluxes. Meanwhile, genetic modifications may influence both v11 (e.g., zwf knockout [40])
and v24 (e.g., ppc knockout [41]) significantly. For instance, knocking out zwf in E. coli will
cause a zero flux in v10 (the oxidative pentose phosphate pathway, OPP pathway) [42]. How-
ever, the lack of sufficient information on flux re-organization mechanisms in engineered
microbes reduces ML predictability. This is because most engineered microbial fluxomics stud-
ies are focused on a few model species such as E. coli. To resolve this problem, the MFlux plat-
form allows the users to manually set the boundaries of central fluxes to improve prediction
quality (e.g., setting a zero flux through the OPP pathway for E. coli zwfmutant).

Flux correction by quadratic programming
After parameter optimization, the SVMmodels of the best parameter sets can predict with rela-
tively small error. However, the flux profile predicted by the ML method does not necessarily
satisfy the inherent stoichiometric constraints of metabolic networks because the ML methods
do have big enough dataset at this stage to reflect this. The situation could get even worse
where specific fluxes predicted by the ML algorithm may go beyond a biologically meaningful
range (e.g., the predicted glyoxylate shunt flux v24 may have a negative value). To address those
issues, we employed quadratic programming for flux correction as described in the Methods
section. More rational results with improved accuracy are expected after flux correction. An
essential assumption of this step is that ML predictions are relatively close to real values
reported in the literature. This hypothesis is backed by our cross-validation results further vali-
dated in the following case studies.

Case studies
To demonstrate the functionality of MFlux, we carried out tests on 20 cases, and the results are
illustrated in Fig 7. Brief information for each case is listed in Table 1, and comprehensive
results are included in S1 and S2 Tables. In general, MFlux can achieve decent flux predictions.
Here we demonstrate two cases which are Cases 8 and 16.

In Case 8, B. subtilis strain uptakes the mixed substrates succinate and glutamate. To illus-
trate mixed substrates co-metabolisms, we tested MFlux with 13C-MFA data of B. subtilis
reported by Chubukov et al. [44]. Microbial fermentation fed with multiple substrates of low
price is promising for the biotechnology industry. However, there are very few quantitative
analyses of this topic. In this test, we adopted the same set of parameters found in the literature

Fig 7. Summary of root mean squared error (RMSE) from 20 case studies: averaged flux from
13C-MFA dataset, ML-only, and MFlux (ML + quadratic programming). The average RMSE is 7.7 from
ML-only, and 5.6 fromMFlux. Detailed information is in S1 and S2 Tables.

doi:10.1371/journal.pcbi.1004838.g007
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(S1 Table, Case 8) as the inputs of MFlux. For flux correction, we directly took the default
boundary settings for quadratic programming. A comparison of flux profiles reported by
13C-MFA, predicted by ML only, and predicted by MFlux (i.e., ML + quadratic programming)
is illustrated in Fig 8. ML-only approach and MFlux accurately predict on most fluxes, closely
matching the 13C-MFA flux profiles with Root Mean Squared Error (RMSE) under 5. For ML,
the predictions have large variation on specific fluxes (e.g., v11—oxidative PP pathway and v19–
TCA cycle). Quadratic programming can further adjust flux profiles and reduce deviations of
flux predictions. The corrected flux profiles also meet the basic stoichiometric relationship of
the metabolic network. The final prediction fromMFlux shows improvement with RMSE
reduces to 3.2.

In Case 16, G. thermoglucosidasius strain M10EXG grows under microaerobic conditions. G.
thermoglucosidasius is a thermophilic and ethanol tolerant bacterium which can convert both
hexose and pentose into ethanol [28]. To predict its central fluxomes, the parameter set used is
listed in S1 Table, along with the default boundary settings for flux correction. A heat map (Fig
9) visualizes 13C-MFA fluxes with ML-only fluxes and MFlux results. The results are encourag-
ing: ML-only prediction gives an RMSE of 4.0, while MFlux uses both ML and quadratic pro-
gramming to improve the prediction to an RMSE of only 3.0. Among the 20 case studies, the
average flux set has very large variations (RMSE of 33.5) from actual 13C-MFA fluxes (S2
Table). In this case, MFlux reduces the deviations of predicted fluxes from 13C-MFA values.

For species with genetic modifications in major pathways (Cases 2, 3, 4, 12, and 13, E. coli
and C. glutamicum), MFlux predictions have an RMSE between 5 and 10, higher than the
RMSE for prediction of wild type strains. Since MFlux is currently unable to capture complex
regulatory mechanisms of flux reorganization, human-computer interaction can be employed
by manually tuning boundary values of certain fluxes to improve flux prediction quality. For
example, knocking out ppc on E. colimay activate the glyoxylate shunt [41, 42]. The users can
assign a non-zero lower boundary of the glyoxylate shunt when running MFlux.

Improving flux balance analysis of microbial metabolism via MFlux
Stoichiometry-based flux balance analysis (FBA) is an important mechanistic tool to predict
unknown cell metabolism [50]. Accurate FBA prediction relies highly on setting the objective
function and the flux constraints appropriately (based on thermodynamics or experimental
analysis). Here, we compare FBA with MFlux for predicting E. colimetabolisms. The latest

Table 1. Summary of 20 cases of study.Glc, glucose; Xyl, xylose; Lac, lactate; Ace, acetate; KO, knockout.

Species Carbon source Oxygen condition Reactor Genetic background Case

E. coli Glc aerobic tube WT 1 [12]

E. coli Glc aerobic baffled shake flask ppc KO 2–4 [41]

B. subtilis Glc aerobic shake flask, CSTR WT, spo0A KO 5–7 [43]

B. subtilis Multiple aerobic shake flask mutant 8–11 [44]

C. glutamicum Glc aerobic shake flask WT 12 [45]

C. glutamicum Glc aerobic shake flask mutant 13 [46]

P. denitrificans Glc aerobic, microaerobic fermentor WT 14, 15 [47]

G. thermoglucosidasius Glc microaerobic shake flask WT 16 [28]

Thermoanaerobacter sp. Xyl anaerobic batch (closed) WT 17, 18 [48]

D. vulgaris Lac anaerobic batch (closed) WT 19 [49]

G. metallireducens Ace anaerobic batch (closed) WT 20 [3]

doi:10.1371/journal.pcbi.1004838.t001
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Fig 8. A comparison of the 13C-MFA flux, the flux predicted by ML only, and the flux predicted by
MFlux in Case 8. B. subtiliswas incubated in a shake flask (37 C, 300 rpm, aerobic condition), and supplied
with labeled succinate and glutamate as carbon sources in M9 minimal medium. Detailed information is in S1
Table.

doi:10.1371/journal.pcbi.1004838.g008

Fig 9. A comparison of the 13C-MFA flux, the flux predicted by ML only, and the flux predicted by
MFlux in Case 16.G. thermoglucosidasiusM10EXGwas incubated in sealed bottles (micro-aerobic
condition), supplied with glucose as a carbon source. Detailed information is in S2 Table.

doi:10.1371/journal.pcbi.1004838.g009
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version of E. coli iJO1366 genome-scale model (2583 fluxes) was used [51]. Two comparative
case studies were performed on E. coli fluxomes: one case for glucose based 13C-MFA via paral-
lel labeling experiments [12] and the other for glucose and glycerol co-utilization (unpublished
data from the Shimizu Group). Neither of the test cases was included in the training set of
MFlux. Given 13C-MFA results as the control, MFlux results apparently have smaller RMSEs
than FBA predictions. In the first case, the FBA has an RMSE of 11.3, while MFlux has an
RMSE of 6.5 (Fig 10A). In the second case, the FBA has an RMSE of 22.5, while MFlux has an
RMSE of 5.1 (Fig 10B). To circumvent variations caused by alternative solutions in FBA, we
also employed pFBA and geometricFBA for both cases [52, 53] (S2 Table). In general, pFBA
does not show better results compared with FBA for either case, while geometricFBA does not
converge in our calculation.

FBA alone has given good predictions of growth rate as well as input and output fluxes,
but not of intercellular fluxes. It is difficult to obtain actual P/O ratios, the ATP maintenance
cost, the oxygen flux, and the transhydrogenase activities [55]. These energy/cofactor vari-
ables strongly affect the fluxes in the oxidative PP pathway (NADPH generation) and the
TCA cycle (NADH, NADPH, and FADH2 generation). Without proper flux constraints and

Fig 10. A comparison of the 13C-MFA flux, the flux predicted by MFlux, and the flux predicted by FBA. FBA analysis is simulated by an E. coli iJO1366
model (latest version) with default boundary settings from the reference [54]. The default values of growth associated maintenance energy (GAM) and non-
growth associated maintenance energy (NGAM) were adopted.A) E. coli fluxome of glucose metabolism was precisely measured via parallel labeling
experiments (a recent paper not in our dataset) [12]. B) E. coli fluxome of glycerol and glucose co-metabolism as measured by Drs. Yao and Shimizu
(unpublished data). The E. coli strain was cultured in chemostat fermentor with a working volume of 1 L(37 C). The dilution rate in the continuous culture was
0.35 h−1. [1-13C] glucose and [1, 3-13C] glycerol were used for tracer experiments. The flux calculation is based on a previous method [42]. The RMSE from
FBA is 22.5, while the RMSE fromMFlux (this work) is 5.1. The COBRA toolbox running on MATLAB R2012b was employed for FBA/pFBA/geometricFBA
simulation, and Gurobi 5.5 was used for linear programming. Detailed information is included in S2 Table.

doi:10.1371/journal.pcbi.1004838.g010
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objective functions, it is more challenging for FBA to narrowly determine intracellular flux-
omes in suboptimal metabolisms, especially for co-metabolism dual substrates because of the
large solution space for the cell metabolism to optimize biomass growth using two substrates.
As a complementary tool, MFlux may offer a quick metabolic overview and provide biologi-
cally meaningful flux boundaries to reduce FBA solution spaces when proper constraints for
FBA are unavailable.

Discussion

Metabolic robustness of fluxome patterns among microbial species
“Robustness” was originally defined as the closed-loop process stability under perturbations in
the control field. This definition is applicable to biochemical networks. To maintain the physio-
logical output (i.e., the fluxome) within a desired range, microorganisms employ sophisticated
control disciplines at different architecture levels, from the genome to the phenotype. In con-
trast to chaotic transcriptional profiles, the microbial fluxome shows robustness so that cells
can survive in constantly-altering environments or in response to genetic mutations [56–58].
Metabolic rigidity at the flux level was first reported by Stephanopoulos in the early 1990s [59,
60]: NADPH is important for anabolism in the exponential growth phase, and the flux ratio
around glucose-6-P node is rigid to form NADPH [60]. Moreover, 12 precursors from the cen-
tral metabolism are required for biomass formation, which all have relatively small variations
that are mainly dependent on biomass compositions. Due to both thermodynamic and mass
balance constraints, cell metabolism aims to minimize variations in flux ratios under environ-
mental perturbations. This rule also works for engineered microbes with moderately overex-
pressed pathways or strains from random mutations or deletions of non-essential genes. The
feature of metabolic robustness facilitates ML applications.

Flux pattern recognition enables MFlux to predict metabolism of new species by learning
from a small set of fluxome information from the same genus. For example, the metabolisms of
P. aeruginosa, P. fluorescens, and P. putida have been studied by 13C-MFA in the past decade
[61–65]. The results show that different Pseudomonas species employ remarkably identical
fluxomics types: they employ a highly active ED pathway for glycolytic metabolism and keep a
low flux on the PP pathway for biomass synthesis, due to the lack of the pfk gene [66]. The ED
pathway has less cost for protein formation than the Embden–Meyerhof–Parnas (EMP) path-
way, yet only one ATP is formed per glucose [67, 68]. Pseudomonas species have slow cell
growth rates and their aerobic metabolisms do not yield by-products. They also demonstrate a
very active pyruvate shunt (MAL! PYR) and NADPH overproduction flux (a benefit for
counteracting oxidative stress). On the other hand, the TCA cycle in Pseudomonas species
show plasticity under genetic and environmental variations [69], and can respond to increased
ATP and NADH demands under stress conditions [70].

For different bacterial species (e.g., E. coli and Bacillus), their fluxomes (e.g., glucose
metabolisms) can be similar, because central fluxes in catabolism are regulated by energy and
building block requirements that show much smaller variations than genome or transcrip-
tional differences. On the other hand, change of carbon substrates may alternate flux distri-
butions. For example, co-utilization of glucose and glycerol in E. coli cause significant re-
organization of fluxomes. In a same microbial strain, different fluxome patterns can be
employed for metabolizing different substrates (e.g., glucose-based fluxome vs acetate based
fluxomes). Recognizing these metabolic patterns allows the use of a relatively small training
set to perform a decent metabolic prediction of diverse metabolic types. Consequently, these
common principles of certain classes of microorganisms can be captured by machine learn-
ing for fluxome predictions.
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Limitations of machine learning
There are several major challenges regarding MFlux. First, the 13C-MFA flux in literature may
have errors and biases, which would be included in the learning/training process of MFlux and
lead to further variations. For example, current 13C-MFA studies are not evenly distributed
among a broad scope of microbial genera. Most reported MFAs are concentrated in a few
model microbial species or metabolism of only a few substrates (mainly glucose), and thus our
current ML cannot predict fluxomes well in certain cases. Such problem (model bias) can be
resolved after more 13C-MFA papers for non-model species are included in the database and
more constraints are implemented by our platform.

Second, the predictability of ML is limited to species and pathways that are already included
in learning. More information and efforts are required to deal with cases of genetically modi-
fied strains with engineered pathways that hijack flux for synthesis of diverse commodity
chemicals [13]. Currently, 13C-MFA has not widely used by synthetic biology community yet.
In future versions of MFlux, new metabolic knowledge and rules should be applied for flux
corrections.

Third, it is still difficult to incorporate regulation mechanisms into the current model. For
instance, various catabolite repression mechanisms regulate the cell fluxome in the presence of
multiple substrates (e.g., glucose shows catabolite repression for fast growing E. coli when both
glucose and glycerol are available, Fig 10) [71]. These hierarchy regulations among substrate
utilization can be dependent on growth rates or can differ among microbial species (E. coli,
Bacillus and Corynebacterium).

Fourth, when oxygen is not available, fast bacterial sugar utilization will activate mixed acid
fermentation (e.g., by utilizing lactate dehydrogenase and pyruvate formate lyase) to produce
complicated overflow metabolites [13]. This mechanism is also furnished in yeast and mamma-
lian cells. However, 13C-MFA studies on anaerobic metabolisms are much less frequent than
on aerobic metabolisms. MFlux cannot predict the complicated patterns of overflow fluxes at
this stage.

Fifth, our current dataset is still unable to support ML studies on phototrophic bacterial
fluxomes. For phototrophic metabolism, its energy generation (ATP, NADH and NADPH)
may not be controlled by substrate catabolism. Some phototrophic bacteria (e.g., cyanobacte-
ria) have versatile autotrophic and photomixotrophic metabolism that is highly sensitive to
light and substrate availability. Other phototrophs may even have CO2 fixation pathway (such
as the reversed TCA cycle). Therefore, our MFlux platform could not make ML predictions but
only reports a general description of metabolic features of these species.

Lastly, ML cannot directly estimate fluxes for carbon sources which are not part of the learn-
ing dataset. To predict fluxomes for new substrates, users need to assume that similar entry-
points of carbon sources into the central metabolic network may cause similar flux distribu-
tions (e.g., sucrose has to be treated as a combination of glucose and fructose).

Conclusion
This proof-of-concept study demonstrates that AI methods can facilitate fluxomics research
with reasonable precision. 13C-MFA is a very small field of just hundreds of MFA research
papers on microbial species published in the past two decades. In the long term, ML methods
may solve this problem: with a large and reliable fluxomics dataset and more information from
13C-MFA and AI scientists, the future MFlux model can make broad-scope metabolism predic-
tions. To sum up, MFlux presents the first platform introducing ML in the field of fluxomics
and it will be continuously updated and improved. It will inspire the development of similar
computational tools to advance omics and metabolic engineering fields [72].
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Supporting Information
S1 Program. MFlux Computer Program (Source code). Python scripts in a ZIP file.
(ZIP)

S1 Table. Results of 20 case studies. Detailed information for 20 cases studies using MFlux,
including literature references, input conditions, 13C-MFA flux, the flux profiles predicted by
ML, and the flux profiles predicted by MFlux with additional constraints.
(XLSX)

S2 Table. Detailed information of the comparison with FBA/pFBA. The information of con-
straints, objective function, and simulation results.
(XLSX)
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