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IFNγ Responses to Pre-erythrocytic and Blood-
stage Malaria Antigens Exhibit Differential
Associations With Past Exposure and Subsequent
Protection
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Background. The malaria-specific T-cell response is believed to be important for protective immunity. Antima-
larial chemoprevention may affect this response by altering exposure to malaria antigens.

Methods. We performed interferon γ (IFNγ) ELISpot assays to assess the cellular immune response to blood-
stage and pre-erythrocytic antigens longitudinally from 1 to 3 years of age in 196 children enrolled in a randomized
trial of antimalarial chemoprevention in Tororo, Uganda, an area of high transmission intensity.

Results. IFNγ responses to blood-stage antigens, particularly MSP1, were frequently detected, strongly associat-
ed with recent malaria exposure, and lower in those adherent to chemoprevention compared to nonadherent chil-
dren and those randomized to no chemoprevention. IFNγ responses to pre-erythrocytic antigens were infrequent
and similar between children randomized to chemoprevention or no chemoprevention. Responses to blood-stage
antigens were not associated with subsequent protection from malaria (aHR 0.96, P = .83), but responses to pre-
erythrocytic antigens were associated with protection after adjusting for prior malaria exposure (aHR 0.52, P = .009).

Conclusions. In this high transmission setting, IFNγ responses to blood-stage antigens were common and as-
sociated with recent exposure to malaria but not protection from subsequent malaria. Responses to pre-erythrocytic
antigens were uncommon, not associated with exposure but were associated with protection from subsequent
malaria.
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Plasmodium falciparum malaria continues to be a lead-
ing cause of morbidity and mortality in Sub-Saharan
Africa [1, 2]. Although children living in endemic set-
tings eventually develop clinical immunity to malaria,
most individuals experience numerous infections before

clinical protection is achieved. A vaccine to prevent ma-
laria is urgently needed, but progress has been limited
by our lack of understanding of both the critical
P. falciparum antigenic targets and the immune effector
mechanisms needed to confer protective immunity.

Growing evidence suggests that malaria-specific T
cells induced by natural infection or by vaccination
may protect against clinical disease [3–8]. T-cell re-
sponses to blood-stage antigens, including merozoite
surface antigen 1 (MSP1), are frequently observed
among children living in endemic settings, and a few
studies have found them to be associated with protec-
tion from future malaria [4, 8]. However, thus far
blood-stage vaccines have not proven efficacious [9].
Several lines of evidence have prompted a growing in-
terest in pre-erythrocytic stage malaria antigens as
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potential vaccine targets. T-cell responses to the pre-erythrocyt-
ic circumsporozoite (CSP) antigen have been shown to correlate
with protection from future parasitemia [3, 6], and a subunit
vaccine (RTS,S) incorporating CSP has modestly reduced clin-
ical P. falciparum malaria in African infants in phase 2 and 3
trials [10–12]. T-cell responses to other pre-erythrocytic pro-
teins including TRAP and LSA-1 have also been associated
with protection in humans [5, 7, 13, 14]. Moreover, it has long
been known that vaccination with irradiated sporozoites, which
arrest development during the liver stage, confers sterile protec-
tive immunity in humans [15–18], suggesting an important role
for the T-cell response to pre-erythrocytic antigens in mediating
vaccine-induced immune protection.

The use of chemoprevention, either seasonal or year-round,
has recently been explored as a public health strategy to prevent
mortality and morbidity due to childhood malaria in endemic
settings [19, 20]. Although it has been shown to be effective in
reducing malaria, concerns have been raised that a “rebound”
increase in malaria incidence may be observed once chemopre-
vention is stopped, due to delayed development of protective
immune responses [21, 22]. However, recent studies suggest
that provision of antimalarial drugs that target blood-stage ma-
laria may actually enhance the development of cellular immune
responses directed at pre-erythrocytic antigens and, somewhat
paradoxically, foster the development of protective immunity,
a strategy termed “infection-treatment vaccination” [23–27].
In these studies, individuals experimentally infected by sporo-
zoites while receiving chloroquine, which prevents blood-
stage malaria but allows the clinically silent liver stage infection
to develop, consistently exhibited sterile protection upon rechal-
lenge [25–27]. These data suggest that limiting exposure to
blood-stage infection may actually enhance the development
of immune responses to pre-erythrocytic stages, perhaps due
to enhanced exposure to liver stage antigens [28] or avoidance
of immunoregulatory mechanisms induced by parasitemia [29].
By analogy, provision of chemoprevention to heavily exposed
children might actually encourage pre-erythrocytic responses
and foster the development of protective immunity.

In this study, we performed a longitudinal evaluation of
malaria-specific T-cell responses generated in response to
natural infection and compared the responses of children re-
ceiving monthly chemoprevention with dihydroartemisinin-
piperaquine (DP) to those receiving no chemoprevention
as part of a randomized clinical trial. We hypothesized that in-
terferon γ (IFNγ) responses to pre-erythrocytic antigens would
be associated with protection from malaria, and that selective
suppression of blood-stage malaria by chemoprevention given
to children living in a high endemicity setting may limit the
development of T-cell responses to blood-stage antigens and
enhance the development of responses to pre-erythrocytic
antigens.

METHODS

Study Participants and Design
Samples were obtained from children enrolled in a randomized,
controlled, open-label trial comparing the efficacy and safety
of 3 regimens vs no therapy for the prevention of malaria in
Tororo, a district in eastern Uganda with intense year-round
malaria transmission and an entomological inoculation rate es-
timated at 125 [30].Details of this trial have been described else-
where [31], and written informed consent was obtained from
the parent or guardian of all study participants. Briefly, 400 in-
fants were enrolled and 393 randomized at 6 months of age to
no chemoprevention, monthly sulfadoxine-pyrimethamine,
daily trimethoprim-sulfamethoxazole, or monthly dihydroarte-
misinin-piperaquine (DP). The substudy described in this re-
port includes only samples from infants randomized to DP
(n = 98) and no chemoprevention (n = 98). Study drugs were
administered at home without supervision. Chemoprevention
was given from 6 months through 24 months of age, and
study participants were followed for 1 additional year until
they reached 36 months of age. Monthly assessments were per-
formed to ensure compliance with study protocols and perform
routine blood smears. Children who presented with a fever
(tympanic temperature ≥38.0°C) or history of fever in the pre-
vious 24 hours had blood obtained by finger prick for a thick
smear. If the thick smear was positive for malaria parasites,
the patient was diagnosed with malaria regardless of parasite
density and given artemether-lumefantrine. Incident episodes
of malaria were defined as all febrile episodes accompanied by
any parasitemia requiring treatment but not preceded by anoth-
er treatment in the prior 14 days [2]. The incidence of malaria
was calculated as the number of episodes per person years (ppy)
at risk.

Sample Collection and Processing
Approximately 6–10 mL blood was collected from each subject
at routine visits 3 times during the chemoprevention interven-
tion (12–16, 20, and 24 months of age) and 2 times after the
intervention (28 and 32–36 months of age). Peripheral blood
mononuclear cells (PBMC) were isolated by density gradient
centrifugation (Ficoll-Histopaque; GE Life Sciences). PBMC
were used fresh for ELISpot assays, and remaining PBMC
were cryopreserved for use in flow cytometric studies.

Ex-Vivo IFNγ ELISpots
Overlapping peptides (18mers overlapping by 11 amino acids)
spanning the 3D7 sequence of 7 pre-erythrocytic (CSP [6],
TRAP [7], LSA1[5], SIAP1 [32], SIAP2 [32], CelTOS [32],
P52 [33]) and 3 blood-stage P. falciparum proteins (AMA1
[34], MSP1 [8], HGXPRT[35]) were synthesized (Mimotopes,
Australia) and pooled into 16 protein-specific pools (25–54
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peptides per pool, Supplementary Table 1). Fresh PBMC were
plated at 2 × 105 cells/well in 96-well plates precoated with 2 μg/
mL anti-IFNγmonoclonal antibody. Cells were stimulated with
malaria peptide pools (10 µg/mL/peptide), phytohemagluttinin
(1 µg/mL), or media alone. Plates were incubated overnight at
37°C and developed using standard methods [36]. Individual
IFNγ-secreting cells were visualized as purple spots and count-
ed by a plate reader. The magnitude of IFNγ ELISpot responses
was calculated as the number of spot-forming cells per million
input cells (SFC/M) after subtraction of the background re-
sponse (mean SFC/10^6 cells of 3 negative control wells). For
proteins with >1 peptide pools, responses to the overall protein
were summed. ELISpot assays with mean background responses
>30 SFC/M were not considered in the analysis. A response was
considered positive if >3× the average negative control wells and
>20 SFCs/10^6 PBMC [36]. Because response frequencies for
most individual antigens were low, for the multivariate analyses

we grouped responses into stage-specific categories (ie, responses
to any pre-erythrocytic or any blood-stage antigen).

Intracellular Cytokine Staining
ELISpot responses with magnitudes >250 SFC/M were further
characterized by flow cytometry. Thawed PBMC were rested
overnight, then stimulated with media, peptide pools (5 µg/
mL/peptide), or phorbol miristate acetate/calcium ionophore
at 1 × 106 cells/condition. Anti-CD28 and –CD49d were added
for costimulation (0.5 µg/mL, BD Pharmingen). APC-conjugated
CD107a (Biolegend), Brefeldin-A (10 µg/mL) and Monensin
(10 µg/mL, BD Pharmingen) were added at the time of incuba-
tion. After incubation, cells were washed, fixed, and permeabi-
lized [37], and stained using the following antibodies: Brilliant
violet (BV) 650-conjugated CD3, PerCP–conjugated anti-CD4,
BV 511-conjugated CD14 and CD19, BV 605-conjugated CD
45RA, FITC-conjugated CCR7, APC-H7-conjugated CD8,

Figure 1. IFNγ ELISpot responses to pre-erythrocytic and blood-stage antigens. A, Magnitude of IFNγ ELISpot responses to 7 pre-erythrocytic (antigens
on left of dotted line) and 3 blood-stage malaria proteins (antigens on right of dotted line) at 24 months of age, expressed as spot-forming cells (SFC) per
million PBMC. B, Percent of subjects recognizing each protein at 12–16, 24, and 32–36 months of age. Abbreviations: IFNγ, interferon γ; PBMC, peripheral
blood mononuclear cells.
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Figure 2. T-cell responses to malaria antigens characterized by multiparameter flow cytometry. A, Gating strategy to identify live, CD4+ and CD8+ mem-
ory T-cell populations. B, Intracellular cytokine assay demonstrating the T-cell response of one representative malaria-exposed child to MSP1 (bottom row),
with media control shown in row above. C, Intracellular cytokine assay demonstrating the T-cell response of one malaria-exposed child to SIAP1 (bottom
row), with media control shown in row above. Shown are CD4 (first column) and CD8 (right 2 columns) production of IFNγ (y-axis), IL-10 (x-axis, column 1),
TNFa (x-axis, columns 2) and mobilization of the degranulation marker CD107a (y-axis, column 3). Abbreviations: IFNγ, interferon γ; IL, interleukin; TNF,
tumor necrosis factor.
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PE-Cy7-conjugated IFNγ (Biolegend) PE-conjugated anti-IL-
10 (BD Pharmingen), and live/dead aqua amine (Invitrogen).

Piperaquine Levels
Piperaquine (PQ) drug levels were measured at 4 random time
points during the intervention in subjects randomized to DP,
using dried blood spot samples as previously described [31].
The PQ assay demonstrated a lower limit of quantitation of
10 ng/mL with a calibration range of 10–100 ng/mL. Subjects
were characterized as “adherent” if ≥3 of 4 PQ measurements
were ≥10 ng/mL, and “nonadherent” if <3 PQ measurements
were ≥10 ng/mL.

Statistical Analysis
Data analysis was performed using Stata version 12 (Stata Corp,
College Station, Texas) and PRISM version 6 (Graph Pad). As-
sociations between current/prior malaria infection (malaria or
asymptomatic parasitemia at the time of the assay, or duration
since last episode of malaria if the bloodsmear at the time of the
assay was negative), age, and the presence or absence of ELISpot
responses were measured using generalized estimating equa-
tions with robust standard errors to account for repeated
measures in the same child. Associations between DP chemo-
prevention during the intervention and ELISpot responses at
each timepoint were assessed using a χ2 test of proportions.

The cumulative risk of developing malaria following ELISpot
assays was estimated using the Kaplan–Meier product limit for-
mula. For the primary analysis, associations between 24 month
ELISpot responses were made using Cox proportional hazards
models adjusting for prior or current malaria exposure and che-
moprevention randomization assignment. As a secondary anal-
ysis, associations between ELISpot responses at all timepoints
and time to next episode of malaria were made using a

within-subject variance-corrected cox-proportional hazards
model, adjusting for prior/current malaria exposure, age, chemo-
prevention randomization, and their interaction. Adjusted pre-
dicted survival curves were generated using predictions from
the final Cox model. Negative binomial regression was used to
estimate associations between ELISpot responses at 24 months
of age and the incidence of malaria in the following year (inci-
dence rate ratios [IRR]), adjusting for prior malaria and chemo-
prevention assignment as above. In all analyses, a 2-tailed P
value < .05 was considered to be statistically significant.

RESULTS

Clinical Characteristics of Study Cohort
The study cohort consisted of 196 infants followed from 6
months through 3 years of age. Infants were randomized to re-
ceive monthly DP (n = 98) or no chemoprevention (n = 98)
from 6 months through 24 months of age, then followed for
an additional year after stopping chemoprevention. Self-report-
ed insecticide-treated bednet usage was 98.5% throughout the
study. During the intervention, the incidence of malaria in
the no chemoprevention arm was 6.95 episodes ppy; monthly
DP had a protective efficacy of 58% (95% confidence interval
[CI], 45%–67%, P < .001) which waned over the period of the
intervention [31]. Notably, there was significant nonadherence
to DP; only 31% of subjects had ≥3 of 4 measured piperaquine
levels ≥10 ng/mL. In adherent children, monthly DP had a pro-
tective efficacy of 87% (95% CI, 8%–22%, P < .001). In the year
after the intervention was stopped, the incidence of malaria in
the no chemoprevention arm was 10.85 episodes ppy, with no
significant difference in the group that had received DP chemo-
prevention that were adherent (9.26 episodes ppy) or nonadher-
ent (11.53 episodes ppy). A total of 790 ELISpots were

Figure 3. Recent malaria associated with IFNγ responses to blood-stage but not pre-erythrocytic antigens. A, Recognition frequencies to any blood-stage
antigen in children stratified by prior or current malaria exposure. B, Recognition frequencies to any pre-erythrocytic antigen in children stratified by prior or
current malaria exposure. Abbreviation: IFNγ, interferon γ.
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performed from these 196 children (mean 4 ELISpots/child,
Supplementary Figure 1). Of these, 162 ELISpot assays (21%)
were performed on samples obtained while the subject had par-
asitemia (positive blood smear), of which 80 were performed on
samples obtained while the subject had symptomatic malaria
(parasitemia with a fever requiring treatment).

Frequent Recognition of MSP1 but not of Pre-erythrocytic
Antigens
To define the malaria antigens targeted by T cells in these chil-
dren, we analyzed the production of IFNγ after stimulation with
peptides spanning blood-stage and pre-erythrocytic antigens
longitudinally using ELISpot assays. In general, IFNγ responses
were of low magnitude, with a majority of responses <200 SFCs/
M (Figure 1A). MSP1, a blood-stage antigen, was most fre-
quently recognized, with 36% of subjects recognizing this anti-
gen at 24 months of age (Figure 1B). In contrast, responses to
pre-erythrocytic antigens were infrequent, with recognition fre-
quencies <10% to most, including the leading vaccine candidate
antigen CSP (Figure 1B). Of responders to blood-stage antigens
(n = 231), 92% only had a response to a single antigen, and 8%
had a response to 2 antigens. Of responders to pre-erythrocytic
antigens (n = 86), 85% had a response to a single antigen, 11% had
a response to 2 antigens, and 3% had a response to ≥3 antigens.

Functional and phenotypic analysis of MSP1-responding
cells in a representative child revealed both CD4+ and CD8+

IFNγ-producing cells, with a significant proportion of CD4+

T cells that co-produced IL-10 (Figure 2A and B). While most
responses to pre-erythrocytic antigens were small in magnitude,
a notable exception was one subject who had a response of >500
SFCs/M to SIAP1 at all measured timepoints. A more detailed
functional and phenotypic analysis revealed that the majority
of SIAP1-specific cells in this child were CD8+ T cells that co-
produced IFNγ and TNFα and degranulated in responses to
stimulation (Figure 2C).

Recent Malaria, Parasitemia, and age Associated With Blood-
stage but not Pre-erythrocytic Responses
The frequency of IFNγ responses to pre-erythrocytic and blood-
stage antigens differed markedly based on a child’s clinical ma-
laria history. Recent malaria was strongly associated with a
higher likelihood of response to blood-stage antigens (Figure 3;
Table 1). However, individuals who were parasitemic at the time
of the assay were significantly less likely to have a blood-stage
response than children who were not parasitemic (RR 0.47,
95% CI, .32–.70, P < .001). These data are consistent with pre-
vious studies that have reported suppression of T-cell responses
in the setting of current infection [38, 39]. In addition, blood-
stage response frequencies increased gradually with age, with
a slight decline at the final time point (Table 1). Similar findings
were obtained when only analyzing responses to MSP1. In con-
trast, responses to pre-erythrocytic antigens were not associated Ta
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with recent malaria, concurrent parasitemia, or age (Table 1).
Stratification by chemoprevention randomization assignment
did not significantly influence any of these results. Together,
these findings suggest that the factors influencing the presence
of IFNγ responses to blood-stage antigens differ from those for
pre-erythrocytic malaria antigens, with recent infection correlat-
ing with higher blood-stage responses, and concurrent parasite-
mia suppressing blood-stage responses but not pre-erythrocytic
responses.

Impact of Chemoprevention on Malaria-specific ELISpot
Responses
We next compared IFNγ ELISpot responses between children
randomized to DP vs no chemoprevention to test the hypothe-
sis that selective suppression of blood-stage malaria by chemo-
prevention may alter the balance of responses to blood-stage

and pre-erythrocytic antigens. Given the high levels of nonad-
herence to DP observed in this study, children were stratified as
being on no chemoprevention, DP nonadherent, and DP adher-
ent (Figure 4). During the intervention, children who were DP
nonadherent had similar blood-stage recognition frequencies to
children who were randomized to no chemoprevention (Fig-
ure 4A). However, DP adherent children were consistently less
likely to have IFNγ responses to blood-stage malaria antigens in
comparison to children randomized to no chemoprevention
and DP nonadherent children at 12–16 months (4% vs 18%,
P = .076), 20 months (8% vs 19%, P = .11), and 24 months of
age (3% vs 22%, P = .001). Post-intervention, children in all 3
groups had similar recognition of blood-stage antigens (Fig-
ure 4A). Similar results were obtained when only analyzing re-
sponses to MSP1, and when comparing responses between
adherent children and either nonadherent or children assigned

Figure 4. Impact of chemoprevention on ELISpot responses to blood-stage and pre-erythrocytic antigens. A, Recognition frequencies to any blood-stage
antigen at 12–16, 20, 24, 28, and 32–36 months of age in children stratified by antimalarial chemoprevention group (no chemoprevention, DP: Non-adherent,
and DP: Adherent. Solid lines represent ELISpot responses during the intervention; dotted lines represent ELISpot responses post-intervention. B, Recog-
nition frequencies to any pre-erythrocytic antigens in children stratified by antimalarial chemoprevention group. Abbreviation: DP, dihydroartemisinin-
piperaquine.

Table 2. Association of ELISPot Responses at 24 Months of age With Protection From Symptomatic Malaria in Following Year

Predictor

Time Until Next Episode of Malaria Future Incidence of Malaria

Univariate Multivariatea Univariate Multivariatea

HR (95% CI) P Value HR (95% CI) P Value IRR (95% CI) P Value IRR (95% CI) P Value

Any Blood-stage response 1.50 (1.09–2.07) .014 0.96 (.67–1.37) .827 1.16 (.97–1.39) .096 1.00 (.84–1.18) .987

MSP1 Response 1.54 (1.11–2.13) .009 0.99 (.70–1.41) .961 1.18 (.99–1.41) .067 1.02 (.86–1.20) .840

Any Pre-erythrocytic
Response

0.65 (.41–1.03) .067 0.52 (.32–.85) .009 0.83 (.64–1.07) .150 0.83 (.66–1.05) .123

Abbreviations: CI, confidence interval; HR, hazard ratio; IRR, incidence rate ratio.
a Controlling for prior or current malaria exposure strata (Table 1) and chemoprevention randomization assignment.
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no chemoprevention (data not shown). In contrast, DP chemo-
prevention was not consistently or significantly associated with
a difference in the frequency of IFNγ responses to pre-erythro-
cytic malaria antigens (Figure 4B). Together, these results sug-
gest that taking DP chemoprevention does not significantly
enhance ELISpot responses to this wide panel of pre-erythrocytic
antigens, and is associated with lower T-cell recognition of
blood-stage malaria antigens compared to children not taking
chemoprevention.

Pre-erythrocytic and Blood-stage Responses are Differentially
Associated With Protection From Malaria
Finally, we sought to determine whether IFNγ responses to
blood-stage and pre-erythrocytic antigens were associated
with subsequent protection from malaria. Our primary analysis
focused on the relationship of ELISpot responses at 24 months
of age (when chemoprevention was stopped) to the time to the
next episode of malaria, and to the incidence of malaria in the
year following the intervention. Given the challenge of distin-
guishing protection from a lack of exposure to malaria-infected
mosquitos [40], we adjusted all analyses for indices of prior or
current malaria as surrogate measures of exposure intensity. On
univariate analysis, IFNγ responses to blood-stage antigens at
24 months of age were associated with a 50% increased hazard
of developing malaria and a nonsignificant increased risk of
malaria in the year following the assay (Table 2). After control-
ling for prior or current malaria exposure, there was no signifi-
cant association between blood-stage responses and subsequent
protection. Results were similar when stratifying by chemopre-
vention randomization assignment (data not shown), and when
analyzing responses to MSP1 alone (Table 2). In contrast, IFNγ
responses to pre-erythrocytic antigens were associated with a
48% reduced hazard of developing malaria after adjustment
for prior or current malaria exposure (P = .009, Table 2,

Figure 5), and a nonsignificant decreased risk of malaria (IRR
0.83, P = .12) in the year following the assay. As a secondary
analysis, we examined the relationship of ELISpot responses
at all timepoints and time to next episode of malaria, adjusting
for age, current/prior malaria exposure, and chemoprevention
randomization assignment. This analysis yielded nearly identi-
cal results (blood-stage aHR 0.97, 95% CI, .77–1.2, P = .809; pre-
erythrocytic aHR 0.71, 95% CI, .50–.99, P = .041). Together,
these findings suggest that IFNγ responses to pre-erythrocytic
antigens may be associated with protection from future malaria,
but responses to blood-stage antigens are not.

DISCUSSION

In this cohort of young children living in a high endemicity set-
ting in Uganda, we evaluated malaria-specific IFNγ ELISpot re-
sponses to a large panel of pre-erythrocytic and blood-stage
antigens, with MSP1-specific responses most frequently detect-
ed. Although responses to blood-stage antigens—specifically
MSP1—were associated with recent malaria exposure, they
were not associated with protection. IFNγ responses to pre-
erythrocytic antigens were less frequently observed, but in con-
trast to blood-stage responses, were associated with subsequent
protection, as measured by a reduced hazard of developing ma-
laria. Finally, although chemoprevention was effective at reduc-
ing the incidence of malaria, it did not significantly enhance
responses to pre-erythrocytic antigens but was rather associated
with a lower frequency of T-cell responses to blood-stage anti-
gens in adherent children.

MSP1 was considered a leading vaccine candidate following
studies showing protection in vaccinated old world monkeys
[41, 42], but a phase 2 trial of the C-terminal 42-kDa region
of the MSP1 3D7 allele showed no efficacy against malaria in
vaccinated children [9]. More recently, MSP1-specific IFNγ

Figure 5. ELISpot responses and protection from symptomatic malaria. A, Survival curves for IFNγ ELISpot responses to blood-stage antigens at 24
months of age after adjusting for prior or current malaria exposure (with categories as defined in Table 1) and chemoprevention randomization assignment.
The solid black line represents responders to any blood-stage antigen and the dashed line represents nonresponders. B, Survival curves for ELISpot
responses to pre-erythrocytic antigens at 24 months of age after adjusting for prior or current malaria. Abbreviation: IFNγ, interferon γ.
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ELISpot responses were reported to correlate with protection
from malaria in a treatment reinfection study of naturally ex-
posed Kenyan children 1–14 years of age [8]. In contrast to
that study, we found that IFNγ responses to MSP1 were not as-
sociated with protection but instead associated with recent ex-
posure to malaria. These diverging results may be explained by
the young age of children enrolled in our cohort, as T-cell re-
sponses are known to be less efficacious in early childhood,
and responses to MSP1 may be qualitatively different in young
children in comparison to older children and adults [43]. Fur-
thermore, children enrolled in our cohort were exposed to in-
tense, year-round transmission, and this continual antigen
exposure could induce immunoregulatory mechanisms that
dampen the inflammatory response. We have recently shown
in a separate cohort of children that CD4+ T cells co-producing
interleukin 10 (IL-10) and IFNγ dominate the malaria-specific
response in heavily exposed young children, and this population
was also not associated with protection [29]. This IL-10 produc-
ing Th1 population may play an important role in preventing
immunopathology but may interfere with the development of
antimalarial immunity, as has been shown with other parasitic
infections [44].

We observed that responses to pre-erythrocytic antigens were
associated with protection frommalaria, consistent with observa-
tions from prior studies [3, 6, 7] and with studies of the modestly
protective RTS/S vaccine, which is based on the pre-erythrocytic
antigen CSP [10–12]. Liver stage-specific CD8+ T cells have
been demonstrated to be important in protective antimalarial
immunity in animal models [45–48]. However, a notable find-
ing of our study was the low recognition frequency of responses
to pre-erythrocytic antigens, including the leading vaccine can-
didates CSP, TRAP, and LSA1. This is in agreement with prior
studies reporting infrequent responses to pre-erythrocytic anti-
gens in young children, including children vaccinated with
RTS/S [49]. Homing of T cells to the liver and other tissues
may partially explain this low recognition frequency and has
been demonstrated in non-human primate studies [50], but
sampling of tissues was not feasible in our study.

Finally, we observed that monthly chemoprevention with DP
did not significantly enhance responses to pre-erythrocytic an-
tigens, although it did appear to reduce responses to blood-stage
antigens, particularly in adherent children. Children random-
ized to DP did not have significantly more or less malaria in
the year following the intervention than children randomized
to no chemoprevention, although the high levels of nonadher-
ence to the study intervention make it difficult to draw definitive
conclusions from either of these observations. Studies employ-
ing directly observed therapy would enable a better assessment
of the impact of antimalarial chemoprevention on the develop-
ment of malaria-specific T-cell responses.

In conclusion, among naturally exposed children living in a
high endemicity setting, IFNγ ELISpot responses to blood-stage

antigens were frequently observed in young children but were
not associated with protection. Responses to pre-erythrocytic
antigens were associated with prospective protection from ma-
laria, but were not enhanced in children receiving antimalarial
chemoprevention. A better understanding of correlates of pro-
tective immunity, as well as factors that impede the develop-
ment of immunity to pre-erythrocytic antigens, will help
inform the design of future strategies for antimalarial chemo-
prevention and vaccines.
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