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Abstract

Inadequate statistical power to detect treatment effects in health research is a problem that is 

compounded when testing for mediation. In general, the preferred strategy for increasing power is 

to increase the sample size, but there are many situations where additional participants cannot be 

recruited, necessitating the use of other methods to increase statistical power. Many of these other 

strategies, commonly applied to analysis of variance and multiple regression models, can be 

applied to mediation models with similar results. Additional predictors or blocking variables will 

increase or decrease statistical power, however, depending on whether these variables are related to 

the mediator, the outcome, or both. The effect of these two methods on the power for tests of 

mediation is illustrated through the use of simulations. Implications for health researchers using 

these methods are discussed.
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Due to the work of Cohen (1988) and others (e.g., Freiman, Chalmers, Smith, & Kuebler, 

1978), most health researchers recognize the need for adequate statistical power. In addition 

to an increased ability to detect effects, adequate statistical power is a requirement when 

applying for grants. As noted by Murray (2008), “[U]nless the reviewers are satisfied that 

the investigators have . . . shown that the power is adequate, their enthusiasm will be 

reduced, with a consequent reduction in the likelihood that the project will receive a good 

priority score” (p. 89). Health researchers have also become more focused on understanding 

mechanisms of change when evaluating randomized controlled trials (RCTs) and prevention 

interventions. The primary method for examining mechanisms of change statistically is 
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mediation analysis, where the intervention or treatment affects the outcome variable through 

a third intervening variable.

A variety of statistical tests have been developed to test whether a variable mediates a 

specific effect, each with a different level of statistical power depending on the situation 

(e.g., MacKinnon, Lockwood, Hoffman, West, & Sheets, 2002; MacKinnon, Lockwood, & 

Williams, 2004). Fritz and MacKinnon (2007) selected six tests of mediation, based on 

popularity and statistical power, and estimated the required sample size necessary to achieve 

power of .80 for combinations of small, medium, and large effects to help researchers 

adequately power their mediation studies. The most common question raised by readers of 

the Fritz and MacKinnon study is: Can anything be done to increase power in tests of 

mediation when the desired sample size cannot be obtained? Sample size is of special 

concern to health professionals when the prevalence of a disease or disorder is low, 

recruitment of participants is difficult, or the costs of collecting additional data are 

prohibitive. Fortunately, there are numerous ways to increase power for statistical tests 

without increasing sample size (McClelland, 2000). Certain methods, however, such as 

including additional predictors and blocking may be less straightforward for mediation 

models because the gain in power is dependent on whether the additional predictor or 

blocking variable is related to the mediator, the outcome variable, or both. The current 

project examines how these two methods can increase the power of tests of mediation.

The Single Mediator Model

The single mediator model refers to a special case of the more general class of third variable 

models where change in an independent variable X causes change in an outcome variable Y 
through a third intervening or mediating variable M. Mediation is distinct from other third 

variable models such as confounding, where the third variable causes both X and Y, or 

moderation, where the magnitude and sign of the effect of X on Y are dependent on the 

value of the third variable. The single mediator model, illustrated in Figure 1, can be 

estimated using three regression equations

(1)

(2)

(3)

where c1 is the total effect of X on Y, a1 is the effect of X on M, b1 is the effect of M on Y 
controlling for X, c′1 is the direct effect of X on Y controlling for M, β0 is an intercept, and 

ri are residuals. The a effect is referred to as the action theory in RCT and intervention 

research because participants are actively assigned to levels of the treatment variable X 
(Chen, 1990). The b effect is referred to as the conceptual theory because participants are 

rarely assigned to levels of the mediator so the link between the mediator and the outcome 

must instead rely on the conceptual theory (MacKinnon, Taborga, & Morgan-Lopez, 2002). 
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The mediated or indirect effect is equal to ab, provided certain assumptions are met 

including no confounding of the X to M, X to Y, or M to Y relations, especially by other 

variables affected by the treatment (VanderWeele & Vansteelandt, 2009).

Statistical Power for Mediation Models

The power of a statistical test is the probability of rejecting the null hypothesis when the null 

hypothesis is false. That is, power is the probability of finding an effect when an effect is 

present. Statistical power is dependent on three values: the Type I error rate, the sample size, 

and the effect size. In general, as any of these quantities increases while the other two 

remain constant, power increases. In most a priori power analyses, the desired power, Type I 

error rate, and expected effect size are selected, so that the required sample size can be 

computed. In a sensitivity analysis, the effect size that can be detected for a specific Type I 

error rate, sample size, and power level is calculated. A power level of .80 is commonly used 

by behavioral scientists (Cohen, 1988), but health researchers may require higher power or 

accept lower power depending on the type of research they are conducting. Researchers are 

most concerned with studies that are under-powered, but researchers must also be concerned 

with studies that are overpowered, usually due to extremely large sample sizes. In an 

overpowered study, effects may be statistically significant but have little or no practical 

significance. Multiple methods for dealing with overpowered studies exist, including using a 

more conservative Type I error level or setting a minimum effect size below which a 

statistically significant effect will not be interpreted.

Calculating the required sample size for a specific power level in mediation models is more 

complex than for many other statistical tests because the power to detect both a and b must 

be taken into account. This is why most power analysis programs do not directly compute 

power for mediation models and the reason a majority of the prior work on power in 

mediation has been conducted using simulations (e.g., Hoyle & Kenny, 1999; MacKinnon, 

Lockwood, et al., 2002). A general method to determine power in a variety of different 

mediational designs, including structural equation models, models with multiple mediators, 

and mediation with missing and nonnormal data, was developed by Thoemmes, MacKinnon, 

and Reiser (2010). Using the “Monte Carlo” command in Mplus (Muthen & Muthen, 2013), 

the authors created syntax that can estimate the power for the mediated effect by entering 

expected values for a and b. These power estimates are calculated using the first-order 

standard error test (Sobel, 1982), which may underestimate power for other tests of 

mediation, though these estimates can then be entered into PRODuct Confidence Limits for 

INdirect effects (PRODCLIN; MacKinnon, Fritz, Williams, & Lockwood, 2007) to 

determine power for the distribution of the product test (MacKinnon et al., 2002; Meeker, 

Cornwell, & Aroian, 1981).

In order to discuss methods for increasing power in mediation models without increasing the 

sample size, clarification is needed for how increasing sample size actually increases power. 

Increasing the sample size decreases the standard error of the mediated effect, which in turn 

increases the power. Consider the first-order standard error for the standardized mediated 

effect (Sobel, 1982) where the asterisks indicate standardized coefficients
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(4)

In the standard error,  is the squared correlation between X and M, and  is equal to 

the squared multiple correlation of Y regressed on X and M. Equation 4 shows that when all 

other quantities are held constant, the standard error decreases as the sample size n 
increases. Any change that decreases the standard error of a test of mediation will increase 

power, however, even if the sample size does not change.

Numerous methods exist for reducing the standard error of a statistic without increasing the 

sample size that can be applied to mediation models. Using modern missing data techniques 

including full-information maximum likelihood and multiple imputation (Enders, 2010; 

Schafer & Graham, 2002) or designs with planned missingness (Graham, Taylor, & 

Cumsille, 2001) will increase the number of cases that can be used to estimate the mediation 

model without increasing the initial sample size. The use of structural equation models to 

model measurement error in a mediation model has been shown to return smaller standard 

error estimates than multiple regression models (Hoyle & Kenny, 1999; Iacobucci, Saldanha, 

& Deng, 2007). Sampling variables across a larger range can decrease standard errors 

(McClelland, 2000), as can the use of repeated measures (Venter & Maxwell, 1999). 

Blocking and the inclusion of additional predictors can also decrease the standard error. 

Unlike the other methods just described, however, the amount the statistical power of a test 

of mediation increases for these two methods is more complicated because it depends on 

whether the additional predictors or the blocking variable are related to the mediator, the 

outcome, or both, as well as other factors.

Additional Predictors

The first method considered here to decrease the standard error of a test of mediation 

without increasing the sample size is to include additional predictors. Consider again the 

standard error formula in Equation 4 where  is the residual variance in M not 

explained by X, and  is the residual variance in Y not explained by X and M. Since 

these quantities appear in the numerator, as the percentage of explained variance in either M 
or Y increases, the standard error decreases. Hence, adding predictors to the model that 

explain additional variance in M or Y will increase power, but there are two penalties for 

adding additional predictors. The first penalty is the quantity (n – p – 1), which adjusts the 

standard error for the total number of predictors in the model p, so that as p increases while 

the variance explained remains constant, the standard error increases. The second penalty is 

the variance inflation factor (VIF), , which is a measure of the multicollinearity 

of X and M, and increases the standard error as the redundancy between predictors 

increases. In order to decrease the standard error by including additional predictors, the gain 

in explained variance in M or Y must be larger than the penalty for increasing p or the VIF.
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The interplay between variance explained, number of predictors, and the VIF leads to the 

counterintuitive situation where the power of the test of b increases as the size of c′ increases 

if b stays constant. That is, there is more power to test for a mediator that explains a smaller 

proportion of the total effect. To understand why, consider that in Equation 4 the standard 

error of b will increase as X explains less of the variance in Y. This means the standard error 

for b will be largest when c′ = 0 because  will be at its smallest. The situation is 

compounded when a is large, because the VIF will also increase. This means that as the size 

of a increases, the power to detect b can decrease, especially when b is a small effect (Fritz, 

Taylor, & MacKinnon, 2012; Hoyle & Kenny, 1999; MacKinnon, 2008). Hansen and 

McNeal (1996, p. 502) call this phenomenon “the law of maximum expected potential 
effect, which specifies that the magnitude of change in behavioral outcome that a program 

can produce is directly limited by the strength of the relations that exist between mediators 

and targeted behaviors.”

Based on these considerations, several categories of variables are good candidates for 

inclusion as additional predictors in a mediation model. The first are prior measurements of 

M and Y such as pretest measures (Venter & Maxwell, 1999), including baseline measures 

taken before implementation of an RCT. These autoregressive effects are often quite large 

and excluding them is equivalent to constraining these effects to zero (Gollob & Reichardt, 

1987), which will bias the estimates of the mediation parameters when untrue (Maxwell & 

Cole, 2007). Steyer, Fiege, and Rose (2010) go a step further and state that whenever 

possible, pretest measures of M and Y should be included in the model. A second category 

of predictors are demographic variables such as age and gender, which are often controlled 

for in RCTs. A third category is the inclusion of interaction terms, although interactions that 

include mediators are beyond the scope of this article (see, e.g., Fairchild & MacKinnon, 

2009). A fourth, and perhaps the most important, category of variables are other potential 

mediators of the relation between the treatment and the outcome. Additional mediators can 

increase power while also producing a more accurate estimate of the original mediator by 

controlling for the shared effects of the additional mediators. Hansen and McNeal (1996) 

argue that in behavioral interventions any direct effect between X and Y is most likely due to 

the exclusion of additional mediating variables from the model.

Blocking

When individuals are randomly assigned to levels of treatment, the power to detect the 

mediated effect can also be increased through the use of blocking variables. In a completely 

randomized (CR) design, individuals are assigned to treatments at random, ignoring all 

personal characteristics. A completely blocked (CB) design involves selecting a variable that 

explains variance in the outcome variable, randomizing individuals within levels of the 

blocking variable to the levels of the treatment, and then including the blocking variable in 

the model. For example, if gender is related to the outcome variable, instead of randomly 

assigning all individuals to treatments, a researcher would randomize females and males to 

treatments separately so there would be an equal ratio of males and females in each of the 

treatment levels. Blocking variables can be socioeconomic variables such as education level 
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or risk variables such as condom use, but can also be any other variable related to the 

outcome.

Compared to a CR design, blocking reduces the experimental error (i.e., residual variance) 

by creating homogeneous groups of individuals so that the variance within each block is 

smaller than the variance of individuals across blocks (Kuehl, 2000). For mediation models, 

this means the blocking variable explains variance in M or Y so that the residual variances 

 or  in Equation 4 are smaller for a CB design than for a CR design, resulting 

in an increase in power. As with the inclusion of additional predictors, however, there are 

some caveats to this increase in power. The first issue, as described by Kuehl, is that as the 

number of levels of the blocking variable increases, the degrees of freedom for the blocking 

variable also increases, which increases p. As p increases, the quantity (n – p – 1) in 

Equation 4 decreases, increasing the standard error and decreasing power.

The second issue involves whether the blocking variable is related to M, Y, or both. In a 

mediation model where individuals are randomly assigned to levels of X using a CB design, 

the blocking variable and X will be uncorrelated when each level of X has an equal ratio of 

individuals in the levels of the blocking variable. If the blocking variable is related to both M 

and Y, the power for a will increase as  decreases, but the effect on the power for b 
depends on the correlation between the blocking variable and M, and the amount that 

 decreases. If the VIF increases less than the residual variance decreases, then the 

power will increase; otherwise it will decrease. This means the overall power for the 

mediated effect may increase, stay the same, or even decrease slightly. The same issues with 

the relations between X, M, and the blocking variable must be considered when the blocking 

variable is only related to Y. When the blocking variable is related only to M and is 

uncorrelated with X, the power to detect a will increase as  decreases, but the power 

for b should remain the same.

Simulations

The exact amount blocking or adding an additional predictor to a mediation model will 

increase statistical power is difficult to determine because it is dependent on many factors. 

For example, the size of a, b, and the effect of the additional predictor, whether the 

additional predictor is related to M, Y, or both, and the original power to detect the mediated 

effect. In order to illustrate specifically how blocking and including additional predictors 

affects the power to detect mediation for specific parameter conditions, a series of 

simulations were conducted. All simulations were conducted using R (R Core Development 

Team, 2012). Six different tests of mediation were used in each simulation: the Baron and 

Kenny (1986) causal steps test, the joint significance test (MacKinnon et al., 2002), Sobel’s 

(1982) first-order standard error test, the PRODCLIN distribution of the product test 

(MacKinnon et al., 2007), the percentile bootstrap test, and the bias-corrected bootstrap test 

(Bollen & Stein, 1990; Efron & Tibshirani, 1993; Shrout & Bolger, 2002). For more 

information on these tests, see MacKinnon (2008).
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Simulation #1

The first simulation investigated the impact of adding additional predictors to the single 

mediator model that are uncorrelated with the predictors already in the model. Two new 

variables were introduced: W is an additional predictor that explains variance in M, but is 

uncorrelated with X; and V is an additional predictor that explains variance in Y, but is 

uncorrelated with X or M. Data for X, W, and V were generated from standard normal 

distributions using RNORM in R. M and Y were generated using Equations 1–3 and

(5)

(6)

where d represents the effect of W on M controlling for X and e represents the effect of V on 

Y controlling for M and X. The effect sizes for a, b, d, and e were varied between 0.14, 0.39, 

and 0.59, which correspond to small, medium, and large partial effects (Cohen, 1988). 

Because changing the values of c′ would distort the effects of the added predictors, c′ was set 

equal to 0 for all conditions to represent the worst-case scenario in terms of power where X 
explains no variance in Equation 3 or 6, increasing the standard error of b. All combinations 

of effect sizes for a and b were investigated (e.g., a–b: small–small, small–medium, etc.), 

while d and e were set equal (i.e., d–e: small–small, medium–medium, large–large) resulting 

in 27 combinations.

Sample size is important because overpowering the tests would cause ceiling effects that 

would obscure the change in power. For that reason, the sample sizes from Fritz and 

MacKinnon (2007) for the joint significance test, which has power greater than the Baron 

and Kenny causal steps test and less than the bias-corrected bootstrap test, were multiplied 

by 0.75 to emulate the situation where a researcher is unable to attain the sample size 

necessary for .80 power and are shown in Table 1. The six tests of mediation were then 

conducted on each combination of parameters from Equation 2, 3, 5, and 6 (i.e., a1b1, a1b2, 

a2b1, and a2b2). This process of generating data and testing for mediation was repeated 

1,000 times and the proportion of replications where significant mediation was found for a 

specific test was equal to the statistical power for that test and for that effect size 

combination.

The difference in power when an additional predictor of M is included in the estimation of a 
(i.e., Equation 5 is used in place of Equation 2) is illustrated in Table 1. As can be seen from 

the table, including an additional predictor of the mediator can increase the power of a test. 

For example, when a is a small effect, b is a large effect, and the effect of the additional 

predictor is medium, the power increased by .053 for the joint significance test, .054 for the 

distribution of the product test, .055 for the first-order standard error test, .064 for the bias-

corrected bootstrap test, and .070 for the percentile bootstrap test. For the same values of a 
and b, when the effect of the additional predictor is large, the first-order, distribution of the 

product, and bias-corrected bootstrap tests increased by .121, while the joint significance 

and percentile bootstrap tests increased by .123. The increase in power, however, is 
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contingent on the model having enough power to detect the effect of the additional predictor. 

If the study is underpowered to detect the extra predictor, no additional variance in the 

dependent variable is accounted for and the added predictor may increase the standard error. 

This is illustrated by the negative values in the table such as the value −.002 for the 

distribution of the product test when a is small, b is large, and the effect of the additional 

predictor is small. In addition, because W affects the standard error of a but not b, conditions 

where b is the smaller, limiting effect did not see a gain in power. For example, when a is 

large and b is small, the difference in power for all tests is approximately zero. Note that 

PRODCLIN did not converge for a small percentage of iterations (.005 or less for a 

particular set of mediation parameters), which is due to numerical integration issues that can 

occur when one of the confidence limits approaches zero. There is no evidence that 

nonconvergence is based on the significance of the mediated effect, so the power for 

PRODCLIN was computed for the number of replications that converged for this and all 

other simulations presented here.

Table 2 shows the difference in power when an additional predictor of Y is included in the 

model (i.e., Equation 6 is used in place of Equation 3). The magnitude of the changes in 

power are similar to Table 1, but V affects the standard error of b and not a, so conditions 

where a is the smaller, limiting effect now have no gain in power. For example, in Table 1 

the condition where a is a large effect, b is a small effect, and the effect of the additional 

predictor is large showed almost no change in power. In Table 2, for the same values, the 

power increases from .030 for the Baron and Kenny causal steps test to .143 for the first-

order standard error test, while the additional predictor has no effect on power when a is 

small and b is large, the opposite of Table 1.

Table 3 shows the change in power when additional predictors of M and Y are both included 

(i.e., Equations 5 and 6 were used instead of Equations 2 and 3). By including both W and 

V, the changes in power are larger and there are no combinations of a and b where power 

was unchanged. For example, when a and b are medium effects and the effect of the 

additional predictor is large, the increase in power for the distribution of the product test 

when there are additional predictors of both M and Y is .175, compared to .090 when there 

is only an additional predictor of M and .076 when there is only an additional predictor of Y.

The results show that including additional predictors can substantially increase power, but it 

may also decrease power. Consider the condition in Table 3 that lead to the largest increase 

in power for all of the tests where a and b are medium effects and d and e are large effects. 

The reason this condition resulted in the largest increase in power is that the additional 

predictors W and V were uncorrelated with X and M, so no additional variance was partialed 

out of a and b. At the same time, the sample size of 56 was large enough to reliably detect 

the large d and e effects. As described in Equation 4, this leads to an ideal situation where 

the additional predictors are reliably explaining extra variance in M and Y, while not 

increasing the VIF, which greatly decreases the standard error of the mediated effect and 

increased power. If we change any of these factors, the change in power decreases. For 

example, if d and e are medium effects while the sample size, a, and b remain the same, the 

power to reliably detect the effects of W and V decreases. This results in a smaller increase 

in power for the mediated effect because when d and e are not significant, they do not add as 
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much to the variance explained, but they do add to the number of predictors in the model, so 

the standard error does not decrease. This is further illustrated when d and e are small effects 

and the power to detect the mediated effect was lower when W and V are included in the 

model than when they were not included.

Based on these results, including additional predictors in a mediation model is not a panacea 

for power issues. First, there must be adequate power to detect the effect of the additional 

predictors or the power to detect the mediated effect may decrease. Second, additional 

predictors only increase power if they affect the standard error of the smaller, limiting effect; 

otherwise, the power will remain unchanged. Third, as the number of new predictors 

increases, while the gain in explained variance remains the same, any increase in power will 

diminish as a function of the penalty paid for the total number of predictors in the model. 

Fourth, a large correlation between predictors will cause the VIF to increase, potentially 

diminishing any increase in power gained by including the additional predictor or even 

decreasing power. Finally, when the new predictors are correlated with X and/or M, the 

magnitude of a and/or b will likely also be diminished when the new predictor is partialed 

out, also decreasing power.

Simulation #2

The second simulation is identical to the previous simulation with the exception that a 

medium-sized effect (i.e., 0.39) was included between X and W, and between M and V to 

illustrate the case where the predictors are correlated. In Table 4, the negative values show 

the decrease in statistical power between the mediated effect from Equations 5 and 6, a2b2, 

from the first simulation when there is no correlation between the additional predictor and 

the mediation variables, and a2b2 from the second simulation when a medium-sized relation 

existed. As can be seen in the table, the statistical power was reduced in all situations. For 

example, when a is a large effect and b is a small effect, the power decreased from −.045 to 

−.100 compared to the same parameter values in Table 3. When the sample size is large 

enough to provide adequate power to detect the effect of the additional predictor, the effect 

of the nonzero relation between the additional predictor and the mediation variables was to 

reduce the original gain in power achieved through the inclusion of the additional predictors. 

When the sample size was not large enough to provide adequate power to detect the effects 

of the additional predictors, the power for finding the mediated effect decreased below the 

level of power found using the original mediation equations that did not include additional 

predictors (i.e., Equations 2 and 3). In addition, if a study is overpowered to begin with, 

including additional predictors will have little or no effect in terms of increasing power, but 

could decrease power. For example, when a, b, and the additional predictors were all 

medium effects, the increase in power for the bias-corrected bootstrap test when the 

predictors were uncorrelated is .048, but when the predictors are correlated the power 

decreases by .060, an overall decrease in power of .012.

Simulation #3

The third simulation examined the relation between blocking and power. First, 10,000 cases 

were created to represent the situation where X was a dichotomous treatment variable and 

gender was a dichotomous blocking variable, resulting in 2,500 cases in each of four groups: 
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males in the control group (MC), females in the control group (FC), males in the treatment 

group (MT), and females in the treatment group (FT). Next, data for M and Y were created 

using Equations 7 through 9,

(7)

(8)

(9)

to represent the situation where the blocking variable was related to both M and Y. Only this 

situation was examined for two reasons. First, if the blocking variable is related to M, it 

should be included in Equation 9 to account for the shared variance with M. When it is 

included, it is likely there will be a nonzero relation between the blocking variable and Y. 

Second, given the hypothesized relation between X, M, and Y, it is likely that any blocking 

variable related to Y would also be related to M.

The effect sizes for a and b were varied between 0.14, 0.39, and 0.59, which correspond to 

small, medium, and large partial effects (Cohen, 1988). The direct effect c′ was set equal to 

zero and the effect of gender was constrained to be a medium effect, resulting in nine 

combinations of parameters. Two random samples of size n, shown in Table 5 and based on 

the estimates from Fritz and MacKinnon (2007) necessary for .80 power, were taken from 

the original 10,000 cases for each of the nine parameter combinations. The first sample was 

a random sample of size n that consisted of 30% of the n cases belonging to the FC group, 

30% to the FT group, and 20% each to the MC and MT groups. This sample represents a CB 

design where a random sample was taken that contained 60% females and 40% males who 

where then randomly assigned to the treatment or control group using gender as a blocking 

variable, resulting in an equal ratio, 3:2, of females to males in each level of treatment. The 

second sample was another random sample of size n but consisted of 40% of the n cases 

belonging to the FC group, 20% to the FT group, 10% to the MC group, and 30% to the MT 

group. This sample represents a CR design where a random sample was taken that contained 

60% females and 40% males, as in the CB sample, but gender was not used as blocking 

variable so the ratio of females to males is not the same between the treatment levels with a 

ratio of 2:3 in the treatment group and 4:1 in the control group. The six tests of mediation 

were then conducted on both samples using Equations 7–9. This process of generating data 

and testing for mediation was repeated 1,000 times and the proportion of replications where 

significant mediation was found for a specific test was equal to the statistical power for that 

test and for that effect size combination.

The results in Table 5 show that when gender was related to M and Y, a3b3, the CB design 

generally has more power than the CR design. For example, when a and b are both small, the 

difference in power for the percentile bootstrap test was .063. The difference in power is due 

to the blocking variable explaining variance in M and Y, while being uncorrelated with X in 

the CB design. In the CR design, the more unbalanced the treatment groups are on the 
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blocking variable, the larger the correlation between the blocking and treatment variables. 

Assuming that treatment is coded 0 for control and 1 for treatment, and gender is coded 0 for 

female and 1 for male, here gender and X have a correlation of .408. This correlation 

decreases the estimates of a and b, while increasing the standard error and decreasing power. 

When a is a small effect, the difference in power decreases as the size of b increases. This is 

most notable when b changes from a medium to a large effect, because the tests have 

adequate power to detect the medium-sized effect of gender even with the redundancy 

between X, M, and gender. Hence, the blocking increases power to a lesser extent. An 

opposite pattern is seen when a is a large effect and b increases, however. When a is large 

and b is small, the large relation between X and M, and the medium relation between gender 

and M must both be partialed out of b. This negates the effect of blocking to the point it 

become slightly less powerful than the CR design. As b increases, the partialling out of X 
and gender from M has less of an effect on the power for b in the CB design than for the CR 

design, which is why the difference increases for larger values of b.

The difference in power between the CB and CR designs is contingent on there being 

adequate power to detect the effect of the blocking variable on the mediator and the outcome 

variable. Otherwise the inclusion of the blocking variable could decrease power. For this 

reason, researchers are encouraged to use more than one of the methods described here to 

increase power. The selection of which strategies to use will be based upon the underlying 

characteristics of the particular study, but given the variety of methods to increase power that 

are presented, researchers should be able to identify at least one strategy that will work for 

any given circumstance where sample size cannot be increased.

Conclusion

The most important implication for RCT and prevention intervention researchers is that 

there are numerous ways to increase statistical power for tests of mediation without 

increasing sample size. In most situations, the preferred method to increase statistical power 

is still to increase the sample size. When the availability or cost of including additional 

participants is prohibitory, however, there are many strategies to increase power that can be 

applied to tests of mediation such as blocking, including additional predictors, obtaining 

more reliable measures or modeling measurement error, sampling participants with more 

variability on M and Y, using designs that include planned missingness, and borrowing 

information from larger data sets. But because of the complexities and idiosyncrasies of 

individual studies, there is no guarantee that a particular strategy will increase power to the 

degree shown here by the simulations.

Another implication is that health researchers need to adequately power their studies to test 

for mediation effects, not just treatment effects. Of course, treatment effects are a primary 

focus of intervention studies, but over the last 20 years many researchers have noted the 

importance of investigating mediating variables for developing less expensive and more 

powerful interventions. A nonsignificant mediation test can indicate that a particular variable 

is not a mediator or that the power of the study is insufficient. Underpowered mediation 

studies can cause misleading or conflicting results, so health professionals and researchers 

must be careful to not place too much emphasis on nonsignificant mediation results when 
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the studies are underpowered. In this context, the power to detect a mediated effect should 

be considered before the research study is conducted. Even if an adequate sample size can be 

found, additional approaches to increasing power to detect the mediated effect should still be 

considered.

The current study is limited in several ways. Only the single mediator model is considered, 

while many health researchers have models that contain multiple mediators. For the issues 

discussed here, however, the single mediator model is preferred because it is easier to see 

and explain the impact of blocking and adding additional predictors for a simpler model than 

a more complex one. Also, no consideration is given to interactions between additional 

predictors or blocking variables and either X or M. Additionally, all of the simulations 

presented used multiple regression, but many research questions are better tested using 

hierarchical linear models or latent variable models. Furthermore, no consideration is given 

to models for longitudinal data or additional predictors that are time varying versus time 

invariant. All of these are issues that could be looked at in future research that would 

increase our understanding of the statistical power of tests of mediation.

A final limitation that needs to be addressed is the relatively small, on average, increase in 

statistical power gained by blocking or adding additional predictors. The average increases 

in statistical power for Tables 1, 2, 3, and 5 are .029, .026, .055, and .017, respectively. 

These average increases in statistical power are modest at best, especially if the statistical 

power of the study was already low. Several issues should be kept in mind, however, when 

viewing these small increases. First, this is an average increase across all parameter 

combinations so it includes many combinations where the power did not increase or even 

decreased such as the lack of an increase in power when a is large, b is small, and an 

additional predictor of M is included in the model as shown in Table 1. Second, the increase 

in power varies dramatically for different parameter combinations. The maximum increases 

in power from Tables 1, 2, 3, and 5 are .134, .143, .212, and .099, respectively, which are 

fairly impressive increases compared to the average increase. Increases in power are 

dependent on many factors, so researchers need to identify the expected increase in power 

for their particular situation and determine if the increase is large enough to make the 

methods described here worthwhile to implement. Third, many of the additional predictors a 

research would consider adding to the single mediator model are of interest in their own 

right and would most likely have already been measured, so there is no additional cost of 

including these variables in the model even there is only a modest increase in power. In the 

end, any increase in statistical power to detect a mediated effect is a good thing, even when 

the increase small.
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Figure 1. 
The single mediator model.
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