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Abstract

Population structure inference with genetic data has been motivated by a variety of applications in 

population genetics and genetic association studies. Several approaches have been proposed for 

the identification of genetic ancestry differences in samples where study participants are assumed 

to be unrelated, including principal components analysis (PCA), multi-dimensional scaling 

(MDS), and model-based methods for proportional ancestry estimation. Many genetic studies, 

however, include individuals with some degree of relatedness, and existing methods for inferring 

genetic ancestry fail in related samples. We present a method, PC-AiR, for robust population 

structure inference in the presence of known or cryptic relatedness. PC-AiR utilizes genome-

screen data and an efficient algorithm to identify a diverse subset of unrelated individuals that is 

representative of all ancestries in the sample. The PC-AiR method directly performs PCA on the 

identified ancestry representative subset and then predicts components of variation for all 

remaining individuals based on genetic similarities. In simulation studies and in applications to 

real data from Phase III of the HapMap Project, we demonstrate that PC-AiR provides a 

substantial improvement over existing approaches for population structure inference in related 

samples. We also demonstrate significant efficiency gains, where a single axis of variation from 

PC-AiR provides better prediction of ancestry in a variety of structure settings than using ten (or 

more) components of variation from widely used PCA and MDS approaches. Finally, we illustrate 

that PC-AiR can provide improved population stratification correction over existing methods in 

genetic association studies with population structure and relatedness.
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Introduction

Ancestry inference with genetic data is an essential component for a variety of applications 

in genetic association studies, population genetics, and both personalized and medical 

genomics. Advances in high-throughput genotyping technology have allowed for an 

improved understanding of continental-level and fine-scale genetic structure of human 

populations, as well as other organisms. Principal components analysis (PCA) [Patterson et 

al., 2006; Price et al., 2006] has been the prevailing approach in recent years for both 

population structure inference and correction of population stratification in genome-wide 

association studies (GWAS) with high-density single nucleotide polymorphism (SNP) 

genotyping data. Other widely used methods for inference on genetic ancestry include multi-

dimensional scaling (MDS) [Purcell et al., 2007], a dimension reduction method similar to 

PCA, and model-based methods, such as STRUCTURE [Pritchard et al., 2000], FRAPPE 

[Tang et al., 2005], and ADMIXTURE [Alexander et al., 2009], for proportional ancestry 

estimation in samples from admixed populations.

Genetic studies often include related individuals; however, most existing population 

structure inference methods fail in the presence of relatedness. For example, the top 

principal components from PCA, as well as the top dimensions from MDS, can reflect 

family relatedness rather than population structure when applied to samples that include 

relatives [Price et al., 2010]. Model-based ancestry estimation methods similarly fail in the 

presence of relatedness as they are not able to distinguish between ancestral groups and 

clusters of relatives [Thornton and Bermejo, 2014]. For certain family-based study designs 

with known pedigrees, the population structure inference method proposed by Zhu et al. 

[2008], where SNP loadings calculated from a PCA on pedigree founders are used to obtain 

principal components values for genotyped offspring, can be used. However, this approach, 

which we refer to as “FamPCA,” fails in the presence of cryptic or misspecified relatedness 

and is not applicable to most GWAS where genealogical information on sample individuals 

is often incomplete or unavailable. The FamPCA method requires genotype data to be 

available for pedigree founders, which can be prohibitive for many genetic studies. In 

addition, inference on population structure is limited to the ancestries in the subset of 

genotyped founders, which may lack sufficient diversity to be representative of the 

ancestries in the entire sample [Chen et al., 2013].

We address the problem of population structure inference and correction in samples with 

related individuals. We do not put constraints on how the individuals might be related, and 

we allow for the possibility that genealogical information on sample individuals could be 

partially or completely missing. We propose a method, which we call PC-AiR (principal 

components analysis in related samples), for inference on population structure from SNP 

genotype data in general samples with related individuals. The PC-AiR method implements 

a fast and efficient algorithm for the identification of a diverse subset of mutually unrelated 

individuals that is representative of the ancestries in the entire sample. Axes of variation are 

inferred using this ancestry representative subset, and coordinates along the axes are 

predicted for all remaining sample individuals based on genetic similarities with individuals 

in the ancestry representative subset. The top axes of variation (principal components) from 

PC-AiR are constructed to be representative of ancestry and robust to both known or cryptic 
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relatedness in the sample. A remarkable feature of PC-AiR is the method’s ability to identify 

a diverse and representative subset of individuals for ancestry inference using only genome-

screen data from the sample, without requiring additional samples from external reference 

population panels or genealogical information on the study individuals.

We assess the robustness and accuracy of PC-AiR for inference on genetic ancestry in 

simulation studies with both related and unrelated individuals under various types of 

population structure settings, including admixture. We also directly compare PC-AiR to 

existing population structure inference methods using both simulated data and real genotype 

data from the Mexican Americans in Los Angeles, California (MXL) and African American 

individuals in the southwestern USA (ASW) population samples of release 3 of phase III of 

the International Haplotype Map Project (HapMap) [International HapMap 3 Consortium, 

2010]. The population structure inference methods to which we compare PC-AiR are: (1) 

PCA with the EIGENSOFT [Price et al., 2006] software, (2) MDS with the PLINK [Purcell 

et al., 2007] software, (3) the model-based ancestry estimation methods FRAPPE [Tang et 

al., 2005] and ADMIXTURE [Alexander et al., 2009], and (4) FamPCA [Zhu et al., 2008] as 

implemented in the KING [Manichaikul et al., 2010] software. We also perform simulation 

studies to assess population structure correction with PC-AiR in GWAS with relatedness and 

ancestry admixture. We compare type-I error when using principal components from PC-

AiR to other widely used population stratification correction methods including: (1) the 

EIGENSTRAT [Price et al., 2006] method, which uses PCA with EIGENSOFT to correct 

for population structure, and (2) the linear mixed model methods EMMAX [Kang et al., 

2010] and GEMMA [Zhou and Stephens, 2012], which use variance components and an 

empirical genetic relationship matrix to simultaneously account for both population structure 

and relatedness among sample individuals.

Methods

Overview of the PC-AiR Method

Let the set  be a sample of outbred individuals who have been genotyped in a genome-

screen. An essential component of the PC-AiR method for population structure inference in 

the presence of relatedness is to use genome-screen data to partition  into two non-

overlapping subsets,  and , i.e.  with , where  is a subset of 

mutually unrelated individuals who are representative of the ancestries of all individuals in 

, and  is a “related subset” of individuals who have at least one relative in . We allow 

for individuals in  to be related to each other in addition to having relatives in . PC-AiR 

uses measures of pairwise relatedness and ancestry divergence calculated using SNP 

genotype data from the autosomal chromosomes for the identification of , without 

requiring external reference panels or genealogical information. Population structure 

inference on the entire set of sample individuals, , is then obtained by first directly 

performing PCA on the selected ancestry representative subset, , and then predicting 

values along the components of variation for all individuals in the related subset, , based 

on genetic similarities with the individuals in . In the following subsections, we describe 

the PC-AiR method in detail.
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Population Genetic Modeling Assumptions

The population genetic modeling assumptions we make are weak and are satisfied by 

commonly used models of population structure, such as the Balding-Nichols model [Balding 

and Nichols, 1995]. The individuals in set  are assumed to have been sampled from a 

population with ancestry derived from K ancestral subpopulations. Let  be the set of 

autosomal SNPs in the genome-screen, and for SNP , denote  to be 

the vector of subpopulation-specific allele frequencies, where  is the allele frequency at 

SNP s in subpopulation . We assume that the  are random variables that are 

independent across s but with possible dependence across the k’s, with mean 

and covariance  for every s, where 1 is a length K column vector of 

1’s, and ΘK is a K × K matrix. In genetic models incorporating population structure, the 

allele frequency parameter ps is typically interpreted as an “ancestral” allele frequency, or 

some average of allele frequencies across subpopulations. Although we allow ΘK to be 

completely general, including allowing for non-zero covariances across subpopulations, a 

special case is the Balding-Nichols model, where ΘK is a diagonal matrix with (k, k)-th 

element equal to θk ⩾ 0, and θk is Wright’s standardized measure of variation, FST, for 

subpopulation k [Wright, 1949]. We allow for sample individuals to have admixed ancestry 

from the K subpopulations, and we denote  to be the ancestry vector for 

individual , where  is the proportion of ancestry across the autosomal chromosomes 

from subpopulation k for individual i, with  for all k, and . In most 

contexts, the parameters K, ΘK, ps and ps for all , and ai for all  will be 

unknown. The goal of PC-AiR is to obtain inference on ancestry, i.e. the ai’s, for all sample 

individuals  in the presence of known or cryptic relatedness.

Relatedness Inference in Structured Populations

PC-AiR uses kinship coefficients to measure genetic relatedness between all pairs of 

individuals in , where the kinship coefficient for individuals i and j, which we denote as 

ϕij, is defined to be the probability that a random allele selected from i and a random allele 

selected from j at a locus are identical-by-descent (IBD). When the genealogy of the sample 

individuals is known, PC-AiR can use theoretical or pedigree-based kinship coefficients, and 

a number of software packages [Abney, 2009; Zheng and Bourgain, 2009] are available for 

obtaining kinship coefficients for pairs of individuals according to a specified genealogy. 

However, genealogical information on sample individual is often unknown, incomplete, or 

misspecified, and PC-AiR can also use empirical kinship coefficients estimated from 

genome-screen data for samples with cryptic relatedness that must be genetically inferred. It 

is important to note that relatedness estimators that assume population homogeneity, such as 

those implemented in the widely used PLINK software [Purcell et al., 2007] or obtained via 

a standard genetic relationship matrix (GRM) [Yang et al., 2010], are biased in samples from 

structured populations. Therefore, we do not recommended using kinship estimators 

developed for homogenous populations with PC-AiR as they have been demonstrated to give 

inflated relatedness estimates in samples with population structure [Manichaikul et al., 2010; 

Thornton et al., 2012], where (1) unrelated pairs of individuals with similar ancestry can 
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have kinship-coefficient estimates corresponding to values that are expected for close 

relatives, and (2) related individuals can have a systematic inflation in their estimated degree 

of relatedness.

To use the PC-AiR method when pedigree relationships are unknown or incomplete, we 

recommend using empirical kinship coefficient estimates from methods that have been 

developed for samples from structured populations. One such estimator is KING (kinship-

based inference for GWASs)-robust [Manichaikul et al., 2010]. KING-robust was developed 

for relatedness inference in samples from populations with discrete substructure, and it is a 

consistent estimator of the kinship coefficient for a pair of outbred individuals from the same 

subpopulation. This estimator, however, will generally be negatively biased for pairs of 

individuals that have different ancestries. Despite this bias, the KING-robust estimator is 

typically able to separate close relatives with similar ancestry from unrelated individuals, 

which is often sufficient for the PC-AiR method. Additionally, the PC-AiR method exploits 

the negative bias of the KING-robust estimator to gain insight on ancestry differences among 

individuals, as discussed in more detail in the following subsection.

Estimated kinship coefficients from the recently proposed REAP [Thornton et al., 2012] and 

RelateAdmix [Moltke and Albrechtsen, 2014] methods can also be used by PC-AiR. Both of 

these methods offer improved relatedness inference over KING-robust in samples with 

admixed ancestry by using external reference population panels such as HapMap. REAP and 

RelateAdmix, however, may not be suitable for some studies as they require (1) some prior 

knowledge about the ancestries that are likely present in the sample, and (2) appropriate 

reference panels with suitable surrogates for the ancestral subpopulations. KING-robust does 

not require external reference panels and can be used with PC-AiR for admixed samples 

with cryptic relatedness when the REAP and RelateAdmix methods may not be practical.

Measuring Ancestry Divergence with Genome-Screen Data

Pairwise measures of genetic relatedness, such as kinship coefficients, among individuals in 

a sample can be used for selecting a subset of mutually unrelated individuals [Staples et al., 

2013]. In structured samples, however, identifying a subset of unrelated individuals based 

solely on relatedness measures can result in a subset that lacks sufficient diversity for 

population structure inference on the entire sample, as it may not be representative of the 

ancestries of all individuals. For the identification of an ancestry representative subset of 

mutually unrelated individuals, PC-AiR incorporates measures of ancestry divergence in 

addition to the previously discussed kinship coefficients used as measures of genetic 

relatedness.

Consider a pair of individuals i,  who have non-missing genotype data at the set 

 of autosomal SNPs in a genome-screen, and let  denote the total number of 

SNPs in this set. Additionally, let the random variables gis and gjs be the number of copies of 

the reference allele that individuals i and j each have, respectively, at SNP ; thus, gis 

and gjs take values of 0, 1, or 2. To measure ancestry divergence between a pair of unrelated 

individuals i and j, we use the estimator
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(1)

where  is an indicator for individual i being heterozygous at SNP s, i.e.  is 1 if 

gis = 1 and is 0 otherwise, and  is similarly defined for individual j. Equation (1) is 

equivalent to the KING-robust estimator [Manichaikul et al., 2010] that has been proposed 

for estimating kinship coefficients of related individuals in samples from discrete 

subpopulations. Here we consider the KING-robust estimator under the general population 

genetic modeling assumptions previously discussed for i and j with admixed ancestry from 

K ancestral subpopulations, and the limiting behavior of this estimator is derived in 

Appendix A. For unrelated individuals i and j from the same subpopulation,  as 

. However, when i and j have different ancestral backgrounds,  is generally a 

negatively biased estimator of kinship, and this bias provides a useful measure of ancestry 

divergence between pairs of individuals. The magnitude of the negative bias depends on how 

different the ancestries are for the pair of individuals. The  estimator has more extreme 

negative values when (1) the θk values are large, (2) i and j have large ancestry proportion 

differences, or (3) either i or j has an ancestry proportion that is close to 1 from one of the K 
subpopulations. For the special case when i and j are non-admixed and have ancestry from 

different subpopulations k and k′, the limiting value of the estimator reaches an extreme 

negative value with

(2)

PC-AiR uses the  estimator given by Equation (1) for inference on ancestry divergence for 

all pairs of individuals i,  who are not inferred to be related based on the kinship 

coefficient measures discussed in the previous subsection.

Identification of an Ancestry Representative Subset

We now provide details on how PC-AiR uses both the relatedness and ancestry divergence 

measures discussed in the previous two subsections for the identification of , a mutually 

unrelated subset of individuals that is representative of the ancestries of all individuals in the 

sample . Let  be the kinship coefficient measure that is chosen for relatedness inference 

on a pair of individuals i, . When the genealogy of the sample individuals is known, 

 could be a pedigree-based kinship coefficient, and when the genealogy is partially or 

completely unknown,  should be an empirical kinship coefficient estimate from a 

relatedness estimation method that allows for population structure, e.g. the KING-robust 

estimator of Equation (1), REAP, or RelateAdmix. In order to identify all pairs of relatives in 

, a relatedness threshold, τϕ, is chosen such that i and j are designated to be related by the 

PC-AiR method if . When pedigree-based kinship coefficients are used with PC-AiR, 

all unrelated pairs have  τϕ should be set to 0. When empirical kinship coefficient 
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estimates are used, there is some noise in the estimation, and τϕ can be set to an approximate 

upper bound that is expected for the chosen kinship coefficient estimator for an unrelated 

pair. For example, when using KING-robust for relatedness inference, i.e. using  we 

have found that 0.025 is an approximate upper bound with dense SNP genotyping data for 

unrelated pairs with the same ancestry, and setting τϕ = 0.025 works well in practice for 

identifying relatives with similar ancestry up to third-degree (and some fourth-degree) in a 

variety of population structure settings with ancestry admixture. For all sample individuals 

, we calculate  as a measure of the total kinship individual i has 

with inferred relatives in the sample, where  is the indicator that individual j is 

inferred to be related to i.

PC-AiR uses  to infer ancestry divergence for all pairs of individuals i,  who are 

not inferred to be relatives. We showed that  is close to 0 for unrelated pairs with similar 

ancestry, while unrelated pairs with different ancestry have  values that are systematically 

negative. We define a pair of individuals i and j to be “divergent” if they have different 

ancestral backgrounds, i.e. , where −τκ is the expected lower bound of  for a 

pair of unrelated individuals with the same ancestry. Since the distribution of  for 

unrelated pairs with the same ancestry is expected to be symmetric around 0, the vast 

majority of these pairs should satisfy  when  is large, where 0.025 

is the previously mentioned approximate upper bound for unrelated pairs. We have found 

that setting −τκ = −0.025 works well in practice for identifying unrelated pairs of individuals 

with different ancestries. For all sample individuals , we calculate 

, the number of divergent ancestry pairs that individual i is a 

member of. Small δi values generally correspond to individuals with ancestry that is similar 

to the ancestries of many other individuals in , while the highest δi values generally 

correspond to individuals with unique ancestry and/or individuals with an ancestry 

proportion close to 1 from one of the subpopulations.

The algorithm used by PC-AiR for partitioning the set  based on measures of ancestry 

divergence and kinship is presented in Appendix B. It is both fast and efficient, and the two 

subsets returned from the algorithm are the ancestry representative and mutually unrelated 

subset, , and the related subset, , where each individual in  has at least one relative in 

. The algorithm is constructed in such a way that one individual from any set of mutually 

related individuals in  is included in , with priority given to the individual who is a 

member of the most divergent ancestry pairs (large δi). This helps to ensure that every 

ancestry in  is represented by some individual(s) in , while simultaneously satisfying 

the requirement that individuals in  are also mutually unrelated. It also favors choosing the 

individuals with the highest ancestry proportions from each of the K subpopulations for . 

These individuals will be at the extremes of the K − 1 dimensional space spanned by the 

axes of variation representing the ancestries in , and selecting them for  helps to avoid 

shrinkage in prediction of principal component values for individuals in . Secondary 

priority for inclusion in  is given to individuals that share the most genetic information 
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with their collection of relatives in  (large γi), also allowing for better prediction of 

principal component values for relatives in .

Genetic Similarity Matrix for PC-AiR

The traditional PCA approach for population structure inference with genetic data, e.g., the 

EIGENSOFT method, performs PCA on standardized genotypes, where the standardized 

genotype value for individual i at SNP s is given by

(3)

and  will typically be an allele frequency estimate for SNP s calculated using all sample 

individuals. The PC-AiR method also uses standardized genotypes, but the allele frequencies 

used for the standardization are calculated using only the unrelated individuals selected for 

. The standardized genotype values for PC-AiR are calculated from Equation (3) by 

setting , where

(4)

 is the subset of individuals in  who have non-missing genotype data at SNP s, and 

is the number of individuals in . In samples with related individuals and population 

structure, we have found that using the estimator  provides better ancestry inference with 

PC-AiR than using allele frequency estimates calculated from the entire sample, which can 

be heavily influenced by the correlated genotypes among relatives. For any individual 

 with a missing genotype value at SNP s, zis is set to 0, i.e. gis is set equal to , an 

estimate of its expected value. Provided that individuals with high levels of missingness are 

excluded from the analysis as a result of standard quality control [Laurie et al., 2010], a 

small percentage of mean imputed genotypes should not bias the results.

In addition to standard quality control filtering of SNPs with poor quality, minor allele 

frequency (MAF) filtering of rare variants is recommended for PC-AiR. LD pruning of 

SNPs, similar to what has been recommended for standard PCA [Patterson et al., 2006; Price 

et al., 2006], may also be beneficial, as high-density genotyping arrays contain clusters of 

highly correlated SNPs which can have strong influence on individual PCs in some settings 

[Novembre et al., 2008]. Let  be the number of SNPs in the filtered set , and let n, 

nu, and nr be the number of individuals in set  and subsets  and , respectively, with n 

= nu + nr. We construct 𝗭, an  standardized genotype matrix for , with (i, s)-th 

entry equal to zis, ordered such that the first nu rows correspond to individuals in , and the 

remaining nr rows correspond to individuals in . The standardized genotype matrix for 

is the  submatrix 𝗭u corresponding to the first nu rows of 𝗭. Similarly, the 

 submatrix 𝗭r is the standardized genotype matrix for  corresponding to the last 

nr rows of 𝗭.
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Similar to the traditional PCA approach, PC-AiR obtains a genetic similarity matrix (GSM) 

for population structure inference from standardized genotypes. It is important to note that 

PCA applied to a GSM that includes all individuals in , as in the traditional PCA 

approaches, leads to artifactual principal components for ancestry due to confounding from 

correlated genotypes among relatives, i.e. genetic similarities are reflecting alleles shared 

IBD among relatives. To protect against confounding caused by sample relatedness, PC-AiR 

instead calculates a GSM using only the mutually unrelated sample individuals who were 

selected to be included in the ancestry representative subset, . The empirical nu × nu GSM 

for  calculated with the standardized genotype matrix 𝗭u is

(5)

and the (i, j)-th entry of  provides a measure of the average genetic similarity across the 

autosomes for individuals i, .

Population Structure Inference in Related Samples with PC-AiR

To obtain principal components that are ancestry representative for a set  containing 

related individuals, the PC-AiR method first performs a PCA [Jackson, 1991; Jolliffe, 1986] 

using genome-screen data from only those individuals selected to be in the mutually 

unrelated ancestry representative subset, . PCA applied to the real symmetric GSM 

from Equation (5) results in the eigendecomposition , where 

 is an nu × nu matrix whose dth column vector, , is the dth 

principal component (axis of variation), and  is a corresponding nu 

× nu diagonal matrix of eigenvalues. By construction, individuals in  are mutually 

unrelated and have diverse ancestry, so the top principal components of  are expected to 

be representative of ancestry. An  SNP weight matrix giving the relative 

influence of each SNP on each of the nu axes of variation can be obtained as , and 

from the form of the eigendecomposition given above, it can be shown [Heath et al., 2008] 

that the matrix  of principal components can alternatively be written as

(6)

Once PCA has been performed on the subset , the PC-AiR method predicts principal 

components values for the related subset, , by replacing 𝗭u, the standardized genotype 

matrix for individuals in , with 𝗭r, the standardized genotype matrix for individuals in , 

in Equation (6). The nr × nu matrix of predicted principal components for , which we 

denote as 𝗤r, is thus given by

(7)
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The dth column vector of the matrix 𝗤r corresponds to PC-AiR’s predicted coordinates along 

the dth axis of variation for the individuals in . We define Γ to be the n × nu matrix of the 

combined principal components for  and , where

(8)

The column vectors of Γ are the principal components (axes of variation) of the set 

 obtained from the PC-AiR method. The genetic structure that is reflected by all 

of the principal components for PC-AiR are found using only the ancestry representative 

subset, , and thus the top principal components from Γ are designed to be representative of 

ancestry in , even in the presence of known or cryptic relatedness.

Simulation Studies

We perform simulation studies in which both population and pedigree structure are 

simultaneously present in order to (1) assess the accuracy and robustness of the PC-AiR 

method for population structure inference in the presence of relatedness, (2) evaluate 

correction for population stratification with PC-AiR in genetic association studies with 

cryptic structure, and (3) compare the performance of PC-AiR to existing methods. We 

simulate a variety of population structure settings, including admixture and ancestry-related 

assortative mating, with differentiation between populations ranging from subtle to large. We 

evaluate population structure inference for five different relationship configurations, where 

each configuration corresponds to a specific setting of genealogical relationships among the 

sample individuals. In all simulation studies considered, pedigree information on the sample 

individuals is hidden and genetic relatedness is inferred from the genotype data with the PC-

AiR method using the KING-robust kinship estimator in Equation (1).

Population Structure Settings—The population structure settings we consider are 

similar to the settings in Price et al. [2006], where PCA was performed with the 

EIGENSOFT software in unrelated samples for inference on and adjustment for population 

structure in GWAS, except that our simulation studies include related individuals. We 

consider population structure settings where individuals have ancestry derived from two 

populations, and the allele frequencies at 100,000 SNPs for each of these two populations 

are generated using the Balding-Nichols model [Balding and Nichols, 1995]. More 

precisely, for each SNP s, the allele frequency ps in the ancestral population is drawn from a 

uniform distribution on [0.1, 0.9], and the allele frequency in population k ℰ {1, 2} is drawn 

from a beta distribution with parameters ps(1 − θk)/θk and (1 − ps)(1 − θk)/ θk. In all 

simulations, we set θ1 and θ2 equal to a common value, FST. We consider FST values of 0.01 

and 0.1, respectively, to generate allele frequencies from closely related and divergent 

populations.

For both FST values considered, we simulate three population structure settings. Population 

structures I and II both consist of individuals sampled from an admixed population formed 

from populations 1 and 2. For population structure I, all unrelated individuals and pedigree 

founders have ancestry proportions a from population 1 and (1 – a) from population 2, with 

the parameter a for each individual drawn from a uniform distribution on [0, 1]. Population 
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structure II is similar to population structure I, but with the ancestry parameter, a, drawn 

from a beta distribution with mean 0.4 and standard deviation 0.1 for 50% of the unrelated 

individuals and pedigree founders, and with mean 0.6 and standard deviation 0.1 for the 

other 50%. All founders within the same pedigree have a drawn from the same beta 

distribution for population structure II. Population structure III consists of non-admixed 

individuals, where 50% of the unrelated individuals and pedigrees are sampled from 

population 1, and the other 50% are sampled from population 2. Both population structure 

settings II and III have ancestry-related assortative mating, i.e., the mating of founder 

individuals in every pedigree occurs with individuals who have either the same (population 

structure III) or similar (population structure II) ancestry, while population structure I has 

random mating that is independent of ancestry.

Relationship Configurations—Four of the five relationship configurations simulated 

include both related and unrelated individuals. Relationship configuration I consists of 200 

unrelated individuals and 200 individuals from 10 four-generation pedigrees, where each 

pedigree has a total of 20 individuals (Figure S1). Relationship configuration II is comprised 

of 280 unrelated individuals with 20 parent-offspring trios, and relationship configuration III 

includes 260 unrelated individuals with 20 sibling pairs. Relationship configuration IV 

includes only unrelated individuals and more distant relatives, and is comprised of 500 

unrelated individuals, 12 first cousin pairs, 12 first cousin trios, and 10 first cousin quartets. 

To sample pedigree relationships within a given setting of population structure, we simulate 

genotypes for pedigree founders under Hardy-Weinberg equilibrium (HWE) according to the 

chosen population structure setting and then drop alleles down the pedigree. Relationship 

configuration V is 320 unrelated individuals without any family structure. We include the 

unrelated sample setting in our simulation studies in order to evaluate any potential loss in 

population structure inference with the PC-AiR method compared to standard PCA in a 

setting where standard PCA is appropriate and has been previously demonstrated to perform 

well.

Results

Subtle Population and Pedigree Structure

We first considered samples with subtle population structure, where the ancestry of the 

sample individuals is derived from two closely related populations. We set FST to 0.01 (a 

typical value for divergent European populations) and generated genotype data under 

population structure I for each of the five relationship configurations. Population structure 

inference with PC-AiR was compared to that of standard PCA with the EIGENSOFT 

software. To assess the performance of the two methods, we included the top principal 

components (axes of variation) from each method as predictors for the true simulated 

ancestry of the sample individuals in a linear regression model, and the proportion of 

ancestry explained, as measured by R2, was used to evaluate prediction accuracy. We also 

compared the efficiency of PC-AiR to EIGENSOFT by assessing the number of top axes of 

variation required to attain an R2 of at least 0.99 for ancestry. It should be noted that since 

the data in the simulation studies contained only one added dimension of population 

structure, an optimal method would require only a single axis of variation for complete 
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ancestry inference. Both PC-AiR and EIGENSOFT were provided only genotype data 

without any additional pedigree information on the sample individuals.

Figure 1 displays the population structure inference results for relationship configuration I 

from both PC-AiR and EIGENSOFT. Figure 1B displays the top two axes of variation 

obtained by EIGENSOFT, which almost entirely reflected pedigree structure in the sample. 

The ten spikes of points radiating from the center cluster in the figure correspond to the 

individuals who are members of the ten pedigrees, and the cluster of points in the center of 

the plot corresponds to the 200 individuals who do not have any relatives in the sample. In 

contrast, the top two axes of variation from PC-AiR were not confounded by family 

structure, as illustrated in Figure 1A, and the top axis explained ancestry in the sample 

nearly perfectly, with an R2 of 0.993 (Figure 1C). Figure 1D shows that the top axis of 

variation from EIGENSOFT did not reflect population structure and did not adequately 

capture the ancestry of the sample individuals, with an R2 of only 0.133. The efficiency for 

population structure inference of both methods is illustrated in Figure 1E, where the 

proportion of ancestry explained (R2 values) for each of the top axes of variation is 

displayed. EIGENSOFT required the top 51 axes to be included as predictors in a linear 

regression model to achieve an R2 of at least 0.99 for ancestry. In contrast, a single axis of 

variation from PC-AiR had an R2 greater than 0.99, thus demonstrating a substantial 

improvement in efficiency with PC-AiR over EIGENSOFT in this setting with both subtle 

population structure and relatedness.

The performance of PC-AiR and EIGENSOFT was also assessed for the remaining 

relationship configurations under population structure I. Population structure inference 

results for relationship configurations II and III are presented in Figures S2 and S3. The top 

axes of variation from EIGENSOFT were influenced by relatedness, as expected; however, 

since relationship configurations II and III have substantially less pedigree structure than 

relationship configuration I, there was some improvement in ancestry prediction with the top 

axis in each of these two settings, with R2 values of 0.870 and 0.933, respectively. For both 

of these relationship configurations, the top 21 axes of variation from EIGENSOFT were 

required to attain an R2 of at least 0.99 for predicting ancestry. In comparison, the PC-AiR 

analysis was robust to the relatedness in the sample, and the single top axis of variation from 

both relationship configurations attained an R2 value greater than 0.99. The results for 

relationship configuration IV, which consists of unrelated individuals and third-degree 

relatives, are presented in Figure S4. Accurate ancestry inference was obtained from the top 

axis of variation from both methods, with R2 values of 0.989 and 0.993 for PC-AiR and 

EIGENSOFT, respectively. Interestingly, the top axis of variation from EIGENSOFT 

attained a marginally higher R2 with ancestry than PC-AiR’s in this setting; however, as seen 

in Figure S4B, EIGENSOFT’s 2nd axis of variation reflected family structure in the sample. 

In fact, the 2nd through 35th axes of variation from EIGENSOFT all reflected familial 

structure in the sample, which could be problematic if these axes were incorrectly 

interpreted as representing population structure. In contrast, no axes beyond the first one 

from PC-AiR represented any identifiable sample structure. For relationship configuration V, 

PC-AiR accurately identified all sample individuals to be unrelated, i.e. the ancestry 

representative subset, , was the entire sample, , so the PC-AiR method reduced to 

standard PCA, and inference with either PC-AiR or EIGENSOFT was essentially identical. 
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The R2 for ancestry with the top axis of variation from both methods was greater than 0.99, 

illustrating that there is no loss in accuracy or efficiency compared to standard PCA when 

using PC-AiR for population structure inference in samples where all individuals are 

unrelated.

We also evaluated the performance of PC-AiR and EIGENSOFT under population structures 

II and III with FST set to 0.01 for each of the relationship configurations, and the results are 

given in Table 1. Under population structure II, a single axis of variation from PC-AiR 

provided much better prediction of ancestry than using ten (or more) axes from 

EIGENSOFT for each of the four relationship configurations with related samples, including 

relationship configuration IV that consists of only unrelated individuals and third-degree 

relatives. For population structure III where individuals are sampled from discrete 

populations and there is no admixture, the top axis of variation from PC-AiR fully explained 

the ancestry, attaining an R2 > 0.99, for each of the relationship configurations. This was 

also true of EIGENSOFT, except for relationship configuration I, where 22 axes of variation 

were required to reach an R2 of at least 0.99. For relationship configuration V, where all 

sample individuals were unrelated, PC-AiR and EIGENSOFT gave identical results, with the 

top axis from both methods fully explaining the true ancestry.

Relatedness and Admixture from Divergent Populations

We also conducted simulation studies with relatedness and admixture from divergent 

populations. We considered relationship configuration I and population structure II, where 

we set FST to 0.1 (a value representative of continental-level ancestry differences) in the 

Balding-Nichols model to simulate allele frequencies at SNPs derived from two divergent 

populations. We evaluated and compared the performance of PC-AiR to PCA with the 

EIGENSOFT software, MDS with the PLINK software, and the two model-based methods 

ADMIXTURE and FRAPPE for proportional ancestry estimation. As in the previous 

subsection, no genealogical information on the sample individuals was provided to any of 

the analysis methods, so the FamPCA method could not be used as it is restricted to settings 

with known pedigrees. The ADMIXTURE and FRAPPE software analyses were conducted 

with the correct number of populations specified.

The population structure inference results for each method considered are shown in Figure 2, 

where each panel is a plot of the simulated population 1 ancestry proportions against the 

inferred ancestry from one of the methods. The top axis of variation from PC-AiR had an R2 

of 0.998 and provided nearly perfect inference on ancestry for the sample individuals 

(Figure 2A). Similar to the EIGENSOFT results for the simulations with subtle population 

structure and relatedness, the top axis of variation did not adequately reflect the ancestry in 

this related sample with admixture from divergent populations, attaining an R2 of only 0.741 

(Figure 2B). ADMIXTURE and FRAPPE gave identical ancestry proportion estimates for 

all individuals in the simulation, and Figure 2D shows estimated proportional ancestry 

plotted against the simulated ancestry proportions from population 1. These model-based 

ancestry estimation methods were confounded by the pedigree structure in the sample and 

performed similarly to PCA, with an R2 of only 0.730. While the top dimension of MDS 

achieved an R2 of 0.785 and provided some improvement in predicting ancestry over both of 
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the model-based methods as well as the top axis of variation from EIGENSOFT, it was also 

confounded by sample relatedness, as shown in Figure 2C.

We also evaluated the performance of PC-AiR and EIGENSOFT for all combinations of 

relationship configurations and population structure settings with FST set to 0.1 (Table 1). 

For all settings considered, the top axis of variation from PC-AiR gave nearly perfect 

ancestry inference, attaining an R2 > 0.99. The extent to which PCA with EIGENSOFT was 

confounded by the relatedness depended on how complex the pedigree structure was; 

however, a single axis of variation from PC-AiR always performed as well as or better than 

using ten axes of variation from EIGENSOFT for ancestry prediction.

Ancestry Inference and Prediction in Related Samples with Reference Panels

Reference population panels are commonly used for improved ancestry inference in 

unrelated samples from admixed populations, such as African Americans and Hispanics. We 

conducted a simulation study evaluating population structure inference with reference panels 

in admixed samples with relatedness. We considered the same simulation study discussed in 

detail in the previous subsection, but we now included reference panels consisting of 50 

unrelated individuals randomly sampled from each of the two underlying populations. The 

same population structure methods from the previous subsection were used, and the results 

are displayed in Figure S5. Ancestry inference with EIGENSOFT, MDS, ADMIXTURE, 

and FRAPPE was substantially improved by including the reference panels as compared to 

the analyses without them, but PC-AiR still outperformed all methods, with the top axis of 

variation achieving an R2 of 0.999 with ancestry. The analyses with ADMIXTURE and 

FRAPPE, which were run supervised with the reference population samples included as 

fixed groups and specified in the analysis, gave identical results to each other as they did in 

the unsupervised analysis discussed in the previous subsection, and the estimated ancestry 

proportions had an R2 of 0.973 with the simulated ancestries. Similarly, the top axis of 

variation from each of EIGENSOFT and MDS reached R2 values of 0.970 and 0.979 

respectively.

Interestingly, from the previous subsection we have that the top axis of variation from PC-

AiR without including additional reference population samples had an R2 of 0.998 and thus 

provided better ancestry inference than all of the competing methods with the reference 

panels. Even with the inclusion of reference panels, there remained some bias in ancestry 

inference for all methods, except for PC-AiR, that was induced by the presence of related 

individuals in the sample. This can be seen in Figure S5, where the inferred ancestries for 

individuals with relatives in the sample were systematically biased for each of the competing 

methods. We have found that conducting separate supervised individual ancestry analyses 

with ADMIXTURE (or FRAPPE) for each of the admixed samples, i.e. analyses with 

genotype data from a single admixed sample individual and all individuals in the reference 

population panels included, can remove the bias caused by sample relatedness, known or 

cryptic, as long as the reference panel samples are appropriate surrogates for the underlying 

populations. We performed separate individual analyses that were supervised with 

ADMIXTURE for each sample individual, and the estimated ancestries attained an R2 of 

0.999, the same as PC-AiR.
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Recent work [Chen et al., 2013; Ma and Amos, 2012] has shown that ancestry proportions 

can be predicted from principal components analysis in unrelated samples. Using the 

methodology described in Chen et al. [2013], principal components from PC-AiR can 

similarly provide accurate prediction of ancestry proportions in samples with relatedness 

(Figure S6). Despite the fact that PC-AiR can provide accurate ancestry inference without 

using reference population samples, we recommend including reference panels when 

predicting ancestry proportions from principal components, as we have found that ancestry 

proportion estimates will be biased if individuals with 100% ancestry from each of the 

underlying populations are not available for the PCA.

Correcting for Structure in Genetic Association Studies

We also performed simulation studies to compare population structure correction in genetic 

association studies with PC-AiR to existing approaches. Allele frequencies were generated 

at 100,000 null SNPs for two ancestral populations with FST set to 0.1. We define 

 to be the absolute difference in the reference allele frequencies between 

ancestral populations 1 and 2 at SNP s. We also define three classes of SNPs based on Ds, 

where SNPs with Ds < 0.2, 0.2 ≤ Ds < 0.4, and Ds ⩾ 0.4 were considered to have “low 

differentiation,” “moderate differentiation,” and “high differentiation,” respectively. Of these 

100,000 SNPs, approximately 70%, 25%, and 5% of the SNPs were lowly, moderately, and 

highly differentiated. Genotype data was generated under population structure II for sample 

individuals related according to relationship configuration I, and for each individual i in the 

sample, a quantitative trait value yi was simulated according to the model 

where  is the genome-wide ancestry proportion from population 1 for individual i, gi is the 

number of alleles individual i has at the causal SNP, and εi ~ N(0, 1) is a random 

environmental effect assumed to be acting independently on individuals. The frequency of 

the selected casual variant in populations 1 and 2 was 0.13 and 0.17, respectively.

The following statistical methods were evaluated for genetic association testing: linear 

regression without ancestry adjustment; EIGENSTRAT; linear regression with principal 

components from PC-AiR included as fixed effects; GEMMA [Zhou and Stephens, 2012] 

and EMMAX [Kang et al., 2010], which are “exact” and “approximate” linear mixed effects 

model methods, respectively, that use an empirical genetic relationship matrix to capture 

both population and pedigree sample structure; and EMMAX with principal components 

from EIGENSOFT or PC-AiR included as fixed effects. For the association analyses, each 

null SNP was included as a fixed effect in the statistical models and was tested for 

association with the simulated quantitative trait. The genomic control inflation factor [Devlin 

and Roeder, 1999] λGC was used to evaluate confounding due to unaccounted for sample 

structure, where λGC ≈ 1 indicates appropriate correction for population and family 

structure, while λGC > 1 indicates elevated type-I error.

The results of the simulations are given in Table 2. As expected, all of the association tests 

using linear regression models have inflated type 1 error since these methods either (1) do 

not account for any of the sample structure, or (2) account for population structure but not 

relatedness. Including a single principal component from PC-AiR in the linear regression 

model results in a lower λGC compared to EIGENSTRAT with the top ten principal 

Conomos et al. Page 15

Genet Epidemiol. Author manuscript; available in PMC 2016 April 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



components for all classes of SNPs. This is due to the top PC from PC-AiR nearly perfectly 

explains ancestry (R2 = 0.998), while the top 10 PCs from EIGENSOFT have an R2 of only 

0.672 for ancestry because of the relatedness in the sample. The mixed model approaches 

considered, EMMAX and GEMMA, are also not properly calibrated, with λGC > 1 for SNPs 

with moderate to high differentiation, and λGC < 1 for SNPs with low differentiation. 

EMMAX with the top ten PCs from EIGENSOFT included as fixed effects is still not 

properly calibrated due to insufficient correction for population stratification. However, 

including a single PC from PC-AiR as a fixed effect with EMMAX results in appropriate 

calibration of the association test statistics, with λGC = 1 for all classes of SNPs.

Population Structure Inference in Admixed HapMap Samples

HapMap MXL Data—We analyzed high-density SNP genotype data from the Mexican 

Americans in Los Angeles, California (MXL) population sample of HapMap 3 for 

population structure inference. We applied PC-AiR, EIGENSOFT, MDS, ADMIXTURE, 

and FamPCA to the 86 genotyped individuals, and we compared the population structure 

inference results of these methods to a supervised individual ancestry estimation analysis 

with ADMIXTURE that included continental reference population panels. For the 

supervised analysis with ADMIXTURE, the number of ancestral populations was set to 3, 

for which the HapMap CEU (Utah residents with ancestry from northern and western 

Europe from the Centre d’Etude du Polymorphisme Human collection) and YRI (Yoruba in 

Ibadan, Nigeria) samples were included as the reference population panels for European and 

African ancestry, respectively, and for which the Human Genome Diversity Project (HGDP) 

[Li et al., 2008] samples from the Americas were included for Native American ancestry. 

The analyses were based on the set of 150,872 autosomal SNPs that were genotyped in both 

the HapMap and HGDP datasets. To protect against potential confounding due to relatedness 

in the supervised ancestry analysis, a separate ADMIXTURE analysis was conducted for 

each of the HapMap MXL individuals, where each analysis included a single HapMap MXL 

individual and the reference population panels. All methods, except for FamPCA, were only 

provided the SNP genotype data on the sample individuals for population structure 

inference, without any additional information on the pedigree relationships. The FamPCA 

method was also provided the documented pedigrees in the HapMap MXL which includes 

24 genotyped trios, 5 families with two genotyped individuals, and 4 families with a single 

genotyped individual. The PC-AiR method used the KING-robust kinship coefficient 

estimator in Equation (1) and the relatedness threshold τϕ = 0.025 to infer genetic 

relatedness in the sample, and a MAF filter of 5% was used on SNPs for population 

structure inference.

Figure 3F presents a bar plot of the results from the supervised individual ADMIXTURE 

ancestry analysis. In the bar plot of ancestry proportion estimates, individuals (vertical bars) 

are arranged in increasing order (left to right) of genome-wide European ancestry 

proportion. Our proportional ancestry estimates were similar to the results from previous 

supervised analyses of this data [Gravel et al., 2013; Thornton et al., 2012]. HapMap MXL 

individuals have modest African ancestry with little variation, with a mean of 6% and a 

standard deviation (SD) of 1.8%. The sample individuals are largely derived from European 

and Native American ancestry, with means of 49.9% (SD=14.8%) and 44.1% (SD=14.8%) 
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respectively. Since the European and Native American ancestry proportions are 

predominant, nearly perfectly negatively correlated (with a correlation of −0.99), and quite 

variable, ranging from 18.0% to 91.0% and from 4.2% to 80.4% respectively, we expected 

that an optimal population structure inference method would require only a single axis of 

variation to explain these two ancestries in the HapMap MXL.

The population structure inference results for European and Native American ancestry in the 

HapMap MXL are given in Table 3. PC-AiR’s top axis of variation was nearly perfectly 

correlated with European (and Native American) ancestry, as estimated from the supervised 

individual ADMIXTURE ancestry analysis, with an R2 of 0.98 (Figure 3A). In contrast, the 

top axis of variation from each of EIGENSOFT, FamPCA, and MDS had an R2 for 

European ancestry of only 0.66, 0.65, and 0.75 respectively. For the unsupervised 

ADMIXTURE analysis that did not include reference panels, the highest R2 for either 

European or Native American ancestry with any estimated ancestry component was only 

0.64. Figures 3B, 3C, 3D, and 3E illustrate that ancestry inference in the HapMap MXL for 

each of these competing methods was confounded by relatedness, including the FamPCA 

method, which was provided the documented pedigree relationships. Ancestry inference 

with FamPCA was confounded by cryptic relatedness present in the HapMap MXL 

including a previously reported [Thornton et al., 2012] extended pedigree consisting of two 

smaller documented pedigrees, which are labeled in Figure 3 as MXL Extended Family 1. 

Without being provided any pedigree information, a single axis of variation from PC-AiR 

gave better prediction of both European and Native American ancestry than the top ten axes 

from EIGENSOFT, MDS, and FamPCA, as shown in Table 3. Remarkably, without using 

any reference population samples the top axis of variation from PC-AiR gave comparable 

ancestry inference on European and Native American ancestry to a supervised ancestry 

analysis that included reference panels, similar to the results from the simulation studies.

Combined HapMap ASW and MXL Data—To evaluate the performance of the 

population structure inference methods in an admixed population structure setting with three 

predominant continental ancestries and relatedness, we considered an analysis of the 

combined HapMap ASW (African American individuals in the southwestern USA) and 

MXL samples. Similar to our ancestry estimation analysis of the HapMap MXL, we also 

conducted a supervised individual ADMIXTURE analysis for the 87 genotyped individuals 

in the HapMap ASW with reference population panels included for European, Native 

American, and African ancestries. Figure S7A shows a barplot of the results from the 

supervised individual ADMIXTURE ancestry analysis of the HapMap MXL and ASW 

samples, which illustrates that these populations have very different ancestral backgrounds. 

Most of the HapMap ASW ancestry is African, with a mean of 77.5% (SD=8.4%). There is 

also a large European ancestry component, with a mean of 20.5% (SD=7.9%); however, 

unlike the HapMap MXL, there is very little Native American ancestry in the HapMap 

ASW, with a mean of only 1.9% (SD=3.5%). Since there are three predominant continental 

ancestries in the combined HapMap ASW and MXL samples, we expected that an optimal 

method would require two axes of variation to fully explain continental population structure.

We applied each of the dimension reduction methods (i.e. PC-AiR, EIGENSOFT, MDS, and 

FamPCA) to the combined HapMap ASW and MXL samples and compared the results to 
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the supervised individual ancestry analysis with ADMIXTURE that included the reference 

population panels; results are shown in Table 3. All of the methods were able to fully explain 

the African ancestry with two axes of variation, achieving R2 values greater than 0.99. For 

European ancestry, PC-AiR’s top two axes of variation achieved an R2 value of 0.99, while 

the top two axes from each of the competing population structure methods had R2 values 

less than 0.90. With an R2 value greater than 0.99, PC-AiR’s top two axes of variation also 

explained Native American ancestry better than the top two axes from EIGENSOFT, MDS, 

and FamPCA, with corresponding R2 values of 0.95, 0.96, and 0.95, respectively. These 

results are illustrated in Figure 4, where we can see that the top two axes of variation from 

each of these methods, except PC-AiR, were confounded by relatedness. In fact, the top ten 

axes of variation from EIGENSOFT, MDS, and FamPCA were highly confounded by 

pedigree structure, whereas axes beyond the top two from PC-AiR did not represent any 

identifiable structure and appear to be random noise (Figures S8 – S12). As a consequence, 

the top ten axes of variation from both EIGENSOFT and MDS were not able to explain 

European and Native American ancestry as well as the top two axes from PC-AiR. 

Intersetingly, FamPCA required ten axes of variation to match PC-AiR’s top two, despite 

FamPCA being provided the documented pedigree information for both the HapMap MXL 

and ASW samples (Table 3). PC-AiR appropriately accounted for both the known and 

cryptic relatedness in the sample for optimal and efficient inference on ancestry with only 

two axes of variation.

We also performed an unsupervised ancestry analysis with ADMIXTURE and FRAPPE 

without including reference panel samples and we compared the results to the supervised 

ADMIXTURE analysis. ADMIXTURE and FRAPPE performed identically to each other, as 

expected, and a barplot of the estimated ancestry proportions from the unsupervised ancestry 

analysis is given in Figure S7B. Two of the three components of ancestry essentially 

distinguish the ASW from the MXL samples, while the third was completely confounded by 

pedigree structure. These estimated ancestry components were able to attain an R2 value of 

0.99 for African ancestry, but the R2 values were only 0.87 for Native American ancestry 

and 0.62 for European ancestry, thus performing the worst of all the methods for ancestry 

inference in the combined HapMap MXL and ASW samples.

Assessment of Computation Time—The computation time for PC-AiR depends on 

both the sample size and the number of markers being analyzed. To analyze a simulated 

sample of 800 individuals, where 400 individuals are from 20 pedigrees and the remaining 

400 individuals are unrelated, with 100K, 50K, and 20K SNPs required 28.5s, 14.8s, and 

6.3s, respectively, on a 2.5 GHz laptop with 8 GB memory. The PC-AiR analysis of the 

HapMap data with 150,872 SNPs required 1.8s for the MXL sample with 86 individuals and 

3.9s for the combined ASW and MXL sample with 173 individuals. All computation times 

refer to the time to run the PC-AiR algorithm, and do not include the time to estimate the 

measures of relatedness and divergence. The KING software implements a highly efficient 

algorithm for obtaining relatedness/divergence estimates that can be used with PC-AiR, with 

estimates for millions of pairs of individuals can be performed in a matter of minutes.
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Discussion

Genetic ancestry inference has been motivated by a variety of applications in population 

genetics, genetic association studies, and other genomic research areas. Advancements in 

array-based genotyping technologies have largely facilitated the investigation of genetic 

diversity at remarkably high levels of detail, and a variety of methods have been proposed 

for the identification of genetic ancestry differences among unrelated sample individuals 

using high-density genome-screen data. It is common, however, for genetic studies to have 

sample structure that is due to both population stratification and relatedness, and existing 

population structure inference methods can fail in related samples. We developed PC-AiR, a 

method for robust population structure inference in the presence of known or cryptic 

relatedness. PC-AiR applies a computationally efficient algorithm that uses pairwise 

measures of kinship and ancestry divergence from genome-screen data for the identification 

of a diverse subset of mutually unrelated individuals that is representative of the ancestries in 

the entire sample. Principal components that are representative of ancestry are obtained by 

performing PCA directly on genotype data from individuals selected for the ancestry 

representative subset, while coordinates along the axes of variation for the remaining 

individuals in the sample are predicted based on genetic similarities with the diverse subset. 

The PC-AiR method does not require the genealogy of the sampled individuals to be known, 

and it can be used across a variety of study designs, ranging from population based studies 

where individuals are assumed to be unrelated to family based studies with partially or 

completely unknown pedigrees.

In simulation studies with a broad range of population structure settings, including ancestry 

admixture, and with sample individuals related according to a variety of genealogical 

configurations, we demonstrated that the top axes of variation from PC-AiR were nearly 

perfectly correlated with ancestry. In contrast, widely used methods for population structure 

inference performed poorly in the presence of relatedness, including the PCA method 

implemented in the EIGENSOFT software, MDS as implemented in PLINK software, and 

model-based ancestry estimation methods ADMIXTURE and FRAPPE. We also applied 

PC-AiR and competing methods to the admixed HapMap MXL and ASW population 

samples. Without using any reference population panels or pedigree information on the 

sample individuals, the top two axes of variation from PC-AiR nearly perfectly explained 

proportional European, Native American, and African ancestry in the HapMap MXL and 

ASW samples as compared to a supervised individual ancestry analysis with ADMIXTURE 

that included reference population panels. In contrast, all other population structure 

inference methods were confounded by relatedness, including the FamPCA method which 

was provided the documented pedigree relationships but was unable to appropriately account 

for cryptic relatedness in the sample. While PC-AiR can use documented pedigree 

relationships, we recommend using empirical genetic relatedness estimates obtained from 

genome-wide SNP genotype data in lieu of pedigree-based kinship measures, as mis-

specification of pedigree relationships can lead to inaccurate ancestry inference and poor 

performance, similar to what we observed with FamPCA in the presence of cryptic 

relatedness in the HapMap samples.
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Performing PCA with genome-wide SNP weights that are calculated from external reference 

panels has recently been proposed [Chen et al., 2013] for certain admixed populations. This 

approach, however, requires prior knowledge about the ancestries of the individuals in the 

sample, which may be partially or completely unknown, as well as having available 

reference population panels with suitable surrogates for the underlying ancestral 

populations. Nevertheless, the PC-AiR method can also easily incorporate SNP-weights 

from external reference panels for population structure inference. For example, by 

designating samples from external reference panels to be the ancestry representative subset 

in the PC-AiR algorithm, principal components for individuals in the target sample for 

population structure inference will be calculated based solely on SNP weights from the 

reference panels. A potential limitation of using SNP weights from external reference 

panels, however, is that inference on population structure will be limited to the ancestries of 

individuals selected from the reference panels, which may not be representative of the 

ancestries of all individuals in the sample. An attractive alternative approach that we 

recommend is to perform a PC-AiR analysis on the study sample combined with the external 

reference panels. Genome-screen data could then be used by the algorithm implemented in 

PC-AiR for the identification of an ancestry representative subset from the combined set of 

reference population and sample individuals. With this approach, ancestries from both the 

reference panels and the sample would then be allowed to contribute to the SNP weights, 

which would help to ensure that all ancestries in the sample are adequately represented for 

inference on population structure.

Linear mixed models (LMMs) have recently emerged as a powerful and effective approach 

for association mapping in samples with population structure as well as family structure or 

cryptic relatedness [Yang et al., 2014]. LMMs have previously been evaluated in samples 

with subtle population structure [Price et al., 2010; Wu et al., 2011] and have been shown to 

have appropriate control over type-I error. We evaluated the performance of LMMs in 

simulation studies where sample individuals have ancestry derived from divergent 

populations, and our simulation results showed that widely used LMM approaches for 

association mapping, such as EMMAX and GEMMA, can have an increase in type-I error 

due to under-correction of SNPs with moderate to high differentiation in allele frequencies 

between ancestral population, as well as a loss of power due to overcorrection of SNPs with 

little to no differentiation. This result illustrates potential problems with existing LMM 

approaches for association mapping in recently admixed populations, where a large 

proportion of SNPs are expected to have substantial allele frequency differences between the 

underlying ancestral populations. For example, African Americans have genetic 

contributions from European and African ancestral populations, and in a comparative 

analysis of allele frequencies at 1.4 million autosomal SNPs for European (CEU) and West 

African (YRI) samples in HapMap, we found that approximately 10% of the SNPs were 

highly differentiated, with allele frequency differences greater than 0.4, while 26% were 

moderately differentiated, with allele frequency differences between 0.2 and 0.4. Our 

simulation studies also illustrated that including principal components from PC-AiR as fixed 

effects in LMMs resulted in appropriate calibration of association test statistics at all SNPs 

in related admixed samples, protecting against inflated type-I error at highly and moderately 

differentiated SNPs.
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The challenges of inferring genetic ancestry in related samples have been well documented 

[Patterson et al., 2006; Price et al., 2010]. To our knowledge, PC-AiR is the first method to 

provide robust population structure inference and correction in the presence of known or 

cryptic relatedness without requiring reference population panels, external SNP loadings, or 

genealogical information on the sample individuals. We have implemented the PC-AiR 

method in an R package that is freely downloadable (see Web Resources).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

This study was supported in part by the National Institutes of Health grants K01 CA148958 and P01 HG0099568 
(to T.T.).

Appendix A Derivation of the KING-Robust Parameter Value for Unrelated 

Pairs of Individuals in the Presence of Admixture

Here we derive the limiting value for the KING-robust kinship coefficient estimator for an 

outbred unrelated pair of individuals i and j under our general population genetic modeling 

assumptions. Recall that gis is the number of copies of the reference allele that individual i 
has at SNP s, and thus gis can take values 0, 1, or 2 and has unconditional expectation 

. We assume that the ancestral allele frequencies, ps for , are independent 

and identically distributed (i.i.d.) random variables from some unspecified distribution on [0, 

1]. Under this assumption, the unconditional expectation of gis is the same for every choice 

of , and if we assume that genotypes at different SNPs are independent, then

(A1)

as . Note that the independence of SNPs assumption can be relaxed for Equation 

(A1), and a sufficient condition would be that the effective number of independent SNPs 

tends to ∞. In what follows, we derive each of the expectations in Equation (A1) conditional 

on ps, and we show that the limiting value of  does not depend on ps, implying that the 

i.i.d. assumption can also be relaxed.

As in Thornton et al. [2012], we define the quantity μis to be one half of the expectation of 

gis, conditional on individual i’s ancestry, ai, and the vector of subpopulation-specific allele 

frequencies, ps, at SNP s:

(A2)

The quantity μis can be interpreted as the individual-specific allele frequency for individual i 
at SNP s, and it is a linear combination of the subpopulation-specific allele frequencies 

weighted by individual i’s autosomal ancestry proportions from each of the ancestral 
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subpopulations. In Thornton et al. [2012], both ai and ps are treated as fixed quantities. Here, 

we similarly treat the ancestry vectors as fixed, and we implicitly condition on ai and aj 

throughout what follows, but we allow ps to be a random vector with the properties 

 and Cov[ps] = ps(1 − ps)ΘK for all  under our population genetic 

modeling assumptions. Therefore, we calculate the following:

(A3)

(A4)

The expectations  and  can be obtained directly from the observed genotype 

probabilities for individual i conditional on ps; however, it should be noted that these 

probabilities are not what is expected under HWE based on individual i’s individual specific 

allele frequencies, μis. The observed genotype probabilities take into account that individual 

i inherits one allele from the mother of i, M(i), and one allele from the father of i, P(i), at 

every locus. In the presence of recent admixture there can be departure from HWE in the 

observed genotype frequencies despite individual i being outbred; if individual i’s parents do 

not have the same ancestry, then individual i will have excess heterozygosity. Using the 

observed genotype probabilities, we can calculate

(A5)

where μM(i)s and μP(i)s are the allele frequencies at SNP s for i’s mother and father 

respectively. To obtain , we note that the expectation of an indicator function is 

just the probability of the event it indicates, so

(A6)

Since we are only considering unrelated individuals, the genotype values gis and gjs are 

independent conditional on the vector of subpopulation allele frequencies, so 

. Therefore, we can calculate
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(A7)

Plugging the appropriate expectations into Equation (A1) and simplifying, we get that

(A8)

In what follows, we look at this quantity in more detail to demonstrate that it may be either a 

negatively or positively biased estimate of 0 for a pair of unrelated individuals.

When the parents of individual i have the same ancestry, ai = aM(i) = aP(i), and when the 

parents of individual j have the same ancestry, aj = aM(j) = aP(j), then Equation (A8) 

simplifies to

(A9)

This scenario could correspond to a population with discrete substructure but can also occur 

in a population with admixture. If i and j also have the same ancestry, then ai = aj and 

. However, if i and j have different ancestry, then the limiting value is systematically 

negative, and the magnitude of this negative value is large when i and j have very different 

ancestry proportions. For the special case when the parents of an individual have very 

different ancestry, the limiting value can become positive. To see this, consider the extreme 

example where the parents of individual i are from different subpopulations, and the parents 

of individual j are from different subpopulations. In this setting 

, so Equation (A8) simplifies to

(A10)

If i and j have no common ancestry from any subpopulation, then , otherwise the 

limiting value is positive, and the magnitude is large if i and j have similar ancestry 

proportions. In general, the limiting value of  decreases as ai and aj become more 

different or as either of the pairs (aM(i), aP(i)) or (aM(j), aP(j)) become more similar. 

Properties of the underlying ancestral populations also affect the magnitude of this bias. 

When the ancestral subpopulations are highly divergent, as measured by large values on the 

diagonal of ΘK, the absolute magnitude of the bias will increase.

As discussed in the main text, PC-AiR uses the bias of the  estimator to identify which 

individuals are to be given priority to be included in the ancestry representative subset. 

Individuals that have a large number of negative pairwise estimates have different ancestry 

from many others in the samples and will be selected by the PC-AiR algorithm to ensure 
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that the ancestry representative subset is both diverse and representative of all ancestries in 

the sample.

Appendix B PC-AiR Algorithm for Partitioning N into U and R

1.

Compute:  and  for all 

.

2. Initialize the two subsets to be  and , where Ø is the empty set.

3.

Compute: .

If , continue to step (4), otherwise go to step (10).

4.
Identify , the subset of individuals in  with the most relatives 

in .

If , where  is the number of elements in , go to step (5). Otherwise set 

 and go to step (8).

5.
Identify , the subset of individuals in  that are members of 

the least divergent ancestry pairs.

If , go to step (6). Otherwise set  and go to step (8).

6.
Identify , the subset of individuals in  that have the 

minimum total kinship with their inferred relatives.

If , go to step (7). Otherwise set  and go to step (8).

7. Randomly select one element from  and define this element to be the set .

8. Define the sets:  and .

9. Update  and  and return to step (3).

10. The algorithm has completed.
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Figure 1. 
Comparison of PC-AiR and EIGENSOFT for Relationship Configuration I and Population 

Structure I with FST = 0.01.

(A and B) Scatter plots of principal components 1 and 2 from PC-AiR (A) and EIGENSOFT 

(B), respectively. (C and D) Scatter plots of the simulated population 1 ancestry proportions 

vs. coordinates along principal component 1 for each individual from PC-AiR (C) and 

EIGENSOFT (D), respectively. (A–D) The color of a point represents the simulated ancestry 

of an individual; red for population 1, blue for population 2, and an intermediate color for an 
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admixed individual. (A and C) A dot represents an individual in the mutually unrelated 

ancestry representative set, and a plus represents an individual in the related set. (B and D) A 

circle represents an individual not in a pedigree, and a triangle represents an individual who 

is a member of a pedigree. (E) Barplot of the efficiency of PC-AiR and EIGENSOFT. Each 

bar represents the proportion of ancestry explained (R2 value) by each principal component 

from PC-AiR (gold) and EIGENSOFT (black), until a cumulative R2 of 0.99 is achieved.
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Figure 2. 
Population Structure Inference Results for Relationship Configuration I and Population 

Structure II with FST = 0.1.

Scatter plots of the simulated population 1 ancestry proportions for each individual are 

plotted against: (A) coordinates along principal component 1 from PC-AiR, (B) coordinates 

along principal component 1 from EIGENSOFT, (C) coordinates along dimension 1 from 

MDS, and (D) the estimated ancestry proportions from ADMIXTURE for the inferred 

population with the highest R2. The color of a point represents the simulated ancestry of an 

individual; red for population 1, blue for population 2, and an intermediate color for an 
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admixed individual. (A) A dot represents an individual in the mutually unrelated ancestry 

representative set, and a plus represents an individual in the related set. (B–D) A circle 

represents an individual not in a pedigree, and a triangle represents an individual who is a 

member of a pedigree.
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Figure 3. 
Comparison of Population Structure Inference for the HapMap MXL Sample.

Scatter plots of the European ancestry proportions estimated from a supervised individual 

ancestry analysis with ADMIXTURE for each individual are plotted against: (A) 

coordinates along principal component 1 from PC-AiR, (B) coordinates along principal 

component 1 from EIGENSOFT, (C) coordinates along principal component 1 from 

FamPCA, (D) coordinates along dimension 1 from MDS, and (E) the estimated ancestry 

proportions from an unsupervised analysis with ADMIXTURE for the inferred population 

with the highest R2. The color of a point represents the ancestry of an individual as 

estimated from a supervised individual ancestry analysis with ADMIXTURE; blue for 

European, green for Native American, and an intermediate color for an admixed individual. 

Individuals who are members of MXL Extended Family 1 or 2 are plotted as triangles or 

squares, respectively, and remaining individuals are plotted as circles. (F) Individual 

ancestry estimates for 86 HapMap MXL samples from a supervised individual ancestry 

analysis with ADMIXTURE. Each individual is represented by a vertical bar; estimated 

European (HapMap CEU), African (HapMap YRI), and Native American (HGDP samples 

from the Americas) ancestry proportions are shown in blue, red, and green, respectively.
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Figure 4. 
Comparison of Population Structure Inference for the HapMap MXL and ASW Combined 

Sample. Scatter plots of the top two axes of variation from PC-AiR (A), EIGENSOFT (B), 

FamPCA (C), and MDS (D). The color of a point represents the ancestry of an individual as 

estimated from a supervised individual ancestry analysis with ADMIXTURE; blue for 

European (HapMap CEU), red for African (HapMap YRI), green for Native American 

(HGDP samples from the Americas), and an intermediate color for an admixed individual. 
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Individuals who are members of MXL Extended Family 1 or ASW Extended Family 1 are 

plotted as triangles or stars, respectively, and remaining individuals are plotted as circles.
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Table 2

Genomic Control λGC for Association Testing Simulation Study

Method Highlya Differentiated Moderatelyb Differentiated Lowlyc Differentiated

Linear Regression 3.16 1.82 1.25

EIGENSTRAT with 10 PCs 1.19 1.12 1.07

Linear Reg. + 1 PC from PC-AiR 1.04 1.05 1.05

GEMMA 1.35 1.10 0.95

EMMAX 1.32 1.08 0.94

EMMAX + 10 PCs from EIGENSOFT 1.07 1.02 0.98

EMMAX + 1 PC from PC-AiR 1.00 1.00 1.00

aHighly differentiated SNPs have allele frequency differences ⩾ 0.4 between the two ancestral populations.

bModerately differentiated SNPs have allele frequency differences < 0.4 and ⩾ 0.2 between the two ancestral populations.

cLowly differentiated SNPs have allele frequency differences < 0.2 between the two ancestral populations.
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