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GLOBAL CEREBRAL EDEMA FROM
HYPERCAPNIC RESPIRATORY ACIDOSIS AND
RESPONSE TO HYPEROSMOLAR THERAPY

Hypercapnic respiratory acidosis (HRA) causes cere-
bral vasodilation via perivascular extracellular pH
changes.1 Its ability to precipitate global cerebral
edema (GCE) in the absence of acute brain injury
is rare. Treatment in these reports involves mechan-
ical ventilation.2 We describe a rare case of HRA-
induced GCE in a patient without brain injury and
the efficacy of hyperosmolar treatment after mechan-
ical ventilation failed.

This case provides Class IV evidence. This is a sin-
gle observational study without controls.

Case report. A 32-year-old quadriparetic man with
cervico-thoracic syringomyelia and ventriculoperitoneal
shunt (VPS) presented with recurrent dyspnea. Prior
episodes were treated with noninvasive positive pressure
ventilation (NIPPV). However, he presented 6 hours
after symptom onset, much later than prior episodes.
He denied new sensorimotor or constitutional
symptoms. He was afebrile, tachycardic, tachypneic,
and without evidence of hypoxia or dysautonomia.
General examination revealed rapid, shallow breathing.
Mental status and cranial nerves were intact with
baseline spastic quadriparesis and hyperreflexia.

Arterial blood gas (ABG) on room air revealed
HRA (pH: 7.18, PaCO2: .96 mm Hg, PaO2:
128 mm Hg, HCO3: 42 mEq/L). Routine labora-
tory studies, cardiopulmonary, and infectious
workup were unrevealing. NIPPV failed to improve
HRA. A previous do not intubate order was
reversed after discussion with the patient. After
65 hours of HRA, the patient progressed to coma
and was intubated. CT brain (figure, A) revealed
GCE and he was transferred to the neurointensive
care unit.

Despite HRA resolution after intubation (ABG:
pH: 7.58, PaCO2: 42 mm Hg), the patient had a
Glasgow Coma Scale (GCS) score of 3T. A total of

30 mL of 23% NaCl on arrival provided transient
improvement of GCS to 7T (motor localization)
before returning to GCS 3T. Metabolic workup
and EEG were unrevealing. MRI brain at 96 hours
revealed diffuse subcortical hyperintensities despite
HRA resolution for over 30 hours (figure, B). There
was no evidence of hypoxic injury, thrombosis/
infarct, infection, or hydrocephalus. VPS was func-
tional via shunt series examination. MRI spine re-
vealed stable syringomyelia. Persistent coma and
prior response to hyperosmolar therapy prompted
scheduled hyperosmolar therapy. Thirty milliliters
of 23% NaCl at 103 hours improved the GCS from
3T to 10T within an hour (following commands).
The GCS worsened from 10T to 7T at 105 hours
and mannitol 80 g (1g/kg) was given, improving the
GCS back to 10T within 3 hours.

Alternating scheduled 23% NaCl and mannitol
were continued every 6 hours with titration to clinical
response. The patient returned to his neurologic base-
line in 24 hours but required a tracheostomy and
phrenic nerve pacer placement for ventilator support.
A 2-month follow-up CT scan revealed resolution of
GCE (figure, C).

Discussion. Etiologies for edema such as hydro-
cephalus, cervical dysautonomia, infection, stroke,
toxins, and hepatic failure3 were excluded in our
patient. Without other provoking factors, his de-
layed presentation and subtle extension of the syrin-
gomyelia (not appreciated on imaging) resulted in
severe HRA. Central respiratory drive was intact,
but was limited by neuromuscular weakness result-
ing in GCE.

PaCO2 .80 mm Hg increases cerebral blood
flow up to 6 times its baseline4 via pH-induced che-
moregulatory cerebrovasodilation. Hyperemia in
conjunction with increased vascular permeability
from severe vasodilation allowed for resultant edema
formation and subsequent elevated intracranial pres-
sure. The length of time required to precipitate
GCE from HRA is unknown. Our patient had
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severe HRA for more than 60 hours prior to deteri-
oration. Furthermore, he remained comatose for
approximately 30 hours following HRA correction
until hyperosmolar therapy was initiated. Although
documented as .96 mm Hg, our patient’s PaCO2

level was most likely much higher than what was
reported (due to laboratory limitations) and contin-
ued to rise until mechanical ventilation was imple-
mented. This prolonged HRA led to sustained
cerebral acidosis unamenable to compensatory

measures inducing a vasoplegia in which correction
of arterial pH no longer mitigated a vasoconstrictive
response.

While critical in other types of brain injury, the
role of hyperosmolar therapy in GCE incited by
HRA has not been described previously.5 The use
of hyperosmolar therapy may have had a 2-fold effect
in returning the patient back to baseline: (1) water
extraction through the creation of an intravascular
osmotic gradient and (2) rheologic and cardiac output
augmentation resulting in mechanoregulatory vaso-
constriction and a subsequent decrease in intracranial
pressure.6 The role of hyperosmolar therapy in treat-
ing GCE in this case is further supported by the tem-
poral synchronization of our patient’s clinical
fluctuations reflecting the pharmacokinetic profile
of mannitol/hypertonic saline: onset 30 minutes
and duration of action 2–12 hours.7 Our patient’s
extreme hypercapnia in the absence of hypoxemia
did not alter the cerebral energy state and subse-
quently did not result in irreversible cell damage.
Consequently, our patient’s case illustrates that hy-
perosmolar therapy in patients with GCE secondary
to HRA should be considered should mechanical ven-
tilation fail.
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Figure Hypercapnic cerebral edema and resolution after hyperosmolar therapy

(A) CT (65 hours): global cerebral edema (GCE) (functioning ventriculoperitoneal shunt). (B) MRI
(96 hours): diffuse subcortical hyperintensities despite 30 hours of acidosis/CO2 correction;
severe/stable cervico-thoracic syringomyelia. (C) CT (2-month follow-up): resolved GCE.
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Comment:
Revisiting Lassen cerebral blood flow constancy with hysteresis and 3D

Roh et al.1 present a unique case of severe, pro-
longed hypercapnic respiratory failure that triggered
refractory global cerebral edema (GCE). This case
report is interesting because edema was not abatable
by hyperventilation, despite adequate reversal to a
normocapnic state, and responded only to aggressive
osmotherapy.

The relationship between cerebral blood flow
(CBF) and arterial partial pressure of carbon dioxide
(PaCO2) may thus be represented visually by an
S-curve with a delayed return in response to pro-
longed hypercapnia (figure 1). At a certain threshold
of PaCO2 that is sustained for a substantial duration,
a state of “vasoplegia” might be triggered, whereby
reversal of PaCO2 levels is no longer effective in
decreasing CBF. In reality, regulation of CBF is a
complex process2 that can be further comprehended
by examining correlations between cerebral perfusion
pressure (CPP) and CBF, and also between PaCO2
and CBF, with a 3D interplay (figure 2). It is worth
emphasizing that autoregulation, vasoreactivity, and
blood–brain barrier impermeability are nuanced
physiologic functions, not always directly related,3

and each can lead to dysregulated CBF and to GCE.
Serial measurements of CBF, CPP, and permeability,
by neuroimaging and intracranial probes, would have
been ideal to scrutinize the effects during hyperventi-
lation and osmotic treatment in this patient.

Readers should not extrapolate these therapeutic
suggestions for a noninjured brain with acute on

chronic hypoventilation to common cases of brief
exposure to severe hypercapnia. Finally, the fluid-
attenuated inversion recovery image depicts GCE
with an intriguing predilection for subcortical U fibers
and periventricular CSF spaces, suggesting venular
hypertension, rather than diffuse white and gray mat-
ter involvement, as expected in global cerebral capil-
lary vasoplegia.
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Figure 1 Effect of arterial partial pressure of
carbon dioxide (PaCO2) onto cerebral
blood flow (CBF) in usual
circumstances and in this acute on
chronic prolonged hypercarbic case
triggering hysteresis

Figure 2 Three-dimensional representation of
the interplay among cerebral perfusion
pressure (CPP), arterial partial
pressure of carbon dioxide (PaCO2),
and cerebral blood flow (CBF)
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