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Abstract

The practice of medicine is predicated on discovering commonalities or distinguishing 

characteristics among patients to inform corresponding treatment. Given a patient grouping 

(hereafter referred to as a phenotype), clinicians can implement a treatment pathway accounting 

for the underlying cause of disease in that phenotype. Traditionally, phenotypes have been 

discovered by intuition, experience in practice, and advancements in basic science, but these 

approaches are often heuristic, labor intensive, and can take decades to produce actionable 

knowledge. Although our understanding of disease has progressed substantially in the past 

century, there are still important domains in which our phenotypes are murky, such as in 

behavioral health or in hospital settings. To accelerate phenotype discovery, researchers have used 

machine learning to find patterns in electronic health records, but have often been thwarted by 

missing data, sparsity, and data heterogeneity. In this study, we use a flexible framework called 

Generalized Low Rank Modeling (GLRM) to overcome these barriers and discover phenotypes in 
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two sources of patient data. First, we analyze data from the 2010 Healthcare Cost and Utilization 

Project National Inpatient Sample (NIS), which contains upwards of 8 million hospitalization 

records consisting of administrative codes and demographic information. Second, we analyze a 

small (N=1746), local dataset documenting the clinical progression of autism spectrum disorder 

patients using granular features from the electronic health record, including text from physician 

notes. We demonstrate that low rank modeling successfully captures known and putative 

phenotypes in these vastly different datasets.

1. Introduction

1.1. Learning phenotypes from the electronic health record

With the advent and proliferation of electronic health records, phenotyping has become a 

popular mechanism with which to define patient groups based on shared characteristics- 

typically for conducting observational studies, defining quality metrics, or targeting clinical 

interventions. Current phenotyping methods vary: some rely on rules crafted from domain 

knowledge, others relying on statistical learning, and some employ hybrid approaches.1,2 

Regardless of the method, phenotyping has clear utility when the resulting groups are well 

defined, but may fail when the situation is unclear. Instead of presupposing phenotypes, 

recent work has leveraged advances in unsupervised learning to discover phenotypes from 

the data.3,4

A major barrier to applying machine learning approaches to phenotype discovery using 

health records data is that these data are often sparse, biased by non-random missingness, 

and heterogeneous.3 An emerging framework, Generalized Low Rank Modeling (GLRM), 

offers a potential solution to address these limitations. Specific low rank models have 

already been successfully applied to various biomedical problems.4,5,6 However, no prior 

study has considered low rank modeling as an overarching framework with which to 

perform phenotype discovery via models tailored to the qualities of the dataset at hand. 

Here, we demonstrate the use of this flexible framework to discover phenotypes in two 

datasets of different quality, granularity, and which represent diverse clinical situations.

1.2. Standardizing hospital care using phenotype discovery has high impact

Each year, Americans are admitted to hospitals over 37 million times, in aggregate spending 

more than 175 million days as inpatients.7 In addition, hospitalizations cost the US economy 

$1.3 trillion dollars annually.8 In light of this enormous impact, improvements in hospital 

care can yield dramatic results. For example, the Institute of Medicine estimated that up to 

98,000 patients die each year from preventable medical errors.9 Recent coordinated efforts 

to improve safety resulted in a staggering 1.3 million fewer patients harmed, 50,000 lives 

saved, and $12 billion in health spending avoided.10 These efforts shared a simple premise: 

uncovering common phenotypes bridging diverse inpatient cohorts can drive substantial 

improvements in care and outcomes.10 Given that phenotype discovery is such a critical step 

towards improving hospital care, existing methods for subgroup discovery are often slow 

and labor-intensive. For example, the codification of sepsis has taken decades11, despite the 

fact that it contributes to as many as 1 out of every 2 hospital deaths12 and is the single most 

expensive cause of US hospitalization.13
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1.3. Autism spectrum disorder phenotypes are poorly defined and badly needed

Autism spectrum disorder (ASD) is a leading cause of mental illness in children, with an 

estimated 52 million cases globally.14 In the United States, its prevalence has been estimated 

to be as high as 1 in 68, resulting in $11.5 billion in social costs15,16. ASD has eluded 

precise characterization of either its biological underpinnings or its clinical presentation, 

leading to substantial challenges in diagnosis and treatment, particularly in light of a wide 

range of heterogeneous phenotypes and comorbidities17. Although symptoms of the disorder 

are commonly present by age 18 months, ASD is typically not diagnosed until age 4 or later, 

after significant irreversible impairments in learning and neurodevelopment have already 

occurred15. Even after diagnosis, the progression of ASD is different across individuals, 

which has led to efforts to define subgroups that are at differential risk of comorbidities.18 A 

systematic and data-driven approach for phenotype discovery can precisely characterize this 

heterogeneous disorder and its progression over time.

2. Methods

We analyze two datasets of different sizes, feature granularity, data-types, domains, and 

timelines. Instead of taking a one-size-fits-all approach, we create a tailored low rank model 

within the generalized low rank model framework to account for the specific qualities of 

each dataset and then fit the model to discover hidden phenotypes.

2.1. Generalized low rank models

The idea behind low rank models is to represent high-dimensional data in a transformed 

lower-dimensional space. Generalized low rank models19 begin with a matrix or data table A 
that is populated with n samples or observations (rows) of m different features (columns; 

Figure 1). These features may take values from different sets (e.g. some may be real 

numbers, others true/false, enumerated categories, etc.) and each observation may have 

missing values for some features. The number of features in the dataset is referred to as its 

dimensionality.

We approximate A by XY, where X ∈ ℜn×k and Y ∈ ℜk×m (Figure 1). We interpret the rows 

of this “tall and skinny” X as observations from A represented in terms of the k new latent 

features. We interpret each row of the “short and wide” Y as a representation of one of the k 
latent features in terms of the m original features. In a sense, Y encodes a transformation 

from the original features into the latent features.

To find X and Y, we pose the following optimization problem:

(1)

This expression consists of two parts: a loss function and regularizers. The loss
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(2)

is a measure of the accuracy of our approximation of the data. Different losses may be more 

or less appropriate for different types of data (to reflect different noise models), so we allow 

the loss to be decomposed over the different elements of the dataset to account for 

heterogeneity in the types of features present. In addition, we only calculate the loss over the 

set Ω, which represents the non-missing entries in our dataset. This strategy allows us to 

‘borrow’ statistical power from partially-filled or incomplete observations where other 

methods would discard the entire observation. The regularizers rx and ry constrain or 

penalize the latent feature representation. Using appropriate regularization can prevent 

overfitting and improve model interpretability.

To impute missing or hidden values, we solve: , where α 

represents the set of possible values that a can take (e.g. if a is a boolean feature, α = {1, 

−1}).

Particular choices of losses and regularizations result in many well known models. For 

instance, using  and no regularization is mathematically equivalent 

to principal components analysis (PCA). A well-written and detailed description of GLRM 

and the kinds of models that can be created using this framework can be found in the 

seminal work by Udell et. al.19

2.2. Hospitalization dataset and phenotype discovery model

We used data from the 2010 National Inpatient Sample, the largest all-payer nationally 

representative dataset of US hospitalizations.20 Each hospitalization record includes a 

variety of fields providing information about patient diagnoses (up to 25 different ICD-9-

CM codes) and procedures (up to 15 ICD-9-CM procedure codes), as well as demographics, 

admission/discharge/transfer events, and comorbidities (a set of 30 AHRQ comorbidity 

measures, e.g. AIDS). For efficiency, we processed the dataset to consolidate the ~18,000 

ICD-9-CM diagnosis and procedure codes into a total of 516 Clinical Classification 

Software (CCS) codes.21 Additionally, we used 44 variables regarding patient 

demographics, admission circumstances, hospitalization outcome, and patient comorbidity. 

We expanded all categorical variables into sets of boolean dummy variables (one for each 

possible value) to yield a total of 557 boolean, continuous, and ordinal features. We focused 

specifically on adult hospitalizations (age ≥ 18 years) as the causes, demographics, and 

outcomes of pediatric hospitalizations differ substantially. To speed computation, we 

selected a random subsample of 100,000 hospitalizations to fit our models to.

Hospitalization records contain a diversity of data-types. We measured the accuracy of the 

approximation for different data elements by data-type appropriate loss functions, e.g. 

quadratic loss for real-valued variables such as age, hinge losses for boolean variables such 

as presence or absence of procedures. Real, categorical, ordinal, and boolean, and periodic 

data-types are familiar to most researchers, and appropriate losses for these kinds of 

variables are known in the machine learning and optimization communities.19
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We defined an epistemic boolean variable as a boolean variable where we have a lopsided 

confidence about whether a true value actually indicates truth or a false value actually 

indicates falsehood. For example, consider diagnoses: if a clinician codes a patient for a 

diagnosis, it is highly likely that that patient experienced the condition that the code 

represents -- in other words, we are confident that “True” means true. On the other hand, if a 

patient did not receive a particular diagnosis, that variable would simply be missing in that 

patient’s hospitalization record. In reality, we are less sure that the patient did not experience 

that condition because it may have escaped diagnosis, remained unrecognized, or simply 

gone uncoded. We developed a loss function to account for lopsided epistemic uncertainty of 

this sort. Correct predictions are not penalized regardless. Our loss function for epistemic 

booleans is a generalization of the boolean hinge loss and is defined as follows:

(3)

where 1A(x) is an indicator function for x ∈ A. When wT > wF, this loss function penalizes 

false negatives more than false positives, reflecting our greater certainty about observations 

labeled as “True” compared to those labeled as “False”.

In light of the divergent scales and domains of the features, all loss functions and 

regularizers were adjusted for scaling and offsets.19

2.3. Autism spectrum disorder dataset and phenotype discovery model

We used data from the Stanford Translational Research Integrated Database Environment 

(STRIDE), a de-identified patient dataset that spans 18 years and more than 1.2 million 

patients who visited Stanford Hospital & Clinics. From all patients in STRIDE, we 

identified 1746 patients with at least 2 autism spectrum disorder (ASD) related visits (visits 

assigned a 299.* ICD9 code). For these patients, we analyzed billing data from all visits 

(ICD9 and CPT codes), prescribed drugs, as well as mentions of clinical concepts in their 

medical notes found using our previously described text annotation pipeline.22 We restricted 

our analysis to data recorded when these 1746 patients were at most 15 years old because we 

are interested in modeling ASD phenotypes in children and adolescents. We generated a 

feature vector for each patient by calculating the frequency of occurrence of each visit-

associated ICD9 code, prescribed drug, and medical concept mentioned in any note of that 

patient, binned by 6 month intervals (Figure 2). To capture the nature of this data, we used a 

Poisson loss over all elements in the dataset. This low rank model specification is 

mathematically equivalent to Poisson PCA.23

2.4. GLRM implementation

To fit our models, we used the Julia package LowRankModels24, which implements the 

algorithm described by Udell et. al.19 This software employs a general purpose, fast, and 

effective procedure called alternating proximal gradient descent to solve a broad class of 

optimization problems. Although model-specific solvers (i.e. algorithms that take advantage 

of the structure of a particular GLRM) could be faster, this general-purpose software allowed 

us to rapidly iterate through model design decisions and test choices of parameters and 

robustness.
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The Julia LowRankModels package is still under active development. We dedicated 

substantial effort to learning and clarifying the code, contributing bug fixes, adding needed 

features, and optimizing performance. Our contributions will accelerate our future work and 

the work of other researchers using low rank models.

3. Results

3.1. Tailored low rank models outperform PCA

As an intrinsic evaluation, we benchmarked our tailored models against naive low rank 

models (PCA) of equal rank by artificially hiding a portion of the elements in the dataset and 

judging each model’s ability to correctly impute the missing values. This procedure was 

repeated in a 5-fold cross validation for each model (Figure 3). In both datasets, the tailored 

models outperformed PCA in terms of the imputation error for held out values. Imputation 

errors are evaluated using a merit function specific to the data, not the model. While 

minimizing the merit function is the ultimate goal, models are fit using loss functions 

because the merit function is generally nonsmooth and nonconvex.

3.2. Low rank models discover hospitalization phenotypes

We began our analysis of our hospitalization model by inspecting the latent features. Recall 

that each latent feature in a low rank model is a row vector in the computed matrix Y. Each 

entry in this vector corresponds to the influence of an original feature within this latent 

feature. We examined the representation of the original features in terms of the latent 

features by clustering the latent feature representations of the original features (the columns 

of the matrix Y). Hierarchical clustering clearly reproduced known associations between 

diagnoses, procedures, comorbidities, and demographics (not shown).

To discover phenotypes, we clustered the low rank representation of our subsample of the 

NIS dataset (the matrix X). We chose a hierarchical cluster cutpoint for eight clusters of 

hospitalizations and compared cluster characteristics (Table 1) in terms of the original 

feature space. The eight clusters had widely divergent baseline characteristics and could be 

well defined within recognizable hospital phenotypes. For example, patients in clusters 4 

and 5 were nearly all young females who were hospitalized for pregnancy and childbirth. 

They differed in that patients in cluster 5 had a slightly longer length of stay, likely 

associated with the marked difference in the need for C-sections (6.2% for cluster 4 vs 

88.4% for cluster 5). Cluster 1 appeared to contain patients hospitalized for orthopedic 

procedures, while cluster 2 largely included patients with psychiatric or substance abuse 

hospitalization -- the most common procedure was alcohol detoxification (16.7%). Cluster 7 

was nearly exclusively patients undergoing procedures for acute myocardial infarction with 

a 91.0% rate of cardiac percutaneous transluminal coronary angioplasty. Clusters 6 and 8 

included medically complex patients with cluster 6 having a high mortality (8.1%) with a 

younger mean age of 61 years.

3.3. Phenotypes discovered from a low rank model of ASD progression

To discover ASD phenotypes we first examined the composition of the latent features in our 

models. Regardless of the parameterization or the rank, the primary effect that we observed 
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in our latent feature vectors was differential enrichment for original features coming from 

different 6-month time-bins (Figure 4). For instance, the second latent feature shown has 

relatively high weights on original features corresponding to medical concepts observed in 

patients during the second time bin, while the first has relatively high weights on original 

features corresponding to clinical concepts observed in patients during the fourth time bin. 

This “useage timeline” effect was evident in all models we considered, regardless of rank.

To discover phenotypes, we clustered the low rank representations of our ASD dataset (the 

matrix X). Using k-means clustering, we derived cluster centroids (phenotypes) in terms of 

their latent feature representations (each phenotype is a vector in ℜk). To inspect these in 

terms of our original features, we multiplied each phenotype vector by the matrix Y. The 

derived phenotypes were not differentially enriched for specific clinical concepts. Instead, 

these “temporal phenotypes” grouped patients by the timings of their interactions with the 

healthcare system.

4. Discussion

4.1. Hospital phenotypes suggest streamlining or compartmentalizing hospital 
organization

Our analysis of a nationally-representative hospitalization administrative dataset revealed 

that low rank modeling could identify clinically distinguishable hospital phenotypes. These 

phenotypes are immediately familiar to clinicians and hospital administrators with each 

cluster representing recognizable ‘wards’ or ‘service lines’ provided by hospitals. For 

example, it distinguished patients primarily admitted for orthopedic surgeries from those 

admitted for substance abuse or psychiatric diagnoses, essentially rediscovering hospitals’ 

‘orthopedics’ and ‘psychiatric’ wards. Our approach also identified sub-phenotypes within 

larger classes. For example, hospitalizations for childbirth are the most common reason for 

US inpatient stays, and our results revealed two subtypes within the obstetric population 

differentiated by their need for procedural intervention. Our current results establish the 

validity of using the low rank modeling approach for identifying known hospital phenotypes 

with the hope that extending this approach will yield the discovery of new phenotypes for 

which streamlined care pathways can be implemented.

4.2. Time-binning masks phenotype signals in ASD dataset

In our ASD model, we saw that the discovered phenotypes were not differentially enriched 

for specific clinical concepts. However, the phenotypes were not the product of random 

noise--they succeeded in capturing the primary source of variation in the data, which was 

temporality. Analysis of the latent features revealed that mentions of different clinical 

concepts within a time bin are more associated with each other than mentions of the same 

clinical concept with itself in another time bin. The model remarkably learned these 

associations without any a priori knowledge that the features represented time-binned 

counts. The model successfully detected a clear structure in the data, although that structure 

reflects an artifact of featurization and the clinical challenges associated with early diagnosis 

in ASD. There may be clinically relevant phenotypes present in the data, but our analysis 

shows that this signal is masked by time-binning. Our result is emblematic of what lies at the 
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crux of low-rank models: the algorithm will discover the clearest and most robust signals, 

whether or not these signals are meaningful to the user’s research interest or insight. Thus 

low rank models should be used to understand the profile of the dataset in order to inform 

future data collection or featurization. In our case, our result suggests that we should employ 

a different featurization method in future studies or that we should incorporate time 

explicitly, perhaps using tensor factorization or a convolutional approach.

4.3 Summary

In this study, we applied a novel and flexible machine learning method -- generalized low 

rank modeling -- to two very different datasets. Instead of forcing the same model onto 

different datasets or creating specific methods with little hope of reuse, we built two unique 

models united by one overarching framework and software package. Furthermore, we 

demonstrated different approaches to analyzing low rank models and used these techniques 

to discover phenotypes present in the data.

Accelerating the process of phenotype discovery has high potential to improve care and 

outcomes for patients, but additional work in the validation and care standardization of such 

phenotypes is still required. Nonetheless, using such a high-throughput approach for finding 

patient subgroups could dramatically shorten the time necessary to make new discoveries, 

especially when applied to massive datasets documenting poorly understood phenomena.
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FIGURE 1. 
A data matrix is approximated as the product of two matrices. By construction, the resulting 

approximation is of lower algebraic rank. The data matrix A may contain features of 

different data-types and missing entries, as illustrated here. Each row of X is an encoding of 

an observation in A in the latent feature space. Each column of Y is an encoding of a feature 

of A in the latent feature space.

SCHULER et al. Page 10

Pac Symp Biocomput. Author manuscript; available in PMC 2016 April 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



FIGURE 2. 
Illustration of the hospitalization (left) and ASD (right) datasets. For each ASD patient, we 

created a vector from the frequency of occurrence of each concept (C-1, C-2…) mentioned 

in their medical notes, ICD9 codes associated with a visit (ICD9-1, ICD9-2…) and 

medications prescribed (DRUG-1, DRUG-2…) within each 6 month period of their medical 

history captured in our database.
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FIGURE 3. 
Training and testing imputation error in 5-fold cross validation of each model across a range 

ranks. The tailored models perform better than their naive counterpart (PCA). Imputation 

error is mean-normalized within each feature and by the number of data entries tested over.
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FIGURE 4. 
Each panel represents one latent feature vector in the matrix Y. Vertical gray lines are 

manually overlaid boundaries between time bins. Time bins are ordered temporally from left 

to right. The weights of the original features in each latent feature representation are 

predominantly associated according to the time bin in which each original feature was 

recorded, and not by clinical similarity between the original features.
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