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Abstract

Broad spectrum antiviral drugs targeting host processes could potentially treat a wide range of 

viruses while reducing the likelihood of emergent resistance. Despite great promise as 

therapeutics, such drugs remain largely elusive. Here we use parallel genome-wide high-coverage 

shRNA and CRISPR-Cas9 screens to identify the cellular target and mechanism of action of 

GSK983, a potent broad spectrum antiviral with unexplained cytotoxicity
1–3

. We show that 

GSK983 blocks cell proliferation and dengue virus replication by inhibiting the pyrimidine 
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biosynthesis enzyme dihydroorotate dehydrogenase (DHODH). Guided by mechanistic insights 

from both genomic screens, we found that exogenous deoxycytidine markedly reduces GSK983 

cytotoxicity but not antiviral activity, providing an attractive novel approach to improve the 

therapeutic window of DHODH inhibitors against RNA viruses. Together, our results highlight the 

distinct advantages and limitations of each screening method for identifying drug targets and 

demonstrate the utility of parallel knockdown and knockout screens for comprehensively probing 

drug activity.

Introduction

The development of effective broad spectrum antiviral therapies remains a highly attractive 

(but equally challenging) goal in drug discovery. Antivirals targeting host cell processes 

have great potential to demonstrate activity against a range of viruses, reduce the likelihood 

of mutational resistance, and serve as frontline therapies for rapidly emerging outbreaks of 

viral disease such as Ebola and influenza
4
. However, extensive efforts to develop such drugs 

have been stymied by various factors, including on-target toxicity and limited in vivo 
activity

5
. Recently, cell-based phenotypic screens of chemical libraries have generated 

numerous host-targeting broad spectrum antiviral lead compounds with unidentified targets 

and mechanisms of action
1,6–8

. Thus, the development of improved methods for target 

identification and mechanism elucidation – critical challenges in drug discovery – should 

facilitate the development of more effective broad spectrum antiviral therapies.

High-throughput yeast deletion and RNAi-based screening approaches have emerged as 

powerful alternatives to drug target identification methods that utilize affinity-based 

chemoproteomics or chemical-genetic expression signatures
9–13

; reviewed in
14,15

. We 

recently developed high-coverage shRNA libraries (25 shRNAs/gene) that facilitate pooled 

genome-wide screening in mammalian cells with dramatically improved hit reliability
16–19

. 

While our high-coverage shRNA libraries have demonstrated utility in identifying small 

molecule drug targets
20,21

, genome-wide screening is no longer limited to RNAi-mediated 

gene knockdown. The recent development of the CRISPR-Cas9 system has greatly expanded 

the scope of genomic screening in mammalian cells by enabling facile interrogation of 

functional gene deletions
22–28

. Here, we demonstrate a comprehensive strategy using 

parallel genome-wide shRNA and CRISPR-Cas9 screens to discover the previously 

unknown host cell target and mechanism of action of GSK983 (1), a poorly understood 

broad spectrum antiviral lead compound with unexplained cytotoxicity.

We found that GSK983 blocks virus replication and arrests the growth of rapidly dividing 

cells by inhibiting the cellular de novo pyrimidine biosynthesis enzyme dihydroorotate 

dehydrogenase (DHODH). Furthermore, we show that exogenous deoxycytidine greatly 

reduces GSK983 cytotoxicity but not activity against RNA virus replication, providing a 

novel strategy to improve the therapeutic window of DHODH inhibitors against RNA 

viruses. Finally, we propose that efficacy of broad spectrum antiviral therapies targeting host 

pyrimidine metabolism might be improved by pharmacological inhibition of both de novo 
pyrimidine biosynthesis (via DHODH) and pyrimidine ribonucleoside salvage (via uridine-

cytidine kinase, UCK2).
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Results

Biological activity of GSK983

We first examined the biological activity of GSK983 (Fig. 1a and Supplementary Results, 

Supplementary Fig. 1a) in human K562 cells. GSK983 inhibited K562 cell growth with an 

IC50 of 21 nM (Fig. 1b and Supplementary Fig. 1b), consistent with previous observations
1
. 

Cell cycle analysis revealed that 24 h GSK983 treatment caused an accumulation of K562 

cells in S phase (Supplementary Fig. 1c,d), while prolonged 72 h treatment induced a dose-

dependent increase in K562 cell death by apoptosis (Supplementary Fig. 1e,f).

shRNA and CRISPR-Cas9 screens for target identification

We previously established a platform for pooled RNAi screens using ultracomplex shRNA 

libraries (~25 shRNAs per gene and ~10,000 negative control shRNAs)
16–19

. More recently, 

we systematically optimized several features of our shRNA design to create a next-

generation shRNA library, which performs comparably to our CRISPRi library
29

. For the 

shRNA screen described here, we infected K562 cells with our next-generation shRNA 

library targeting the entire human protein-coding genome. For the CRISPR-Cas9 screen, we 

designed a CRISPR single-guide RNA (sgRNA) library targeting the entire human protein-

coding genome (~4 sgRNAs per gene and ~2,000 negative control sgRNAs) incorporating 

previously reported improvements to the sgRNA stem loop
30

. We stably infected this 

CRISPR sgRNA library into a K562 cell line constitutively expressing Cas9 endonuclease. 

For both screens, we split cells expressing the genome-wide shRNA or sgRNA library and 

cultured them in the presence or absence of 48 nM GSK983 for 10–14 days. We then 

isolated genomic DNA from untreated and GSK983-treated cells, PCR-amplified shRNA- or 

sgRNA-encoding DNA constructs, and counted all constructs by deep sequencing.
16

 (Fig 

1c,d).

We used deep sequencing data from the shRNA screen to rank genes according to a 

maximum likelihood estimator (MLE) metric that we designed to consider the magnitude of 

sensitization to or protection against GSK983 conferred by the entire set of shRNAs 

targeting each gene. Similarly, we used deep sequencing data from the CRISPR-Cas9 screen 

to rank genes according to the median fold-change in sgRNA frequency in the untreated 

versus GSK983-treated cell populations (Supplementary Datasets 1,2)
27

.

Analysis of genomic screen results

Inspection of the top 10 hit genes from both screens revealed clear signatures from three 

major biological pathways (Fig. 1e). Knockdown or knockout of genes whose products are 

required for coenzyme Q10 (CoQ10) biosynthesis and function (HMGCR, PDSS1, PDSS2, 

COQ2, COQ9, and COQ10B) protected K562 cells against GSK983 (Fig. 1e and 

Supplementary Fig. 2a,b). In contrast, shRNA-mediated knockdown of pyrimidine 

metabolism genes (DHODH and CMPK1) sensitized K562 cells to GSK983 (Fig. 1e and 

Supplementary Fig. 2b), as did CRISPR-Cas9-mediated knockout of components of the 

GATOR1 protein complex (NPRL2 and DEPDC5), a recently identified negative regulator 

of mTORC1 activity (Fig. 1e)
31,32

. Interestingly, mammalian pyrimidine biosynthesis 

utilizes CoQ1033 and is subject to regulation by mTORC1
34,35

.
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As expected, genes required for essential processes such as nucleotide biosynthesis (e.g., 

DHODH and CMPK1) that appeared as top hits in the shRNA knockdown screen did not 

appear as statistically significant hits in the CRISPR-Cas9 deletion screen (Fig. 1f and 

Supplementary Datasets 1,2). Conversely, certain genes (e.g., mTOR signaling components 

NPRL2, TSC2, SEH1L, MAPKAP1, RICTOR, RHEB, and TBC1D7) were statistically 

significant hits in the CRISPR-Cas9 screen but not in the shRNA screen (Fig. 1f and 

Supplementary Datasets 1,2). A number of genes were statistically significant hits in both 

screens, including PDSS1, PDSS2, and UCK2. GO enrichment analysis of the top 50 hits 

from each screen revealed that CoQ10 biosynthesis genes were significantly overrepresented 

among top hits from both screens, while pyrimidine metabolism genes were significantly 

overrepresented among top hits from the shRNA screen alone (p < 0.001 in all cases) 

(Supplementary Tables 1,2)
36

. Thus, our findings demonstrate the complementary power of 

parallel shRNA and CRISPR-Cas9 screens to identify connections between biological 

pathways that may be difficult to detect using either screening approach alone.

We individually retested multiple shRNAs targeting top hit genes to validate genomic screen 

results (Supplementary Tables 3,4). Using a competitive growth assay, we verified both the 

sensitized phenotype conferred by DHODH or CMPK1 knockdown and the protected 

phenotype conferred by knockdown of several CoQ10 biosynthesis genes (Fig. 1g and 

Supplementary Fig. 3a–c). We also used QPCR to confirm the efficacy of selected shRNAs 

targeting DHODH and CMPK1 (Supplementary Fig. 3d,e). Similarly, we individually 

retested top hit sgRNAs from the CRISPR-Cas9 screen to verify both that NPRL2 or 

DEPDC5 knockout sensitized K562 cells to GSK983 and that knockout of CoQ10 

biosynthesis genes protected K562 cells against the drug (Fig. 1h,i and Supplementary Fig. 

4a). Additionally, we retested CRISPR sgRNAs targeting selected top hit genes in HeLa 

cells and obtained similar results, albeit with milder phenotypes, indicating that these 

genetic modifiers of GSK983 sensitivity are not K562-specific (Supplementary Fig. 4a,b).

GSK983 inhibits cellular dihydroorotate dehydrogenase

While the CRISPR-Cas9 and shRNA screens each highlighted unique hit genes and together 

provided a more complete understanding of the biological activity of GSK983, we 

considered that the highly sensitizing hits in the pyrimidine biosynthesis pathway were 

among the most likely candidates to be molecular targets of GSK983. We reasoned that cells 

expressing an shRNA against a protein target of GSK983 should be highly sensitized to 

GSK983-induced growth inhibition. Consequently, we focused our target identification 

effort on the pyrimidine metabolism genes DHODH and CMPK1, which were the top 

sensitizing hits from our genome-wide shRNA screen. Mammalian cells derive pyrimidine 

(deoxy)ribonucleotide triphosphates either from de novo biosynthesis or pyrimidine salvage, 

in which intact pyrimidine metabolites are recycled from intracellular nucleic acid 

degradation or imported into the cell from exogenous sources (Fig. 2a). DHODH 

(dihydroorotate dehydrogenase) is required for de novo pyrimidine biosynthesis, while 

CMPK1 plays a critical role in both de novo biosynthesis and pyrimidine salvage (Fig. 2a).

To determine whether GSK983 inhibited DHODH, we examined the ability of 

dihydroorotate and orotate (the substrate and product of DHODH, respectively) to reverse 
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the anti-proliferative effect of GSK983 in K562 cells. Dihydroorotate supplementation had 

no effect on GSK983-induced growth inhibition (Fig. 2b). In sharp contrast, exogenous 

orotate reversed the anti-proliferative effect of GSK983 in dose-dependent fashion, with full 

rescue of K562 cell growth at the highest orotate concentration tested (Fig. 2c). We obtained 

identical results in HeLa cells (Supplementary Fig. 5a,b). Together, these data strongly 

suggested that GSK983 is a DHODH inhibitor.

To confirm DHODH as a GSK983 target, we expressed and purified the recombinant human 

enzyme from E. coli and examined the effect of GSK983 on in vitro enzyme activity, using 

the known DHODH inhibitor teriflunomide as a positive control (reported Ki = 179 nM)
37

. 

GSK983 was a competitive inhibitor of DHODH with respect to decylubiquinone binding 

(Ki = 403 nM) (Fig. 2d and Supplementary Fig. 5c,d). To determine whether the reported 

antiviral effect of GSK983 could be attributed to DHODH inhibition, we resynthesized three 

GSK983 analogues originally prepared and evaluated at GlaxoSmithKline
2,3. The extent to 

which each compound (GSK983, 6Br-pF (2), 6Br-oTol (3), and GSK984 (4)) inhibited 

DHODH activity in vitro correlated strongly with the reported potency of each compound in 

cell-based antiviral assays (R2 = 0.993) (Fig. 2d,e and Supplementary Fig. 5d–g)
3
. 

Collectively, these findings indicated that the antiviral effect of GSK983 is due to DHODH 

inhibition.

To determine whether GSK983 inhibited CMPK1, we expressed and purified the 

recombinant human enzyme from E. coli; however, we observed no effect of GSK983 on in 
vitro CMPK1 activity. Thus, although CMPK1 was the most sensitizing hit in the shRNA 

screen (followed by DHODH), the encoded protein is not a direct GSK983 target. 

Nonetheless, it is logical that shRNA-mediated CMPK1 knockdown is highly toxic in the 

presence of GSK983, given that CMPK1 knockdown should further impair both de novo 
pyrimidine biosynthesis and pyrimidine salvage (Fig. 2a).

A new strategy to exploit DHODH as an antiviral target

While there are examples of small molecule DHODH inhibitors that potently block virus 

replication
38–40

, prolonged treatment with DHODH inhibitors causes pyrimidine depletion 

that arrests the growth of rapidly dividing cells. Indeed, the FDA-approved drugs 

leflunomide (rheumatoid arthritis) and teriflunomide (multiple sclerosis) are DHODH 

inhibitors that prevent the rapid clonal expansion of activated lymphocytes, a process which 

requires significantly elevated cellular pyrimidine levels
41,42

. We were therefore interested 

in separating the antiviral effect of GSK983 from its anti-proliferative (and cytotoxic) effect 

on rapidly dividing cells.

Guided by the appearance of pyrimidine salvage enzymes among the top sensitizing hits 

from both genomic screens, we examined the ability of pyrimidine salvage metabolites to 

reverse the anti-proliferative effect of GSK983 on rapidly dividing cells. Uridine, cytidine, 

or deoxycytidine supplementation reversed GSK983-induced growth inhibition to varying 

extents in K562 cells (Fig. 3a,b and Supplementary Fig. 6a,b). However, cellular salvage of 

exogenous ribonucleosides (uridine and cytidine) can sustain RNA virus replication despite 

DHODH inhibition
40,43

. We reasoned that deoxycytidine salvage would support DNA but 

not RNA virus replication given that ribonucleotides cannot be directly biosynthesized from 
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their 2′-deoxy analogues. This raised the intriguing possibility of using a DHODH inhibitor 

to block RNA virus replication in combination with a deoxycytidine supplement to reverse 

the anti-proliferative effect on rapidly dividing cells.

To test this therapeutically relevant hypothesis, we studied the antiviral effect of GSK983 on 

dengue virus (DENV), an RNA virus that has rapidly emerged as the most prevalent 

mosquito-transmitted virus worldwide and currently causes approximately 100 million 

infections annually in tropical regions
44

. We compared the effects of exogenous uridine and 

deoxycytidine on the ability of GSK983 to inhibit DENV replication in human A549 cells. 

In the absence of exogenous pyrimidines, GSK983 potently inhibited DENV replication 

(IC50 = 13.3 nM) (Fig. 3c). As expected, uridine supplementation completely abolished the 

antiviral activity of GSK983 (Fig. 3c). In sharp contrast, exogenous deoxycytidine did not 

reverse GSK983-mediated inhibition of DENV replication (IC50 = 13.5 nM) (Fig. 3c). We 

conducted a cell growth assay conducted in parallel with antiviral experiments to confirm 

that both uridine and deoxycytidine reduced GSK983 cytotoxicity and rescued A549 cell 

growth (Fig. 3d), consistent with previous results in K562 cells. Notably, treatment with 30 

nM GSK983 and 1 mM deoxycytidine caused a significant (~90%) reduction in DENV 

replication (Fig. 3c) with a minimal effect on A549 cell growth (Fig. 3d). Thus, 

deoxycytidine supplementation partially reversed the anti-proliferative effect of GSK983 but 

did not preclude potent inhibition of DENV replication (Fig. 3e,f).

We additionally tested the effect of GSK983 on the replication of another RNA virus, 

Venezuelan equine encephalitis virus (VEEV). GSK983 inhibited VEEV replication with an 

IC50 of 12.8 nM (Supplementary Fig. 6e). As with DENV, we observed that exogenous 

uridine reversed the antiviral effect of GSK983, while deoxycytidine supplementation had 

no effect on antiviral activity. Furthermore, we found that exogenous orotic acid, but not 

dihydroorotic acid, reversed the antiviral effect of GSK983. Collectively, these results 

indicate that GSK983 potently inhibits replication of RNA viruses by inhibiting cellular 

DHODH.

Further analysis revealed that exogenous deoxycytidine reversed GSK983-induced S phase 

cell cycle arrest (Fig. 3g and Supplementary Fig. 7a,b) and cytotoxicity (Supplementary Fig. 

7c–e) at 3 days in K562, HeLa, and A549 cells. Deoxycytidine supplementation also 

markedly reduced teriflunomide toxicity in K562 cells (Supplementary Fig. 7f). These 

findings suggest that deoxycytidine may reverse the anti-proliferative effect of DHODH 

inhibitors by sustaining cellular DNA synthesis during S phase. We observed that the 

capacity of exogenous deoxycytidine to reverse GSK983 toxicity is significant but 

diminished during extended GSK983 treatment (6 days) (Supplementary Fig. 6c,d), likely 

due to the inability of deoxycytidine to alleviate the blockade of cellular RNA biosynthesis 

caused by pharmacological inhibition of DHODH.

Data from our genome-wide shRNA and CRISPR-Cas9 screens also suggested a novel 

combination chemotherapy to achieve improved activity against RNA viruses by targeting 

host pyrimidine metabolism. Both shRNA-mediated knockdown and CRISPR-Cas9-

mediated deletion of the pyrimidine metabolism enzyme UCK2 (uridine-cytidine kinase) 

sensitized K562 cells to GSK983, presumably by impairing uridine and cytidine salvage 
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(Fig. 2a). This result suggests that pharmacological inhibition of UCK2 might enhance the 

antiviral activity of a DHODH inhibitor by preventing flux through the ribonucleoside 

salvage pathway from sustaining RNA virus replication. Thus, we propose that an effective 

and specific UCK2 inhibitor might act synergistically with a DHODH inhibitor to achieve 

improved activity against RNA viruses. Notably, UCK2 inhibition should not impair 

deoxycytidine salvage, which proceeds via a different pathway (Fig. 2a). Therefore, the 

possibility of using deoxycytidine to reduce the toxicity of a combination therapy targeting 

UCK2 and DHODH remains viable.

Discussion

Here, we have demonstrated the utility of parallel genome-wide shRNA and CRISPR-Cas9 

screens (Fig. 1c,d) for identifying the target and mechanism of action of a poorly understood 

therapeutic lead compound, a strategy which should be broadly applicable to other bioactive 

small molecules. We found that the broad spectrum antiviral compound GSK983 blocks 

viral replication and arrests the growth of rapidly dividing cells by inhibiting the cellular de 
novo pyrimidine biosynthesis enzyme DHODH.

Our approach takes advantage of unique properties of each screening technology. shRNA-

mediated knockdown of a gene encoding the protein target of a drug is expected to 

phenocopy pharmacological inhibition of the target. Therefore, we predicted that GSK983 

would be more toxic to cells expressing an shRNA against a gene that encoded a protein 

target of the compound. Furthermore, the broad spectrum of shRNA-mediated knockdown 

efficiency should facilitate identification of essential genes that modulate GSK983 toxicity. 

At the same time, CRISPR-Cas9 mediated knockout should enable detection of non-

essential genes that require full deletion to produce an observable phenotype.

Indeed, we found that genes required for essential biological processes such as nucleotide 

biosynthesis and metabolism (e.g., DHODH and CMPK1) appeared as statistically 

significant hits in the shRNA screen but not in the CRISPR-Cas9 screen. However, other 

genes (most notably those involved in mTOR signaling and regulation) only appeared as 

statistically significant hits in the CRISPR-Cas9 screen, presumably because shRNA-

mediated knockdown of these genes was insufficient to produce a measurable phenotype. 

Thus, our findings demonstrate the complementary power of parallel shRNA and CRISPR-

Cas9 screens to identify connections between biological pathways that may be difficult to 

detect using either screening approach alone.

We focused our target identification efforts on the pyrimidine metabolism genes DHODH 

and CMPK1, which appeared as the most sensitizing hits in our genome-wide shRNA screen 

and were therefore most likely to be molecular targets of GSK983. DHODH is a 43 kDa 

mitochondrial flavoprotein that requires a CoQ10 cofactor for activity and catalyzes the 

fourth and rate-limiting step in the de novo pyrimidine biosynthesis pathway (the oxidation 

of dihydroorotate to orotate). CMPK1 is a 22 kDa cytosolic nucleoside monophosphate 

kinase that catalyzes the phosphorylation of uridine 5′-monophosphate (UMP), cytidine 5′-

monophosphate (CMP), and 2′-deoxycytidine 5′-monophosphate (dCMP) to the 

corresponding nucleotide diphosphates (Fig. 2a). Notably, CMPK1 plays a critical role in 
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both de novo pyrimidine biosynthesis and salvage of pyrimidine ribonucleosides and 

deoxyribonucleosides (Fig. 2a).

Subsequent biochemical assays using recombinant human DHODH and CMPK1 

demonstrated that GSK983 inhibited the activity of DHODH but not CMPK1. Thus, we 

reasoned that we could exploit the pyrimidine salvage pathway to separate the antiviral 

activity of GSK983 from its cytotoxic effect on rapidly dividing cells. Indeed, exogenously 

added deoxycytidine alleviated GSK983-induced S phase cell cycle arrest and largely 

reversed GSK983 cytotoxicity, presumably by facilitating continued cellular DNA synthesis 

via the deoxyribonucleoside salvage pathway. However, deoxycytidine supplementation did 

not reverse the potent activity of GSK983 against RNA viruses (DENV and VEEV), because 

the ribonucleotides required for RNA biosynthesis cannot be directly formed biochemically 

from their 2′-deoxy analogues. This finding provides an attractive novel approach to improve 

the therapeutic window of DHODH inhibitors; however, it is important to note that this 

strategy is likely limited in applicability to RNA viruses. Exogenous deoxycytidine would 

presumably sustain DNA virus replication via the deoxyribonucleoside salvage pathway 

notwithstanding pharmacological inhibition of DHODH.

There are numerous examples of small molecule DHODH inhibitors that potently block 

virus replication in cell-based assays
38–40

. However, the relevance of DHODH as a target for 

RNA virus therapies has been questioned because these compounds rarely achieve in vivo 
efficacy

39,40
. One plausible explanation for this phenomenon is that circulating plasma 

uridine levels in mammals often exceed concentrations that have been shown to reverse the 

antiviral effect of DHODH inhibitors in cell-based assays
39,40

. Therefore, RNA virus 

replication can likely be sustained via uridine salvage despite pharmacological inhibition of 

DHODH.

Mechanistic insights from our genome-wide shRNA and CRISPR-Cas9 screens suggest a 

novel combination chemotherapy that may improve the in vivo activity of a DHODH 

inhibitor as an RNA virus therapy. The pyrimidine salvage enzyme UCK2 (uridine-cytidine 

kinase) strongly sensitized cells to GSK983 in both screens. Thus, an effective and specific 

UCK2 inhibitor should act synergistically with a DHODH inhibitor to achieve improved 

activity against RNA viruses by preventing ribonucleoside salvage. Here, deoxycytidine 

salvage would remain intact, limiting toxicity for host cell DNA replication.

Finally, our dual genomic screening strategy identified other major biological pathways 

(mTOR regulation and CoQ10 biosynthesis) that affect cellular pyrimidine metabolism. 

Nonetheless, the mechanisms by which these pathways modulate cellular sensitivity to 

GSK983 remain poorly understood. Together, our results highlight the importance of 

genome-wide knockdown and knockout screening as a means of comprehensively 

interrogating both essential and non-essential genes, and demonstrate the utility of this 

approach as a functional platform enabling small molecule target identification and rational 

therapy design.
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Online Methods

Chemicals and reagents for biological assays

GSK983 was synthesized as described below. Teriflunomide was obtained from Sigma-

Aldrich and was used as received. GSK983 and teriflunomide were dissolved in DMSO to 

prepare stock solutions which were diluted in the appropriate cell growth medium for 

biological assays. GSK983 and teriflunomide stock solutions in DMSO were stored at 

−80 °C. Uridine, cytidine, deoxycytidine, and dihydroorotic acid were obtained from Sigma-

Aldrich. Orotic acid was obtained from Fisher Scientific. For pyrimidine supplementation 

experiments, pyrimidine metabolites (uridine, cytidine, deoxycytidine, orotic acid, and 

dihydroorotic acid) were dissolved directly in the appropriate growth medium (RPMI or 

DMEM). 5-Ethynyl-2′-deoxyuridine (EdU) and Azide-fluor 488 were obtained from Sigma-

Aldrich and dissolved in DMSO to prepare working stock solutions. Copper (II) sulfate 

(CuSO4) and ascorbic acid were obtained from Sigma-Aldrich and were used as received. 7-

aminoactinomycin D (7-AAD) was obtained from Life Technologies and dissolved in 

DMSO to prepare a working stock solution.

Cell culture

K562 cells (ATCC) were cultured in RPMI (Gibco) supplemented with 10% fetal bovine 

serum (FBS), penicillin/streptomycin, and L-glutamine. HeLa cells (HeLa-Kyoto cells, a gift 

from AA Hyman) and A549 cells (ATCC) were cultured in DMEM (Gibco) supplemented 

with 10% FBS, penicillin/streptomycin, and L-glutamine. In biological assays, HeLa cells 

and A549 cells were detached from the growth surface using a trypsin/EDTA solution 

(Gibco) prior to analysis. Cells were maintained in logarithmic growth during all biological 

assays. All cell lines were maintained in a humidified incubator (37 °C, 5% CO2), and 

checked regularly for mycoplasma contamination.

GSK983 dose response and growth time course in K562 cells

To determine the dose response of K562 cells to GSK983, K562 cells were seeded into 24-

well plates at a density of 50,000 cells/mL and treated with GSK983 at the indicated 

concentration for 72 h. Following 72 h treatment, cells were harvested and the density of 

viable cells was determined by flow cytometry (FSC/SSC) using a BD Accuri C6 Flow 

Cytometer. IC50 values were calculated by fitting a 4-parameter logistic equation to the data. 

To analyze the time-dependence of GSK983-induced growth inhibition in K562 cells, cells 

were seeded into 24-well plates at a density of 50,000 cells/mL and treated with the 

indicated concentration of GSK983. At the indicated time points, cells were harvested and 

the density of viable cells was determined by flow cytometry (FSC/SSC) using a BD Accuri 

C6 Flow Cytometer.

Cell cycle analysis based on total DNA content (propidium iodide)

K562 cells were seeded into 6-well plates at a density of 100,000 cells/mL. HeLa and A549 

cells were seeded into 6-well plates at a density of 200,000 cells/well. Cells were treated 

with the indicated concentration of GSK983 for 24 h. Where specified, cells were treated for 

24 h with deoxycytidine alone (1 mM), GSK983 and deoxycytidine (1 mM), or neither 
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(untreated). Following 24 treatment, cells were harvested and pelleted (300g, 5 min). The 

supernatant was removed by vacuum and the cells were washed (0.5 mL 1x PBS). Cells 

were resuspended in 70% EtOH (1 mL, 0 °C) with mild vortexing. Cells were fixed in 70% 

EtOH overnight at 4 °C. The following day, fixed cells were pelleted (1900g, 5 min), washed 

(0.5 mL 1x PBS), and resuspended in 200 μL of a total DNA content staining solution (1x 

PBS with 50 μg/mL RNase A and 10 μg/mL propidium iodide). Samples were incubated for 

30 min at 37 °C and analyzed by flow cytometry using a BD Accuri C6 Flow Cytometer. 

Propidium iodide fluorescence was detected in FL2.

Annexin V-FITC/7-AAD apoptosis assay

K562 cells were seeded into 24-well plates at a density of 50,000 cells/mL and treated with 

the indicated concentration of GSK983 for 72 h. The final concentration of DMSO in each 

well was < 0.1%. Following 72 h GSK983 treatment, cells were harvested and pelleted 

(399g, 5 min). The supernatant was removed by vacuum. Cell death by apoptosis was 

analyzed using a BioVision Annexin V-FITC Apoptosis Kit (catalog number K101–100). A 

staining solution was prepared by first diluting the provided Annexin V-FITC solution in 

binding buffer according to the specifications of the manufacturer. 7-AAD was added from a 

stock solution in DMSO (0.67 mg/mL) such that the final concentration of 7-AAD in the 

staining solution was 2.5 μg/mL. Cell samples were resuspended in 0.5 mL of the staining 

solution. Samples were incubated at room temperature for 10 min in the dark and analyzed 

by flow cytometry using a BD Accuri C6 Flow Cytometer. FITC fluorescence was detected 

in FL1 and 7-AAD fluorescence was detected in FL3. Note: The BioVision Annexin V-FITC 

Apoptosis Kit includes propidium iodide for detection of necrotic cells. However, we found 

that the use of 7-AAD for necrotic cell staining greatly facilitated flow cytometric analysis 

in this assay. Compared to the emission spectrum of propidium iodide, the red-shifted 

emission spectrum of 7-AAD has significantly less overlap with the emission spectrum of 

FITC.

Genome-wide shRNA screen

We infected our next-generation genome-wide lentiviral shRNA library into K562 cells as 

described previously
16–18

. Infected cells were expanded and split into two flasks. In one 

flask, cells were grown in the presence of 48 nM GSK983 for 14 days, while in the other 

flask, cells were grown in the absence of GSK983. Untreated cells were diluted to a density 

of 500,000 cells/mL each day. GSK983-treated cells were diluted to a density of 500,000 

cells/mL as needed. After the cell culture period, untreated and GSK983-treated cells were 

pelleted by centrifugation. Genomic DNA was isolated and shRNA encoding-constructs 

were counted by deep sequenced as described previously
16–18

.

Genome-wide CRISPR-Cas9 screen

To conduct the CRISPR-Cas9 screen, we first designed a genome-wide CRISPR sgRNA 

library with 4 sgRNAs/gene, incorporating previously reported improvements to the sgRNA 

Cas9 binding region
30

. Coding sequence models for sgRNA design were based on CCDS. 

sgRNAs were targeted toward the 5′ end of transcripts, and sgRNAs targeted exons common 

to all transcripts wherever possible. sgRNAs were 19–25 base pairs long and were adjacent 

to an NGG at the 3′ end. sgRNAs also contained an endogenous 5′G. Where multiple 
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possible sgRNA lengths existed, only one was picked at random to ensure that no two 

sgRNAs targeted the same PAM. sgRNAs were scored for off-targets as previously 

described
23

 and the most stringent score (e39m1) was used wherever possible. Negative 

control sgRNAs were designed against scrambled coding sequences and filtered for zero off-

targets in the genome.

We generated a K562 cell line stably expressing Cas9 endonuclease by infecting K562 cells 

with SFFV-Cas9-BFP, which is identical to a vector described previously
23

 but containing 

Cas9 with both active catalytic sites. We infected our newly designed lentiviral genome-wide 

sgRNA library into Cas9-expressing K562 cells according to the procedures described for 

lentiviral infection of shRNA libraries
16–18

. Infected cells were expanded and split into two 

flasks. In one flask, cells were initially treated with 6 and 12 nM GSK983 with little effect; 

therefore the concentration of GSK983 was increased to 48 nM to ensure strong selection. 

Cells were grown in the presence of 48 nM GSK983 for 10 days. In the other flask, cells 

were grown in the absence of GSK983. After the cell culture period, genomic DNA was 

isolated from the untreated and GSK983-treated cells using a Qiagen DNA Blood Maxi kit 

according to the manufacturer’s instructions. To prepare the sgRNA sequencing library, the 

integrated sgRNA-encoding constructs were PCR amplified using Agilent Herculase II 

Fusion DNA Polymerase with primers oMCB_1562 (5′-

AGGCTTGGATTTCTATAACTTCGTATAGCATAC ATTATAC-3′) and oMCB_1563 (5′-

ACATGCATGGCGGTAATACGGTTATC-3′). PCR reactions contained 5x Herculase buffer 

(20 μL), dNTPs (1 μL of 10 mM stock), genomic DNA (10 μg), primer oMCB_1562 (1 μL 

of 100 μM stock), primer oMCB_1563 (1 μL of 100 μM stock), Herculase II Fusion DNA 

Polymerase (2 μL), and water (to adjust final reaction volume to 100 μL). The number of 

PCR reactions was scaled to use all of the isolated genomic DNA from the untreated and 

GSK983-treated cells. The conditions for the PCR reaction were as follows: 1x 98 °C/2 min, 

18x 98 °C/30 s, 59.1 °C/30 s, 72 °C/45 s, 1x 72 °C/3 min. PCR amplicons from genomic 

DNA isolated from untreated cells were pooled, as were PCR amplicons from genomic 

DNA isolated from GSK983-treated cells. The pooled PCR amplicons from the untreated 

and GSK983-treated samples were further amplified in a subsequent PCR reaction using 

primer oMCB_1349 (5′-CAAGCAGAAGACGGCATACGAGATGCACAA 

AAGGAAACTCACCCT-3′) and a bar-coded primer (5′-AATGATACGGCG 

ACCACCGAGATCTACACGATCGGAAGAGCACACGTCTGAACTCAGTCACNNNNN

NC GACTCGGTGCCACTTTTTC-3′), where N’s indicate Illumina index barcodes. For the 

second PCR reaction, the reaction mixtures contained 5x Herculase buffer (20 μL), dNTPs 

(2 μL of 10 mM stock), an aliquot of the amplicon from the first PCR reaction (5 μL), 

oMCB_1439 (0.8 μL of 100 μM stock), barcoded primer (0.8 μL of 100 μM stock), 

Herculase II Fusion DNA Polymerase (2 μL), and water (69.4 μL). The conditions for the 

second PCR reaction were as follows: 1x 98 °C/2 min, 20x 98 °C/30 s, 59.1 °C/30 s, 

72 °C/45 s, 1x 72 °C/3 min. The PCR products from the untreated and GSK983-treated 

samples were separated by gel electrophoresis (20% TBE-PAGE, 120 V, 50 min), and then 

gel purified to obtain sgRNA sequencing libraries.
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Ranking genes from genome-wide shRNA and CRISPR-Cas9 screens

Given the variance in the efficiency of shRNA-mediated gene knockdown, we developed a 

novel maximum likelihood estimator (MLE) to approximate the maximum effect size of the 

collective set of shRNAs targeting each gene. The distribution of shRNAs for a given gene 

was fit to a mixed model with three distributions: off-target, miss, and on-target. The off-

target distribution corresponds to the shRNA knocking down a gene other than its intended 

target and is estimated from the distribution of all shRNAs other than the negative controls. 

The missed distribution corresponds to the shRNA having no effect and is estimated from 

the distribution of all negative control shRNAs. Both estimations were performed by 

Gaussian kernel smoother with the bandwidth determined by Scott’s rule. Finally, the on-

target distribution is the uniform distribution from 0 to I, where I is a fitted parameter and 

corresponds to the estimated effect size. This allows for the fact that a given shRNA can be 

anywhere from 0 to 100 percent effective at knocking down the targeted gene product. The 

relative contribution of the missed and the on-target distribution was also fitted, allowing for 

different numbers of shRNAs to be considered on-target. The contribution of the off-target 

distribution was fixed at 10% to allow for outliers. The significance of the MLE was tested 

using a log likelihood ratio, where the p-values were empirically determined by Monte-

Carlo sampling of all shRNAs other than the negative controls.

To call and rank hit genes from the shRNA screen, enrichment values for each shRNA were 

first calculated as the log ratio of the frequency of the shRNA-encoding construct in 

genomic DNA isolated from the untreated and GSK983-treated cell populations
16

. For each 

gene, the MLE described above was used to estimate both the effect of the set of shRNAs 

targeting the gene and a p-value representing the significance of that estimate. Genes were 

then filtered by significance under the Bonferroni correction at p < 0.05 and ranked 

according to the effect size estimate.

To rank genes from the CRISPR-Cas9 screen, we first filtered genes with fewer than four 

distinct targeting sgRNAs detected in the deep sequencing data. The effect size was then 

calculated as the median fold-enrichment value for the set of sgRNAs targeting a given gene. 

Custom Python scripts for analysis of both screens will be made available upon request.

GO enrichment analysis

GO enrichment analysis was performed using Enrichr (GO Biological Process option)
36

. 

Separate GO enrichment analyses were performed on the top 50 hit genes from the shRNA 

screen and the CRISPR-Cas9 screen. All p values were adjusted using the Benjamini-

Hochberg correction for false discovery rate. Supplementary Table 1 shows all enriched GO 

categories from the shRNA screen with p < 0.01. Supplementary Table 2 shows all enriched 

GO categories from the CRISPR-Cas9 screen with p < 0.01.

Lentivirus production and lentiviral infections for individual shRNA retests

Pairs of oligonucleotides encoding shRNAs targeting top hit genes were annealed and 

ligated into the pMCB309 vector backbone, which was previously digested with BstXI and 

gel-purified. pMCB309 encodes two BstXI cut sites, puromycin resistance, and mCherry. 

Oligonucleotides were obtained from Integrated DNA Technologies (IDT). The plasmid map 
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will be provided upon request. The sequences of the shRNA-encoding oligonucleotides that 

were ligated into pMCB309 for individual retesting are shown in Supplementary Table 3.

To produce lentivirus for individual shRNA retests, Mirus transfection reagent (catalog 

number MIR2305) (2.5 μL) was added to DMEM containing no FBS (97.5 μL) and 

incubated at room temperature for 5 min. Meanwhile, pMCB309 containing the indicated 

shRNA-encoding insert (0.75 μg) was combined with 3rd generation lentiviral packaging 

components (pMDL, pRSV, and pMD2 – available from Addgene) (0.75 μg). The total DNA 

mixture (pMCB309 with shRNA encoding insert + lentiviral packaging components) was 

added to the DMEM/Mirus mixture and incubated for 30 min at room temperature. 

Meanwhile, HEK293T cells were seeded into 6-well plates at a density of 1 million cells/

well in 2 mL DMEM. Transfection mixtures were added to HEK293T cells dropwise and 

cells were incubated for 24 h at 37 °C. The following day, cells were supplemented with 3 

mL fresh DMEM. Cells were incubated at 37 °C for an additional 48 h. To harvest the virus, 

the supernatant was collected and passed through a 0.45 μm syringe filter.

To infect K562 cells with lentivirus, K562 cells were seeded into 24-well plates at a density 

of 100,000 cells/well in a volume of 100 μL. Polybrene (2 μL of a 4 mg/mL stock solution) 

was added to the cells, followed by 1 mL of the appropriate lentivirus stock. Cells were spin 

infected in 24-well plates for 2 h at 1000g at 33 °C. Following spin infection, cells were 

resuspended and pelleted (300g, 5 min). The supernatant was removed by aspiration and the 

cells were resuspended in fresh RPMI growth medium and incubated for 72 h at 37 °C. The 

cells were expanded into 6-well plates and grown in the presence of puromycin (1.0 μg/mL) 

for 3–5 days to select for infected cells. Following puromycin selection, cells were pelleted 

(300g, 5 min) and resuspended in fresh RPMI growth medium.

Competitive growth assays for individual shRNA retests

Competitive growth assays for individual shRNA retests were conducted as follows: 250,000 

K562 cells expressing a negative control shRNA or an shRNA targeting a gene of interest 

(mCherry+) and 250,000 uninfected K562 cells (mCherry−) were seeded into 24-well plates. 

Heterogeneous cell mixtures were cultured in the presence or absence of 48 nM GSK983 for 

14 days. As in the genome-wide shRNA screen, untreated cells were diluted to a density of 

500,000 cells/mL each day and GSK983-treated cells were diluted to a density of 500,000 

cells/mL as needed. Two wells each of untreated cells and GSK983-treated cells were 

cultured for each shRNA retested. The proportion of mCherry+ cells was monitored by flow 

cytometry every 72 h using a BD Accuri C6 Flow Cytometer (mCherry fluorescence 

detected in FL3).

Data was analyzed as follows: for each shRNA retested, the percentage of mCherry+ cells in 

the two untreated wells was averaged, as was the percentage of mCherry+ cells in the two 

GSK983-treated wells (Supplementary Figure 3b,c). The ratio of the average percentage of 

mCherry+ cells in the treated and untreated cell populations was calculated to give an 

mCherry enrichment ratio for each shRNA retested. Thus, an mCherry enrichment ratio < 1 

indicates that mCherry+ cells are depleted in the GSK983-treated cell population versus the 

untreated cell population. In contrast, an mCherry enrichment ratio > 1 indicates that 

mCherry+ cells are enriched in the GSK983-treated cell population versus the untreated cell 
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population. For each shRNA, the logarithm of the mCherry enrichment ratio was calculated. 

A Wilcoxon-Mann-Whitney U Test was performed to compare the log(mCherry enrichment 

ratio) values for the set of shRNAs targeting each hit gene to the log(mCherry enrichment 

ratio) values for the set of negative control shRNAs. Using this competitive growth assay, we 

confirmed that knockdown of DHODH and CMPK1 sensitized K562 cells to GSK983, 

while knockdown of COQ2, PDSS2, PDSS1, and COQ10B protected K562 cells against 

GSK983 in good agreement with genomic screen results [Fig. 1g; bar length represents 

average log(mCherry enrichment ratio) for each gene and error bars represent standard 

deviation of log(mCherry enrichment ratio) values for each gene].

qPCR to confirm efficacy of individual shRNA reagents

We confirmed the efficacy of shRNAs DHODH_1, DHODH_2, CMPK1_2, and CMPK1_4 

using qPCR according to procedures described previously
16

, and values were normalized 

first to levels of RPL19, and then to the first of two negative control shRNAs. The following 

primers were used for qPCR experiments:

hRPL19-5′ ATGTATCACAGCCTGTACCTG

hRPL19-3′ TTCTTGGTCTCTTCCTCCTTG

oMCB1679_CMPK1_qpcr_5′ AAGGTTTCGAGAGCATTCCT

oMCB1680_CMPK1_qpcr_3′ TGAAAGGAAGCAAAGCACCT

oMCB1681_DHODH_qpcr2_5′ AGTCACAGATGCCATTGGAG

oMCB1682_DHODH_qpcr2_3′ GTCCCTCCTCTCATGATCCA

Lentivirus production and lentiviral infections for individual sgRNA retests

Pairs of oligonucleotides encoding sgRNAs targeting top hit genes were annealed and 

ligated into the pMCB306 vector backbone, which was previously double digested with 

BstXI and Blp1 and gel-purified. In addition to BstXI and Blp1 cut sites, pMCB306 encodes 

puromycin resistance and GFP. Oligonucleotides were obtained from Integrated DNA 

Technologies (IDT). The plasmid map will be provided upon request. The sequences of the 

sgRNA-encoding oligonucleotides that were ligated into pMCB306 for individual retesting 

are shown in Supplementary Table 4. Lentivirus production for single sgRNA retests, spin 

infection into K562 cells, and puromycin selection of infected K562 cells were performed 

exactly as described in the procedure for individual shRNA retests.

Selected sgRNAs were also retested in HeLa cells. Lentiviral infection and puromycin 

selection of HeLa cells was performed as follows: HeLa cells were seeded into 24-well 

plates at a density of 50,000 cells/well. DMEM containing the appropriate lentivirus (1mL) 

was added to each well and cells were incubated for 72 h at 37 °C. Cells were expanded into 

6-well plates and grown in the presence of puromycin (1 μg/mL) for 3–5 days to select for 

infected cells. DMEM containing puromycin was removed and the cells were re-plated in 

fresh growth medium.
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Competitive growth assays for individual sgRNA retests

For competitive growth assays to retest individual sgRNAs in K562 cells, 250,000 cells 

expressing an sgRNA targeting a gene of interest (GFP+) and 250,000 cells expressing an 

sgRNA targeting GFP (GFP−) were seeded into 24-well plates. Cells were cultured in the 

presence or absence of 48 nM GSK983 for 12 days. Untreated cells were diluted to a density 

of 500,000 cells/mL each day and GSK983-treated cells were diluted to a density of 500,000 

cells/mL as needed. Two wells each of untreated cells and GSK983-treated cells were 

cultured for each sgRNA retested. The proportion of GFP+ cells was monitored by flow 

cytometry every 48–72 h using a BD Accuri C6 Flow Cytometer (GFP fluorescence detected 

in FL1).

For competitive growth assays to retest individual sgRNAs in HeLa cells, 10,000 cells 

expressing an sgRNA targeting a gene of interest (GFP+) and 10,000 cells expressing an 

sgRNA targeting GFP (GFP−) were seeded into 24-well plates. Plated cells were incubated 

for 24 h at 37 °C. Following 24 h incubation, the growth medium in each well was removed 

and cells were provided fresh growth medium with or without 48 nM GSK983. Cells were 

cultured in the presence or absence of 48 nM GSK983 for 13 days. Cells were split back 8-

fold every 72 h in order to ensure that cell growth remained logarithmic. Two wells each of 

untreated cells and GSK983-treated cells were cultured for each sgRNA retested. The 

proportion of GFP+ cells was monitored by flow cytometry every 72 h using a BD Accuri 

C6 Flow Cytometer (GFP fluorescence detected in FL1).

Cloning, expression, and purification of recombinant human DHODH

Endogenous human DHODH contains a 29 residue N-terminal mitochondrial signal peptide. 

Here, we expressed and purified a truncated DHODH lacking the N-terminal signal peptide 

(Δ29DHODH) to facilitate detergent-free purification and increase the solubility of the 

recombinant enzyme in aqueous buffers. Others have shown that the Δ29DHODH construct 

retains full catalytic activity despite the N-terminal truncation
45

. The DNA sequence 

encoding human DHODH was PCR-amplified from a cDNA template (Origene, SC128197) 

using Δ29DHODH forward primer: 5′-

ACGACAAGCATATGGCCACGGGAGATGAGCG-3′ and Δ29DHODH reverse primer: 5′-

GCGACCCGAATTCGGCCGCCGATGATCTGCTCCA ATGGC-3′. The PCR reactions 

contained 1xGC-Rich Buffer (NEB), DMSO (4%), Phusion High-fidelity DNA Polymerase 

(NEB) (0.05 unit/μL), dNTPs (2 mM), MgCl2 (1.5 mM), cDNA template (20 ng) and 

primers (1 μM each). An annealing temperature of 53.9 °C was used for PCR amplification. 

The amplified insert was cloned into pET21a using NdeI and EcoRI restriction sites to form 

a construct encoding Δ29DHODH with a C-terminal His6 tag.

Expression of recombinant human DHODH was performed as described previously
33

. 

Briefly, E. coli BL21 (DE3) cells were transformed with a pET21a plasmid containing an 

insert encoding Δ29DHODH. Single colony transformants were grown in a 37 °C shaker for 

12–15 h in 50 mL of 2xYT medium (Sigma Aldrich) supplemented with 100 μg/mL 

ampicillin. A 20 mL aliquot of bacterial culture was centrifuged at 5000g for 10 min. The 

supernatant was discarded, and the cell pellet was resuspended in fresh 2xYT medium (20 

mL). The resuspended cells were added to 2 L of 2xYT medium containing 100 μg/mL 
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ampicillin, and the culture was grown aerobically at 37 °C until A600 was ~ 0.6 to 0.8. IPTG 

(0.1 mM) and flavin mononucleotide (100 μM) were added and the culture was grown 

aerobically at 25 °C for an additional 20 h. Cells were harvested by centrifugation at 5000g 

for 20 min at 4 °C. The resulting cell paste was stored at −80 °C prior to protein purification.

Recombinant human Δ29DHODH was purified as follows: cell paste (30 g) was thawed and 

resuspended in ~100 mL start buffer containing HEPES (50 mM, pH 7.7), NaCl (300 mM), 

glycerol (10% v/v), and Triton X-100 (0.5% v/v). The cells were lysed by sonication (35% 

amplitude, 4.0 s pulse, 9.0 s pause, 15 min). The sample was centrifuged at 23,700g for 45 

min (Beckman JA-20 rotor) and the supernatant was passed through a 0.45 μm syringe filter. 

The sample was loaded onto a 5 mL HisTrap HP column (GE Healthcare Life Sciences). 

The column was washed with 20 mL each of start buffer containing 5 and 10 mM imidazole. 

The desired Δ29DHODH protein was eluted by gradually increasing the imidazole 

concentration to 500 mM. The eluate was collected in several fractions, which were 

analyzed by Tris-SDS-PAGE (4–20% polyacrylamide gradient). The fractions containing the 

desired protein were combined and concentrated to a volume of less than 2 mL using an 

Amicon Ultra-15 centrifugal filter unit with a 10 kDa molecular mass cut off (Millipore). An 

Amicon filter was used to exchange the concentrated protein into a storage buffer containing 

HEPES (50 mM, pH 7.7), KCl (300 mM), and glycerol (10% v/v). Following buffer 

exchange, Δ29DHODH was aliquoted, flash frozen with liquid nitrogen, and stored at 

−80 °C.

In vitro enzyme activity assays with recombinant human Δ29DHODH

Δ29DHODH activity was measured in the presence of teriflunomide, GSK983, and GSK983 

analogues using a coupled assay in which the oxidation of dihydroorotic acid (DHO) and 

subsequent reduction of ubiquinone is stoichiometrically equivalent to the reduction of 2,6-

dichlorophenolindophenol (DCPIP)
46

. The reduction of DCPIP can be monitored by the loss 

of absorbance at 610 nm (ε = 21,500 M−1cm−1). Kinetic constants were calculated from 

measurements in which Δ29DHODH (10 nM) was either titrated with different 

concentrations of decylubiquinone (QD, 10–60 μM) at a fixed concentration of DHO (200 

μM) or titrated with different concentrations of DHO (10–60 μM) at a fixed concentration of 

QD (100 μM). Enzymatic assays were conducted at 25 °C in a reaction buffer containing Tris 

(100 mM, pH 8.0), NaCl (150 mM), DCPIP (60 μM), glycerol (10% v/v), and Triton X-100 

(0.1% v/v). The Km values for Δ29DHODH (15 μM for DHO and 14 μM for QD) were in 

good agreement with previously reported values for both the full-size and N-terminally 

truncated enzyme
45

. To determine Ki values for inhibitor compounds (teriflunomide, 

GSK983, 6Br-pF, 6Br-oTol, and GSK984), Δ29DHODH (10 nM) and the appropriate 

inhibitor compound were added to the previously described reaction buffer. For each 

inhibitor compound, three reactions were prepared: a control reaction containing no inhibitor 

and two reactions containing different inhibitor concentrations. Δ29DHODH was incubated 

with inhibitor compounds at room temperature for 5 min. The indicated concentration of QD 

and DHO (200 μM) were added to the reaction mixtures and absorbance at 610 nm was 

monitored using a PerkinElmer Lamda 25 UV-Vis spectrophotometer.
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For enzyme activity assays, inhibitor compounds were prepared as 1 mM stock solutions in 

DMSO. A QD stock solution (10 mM) was prepared in a buffer containing Tris (100 mM, 

pH 8.0) and Triton X-100 (1.0 % v/v). A DHO stock solution (10 mM) was prepared in a 

buffer containing Tris (100 mM, pH 8.0). Concentrated stocks of inhibitor compounds, QD, 

and DHO were further diluted as needed with a buffer containing Tris (100 mM, pH 8.0) and 

Triton X-100 (0.1 % v/v) to prepare working stocks. The total volume of the reaction 

mixture for each assay was 100 μL, and the final concentration of DMSO was 0.01% (v/v).

Cloning, expression, and purification of recombinant human CMPK1

The DNA sequence encoding human CMPK1 (196 amino acid residues) was PCR-amplified 

from a cDNA template (GE Healthcare Dharmacon, catalog number MHS6278-202832682) 

using the forward primer 5′-AAAAAACATATGAAGCCGCTG GTCGTGTTC-3′ and the 

reverse primer 5′-CACGTCTAAAAACTGTTCCTTCC GATTCCTAGGTTTTTT-3′ and 

gel-purified. The PCR-amplified CMPK1-encoding construct was double digested with NdeI 

and BamHI-HF (New England BioLabs) in CutSmart buffer for 4h at 37 °C and PCR-

purified (Thermo GeneJet PCR Purification Kit). Similarly, vector pET28 was double 

digested with NdeI and BamHI-HF for 3 h at 37 °C and gel-purified. The CMPK1-encoding 

insert was ligated into digested pET28 using T4 DNA Ligase (Invitrogen).

E. coli BL21 (DE3) cells were transformed with a pET28 plasmid containing a CMPK1-

encoding insert. Single colony transformants were grown in 5 mL of LB growth medium 

containing 50 μg/mL kanamycin for 16 h at 37 °C. Overnight starter culture (2.5 mL) was 

added to 1 L of LB growth medium containing 50 μg/mL kanamycin and grown at 37 °C for 

~3 h. IPTG (150 μM) was added when A600 was ~0.65. Cells were grown at 18 °C for an 

additional 16 h. Cells were harvested by centrifugation at 4000g for 20 min at 4 °C. The 

resulting cell paste was stored at −80 °C prior to protein purification.

Recombinant human CMPK1 was purified as follows: cell paste was thawed and 

resuspended in 50 mL of lysis buffer containing Tris (40 mM, pH 7.5), NaCl (10 mM), NaF 

(5 mM), and DTT (1 mM). Cells were lysed by sonication and centrifuged at 25,000g for 1 

h. The supernatant was incubated with a slurry of Ni-NTA resin for 1 h at 4 °C and loaded 

onto a column. The column was washed with 40 mL lysis buffer, then 20 mL each of buffers 

containing Tris (40 mM, pH 7.5), NaCl (10 mM), DTT (1 mM), and imidazole (10, 40, or 

200 mM). The eluate was examined by SDS-PAGE and fractions containing CMPK1 were 

combined. Isolated CMPK1 was further purified by anion exchange chromatography using 

an Äkta Pure 25 FPLC instrument equipped with a 5 mL Hi Trap Q anion exchange column. 

Prior to loading onto the anion exchange column, the combined Ni-NTA column eluate 

containing CMPK1 was diluted in Buffer A containing Tris (50 mM, pH 8.0) and DTT (1 

mM) such that the imidazole concentration in the diluted sample was less than 50 mM. The 

desired protein was eluted from the anion exchange column using a linear gradient from 0 to 

95% Buffer B containing Tris (50 mM, pH 8.0), DTT (1 mM), and NaCl (500 mM) over 15 

column volumes. Fractions containing the desired protein were spin-concentrated to a 

volume of less than 1 mL using an Amicon Ultra-15 centrifugal filter unit with a 10 kDa 

molecular mass cut off (Millipore). An Amicon filter was used to exchange the concentrated 

CMPK1 into a storage buffer containing Tris (50 mM, pH 7.5) and glycerol (10% v/v). 
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Following buffer exchange, purified CMPK1 was aliquoted, flash frozen with liquid 

nitrogen, and stored at −80 °C.

In vitro enzyme activity assays with recombinant human CMPK1

The activity of recombinant human CMPK1 was measured in the presence of GSK983 using 

an ATP consumption assay. CMPK1 (10 nM) was added to a reaction buffer containing Tris 

(50 mM, pH 7.5), MgCl2 (2 mM), DTT (2 mM), ATP (100 μM), CMP (100 μM), and 

GSK983 (0–10 μM, from a DMSO stock solution). The final concentration of DMSO in all 

reaction mixtures was 2% (v/v). Enzyme activity assays were conducted at 37 °C. The 

consumption of phosphoryl donor ATP was monitored using a Promega Kinase-Glo 

Luminescent Kinase Assay kit according to the manufacturer’s instructions. We observed no 

effect of GSK983 on CMPK1 activity in vitro at GSK983 concentrations up to 10 μM.

Pyrimidine metabolite supplementation experiments

For pyrimidine metabolite supplementation experiments in K562 cells, cells were seeded 

into 24-well plates at a density of 50,000 cells/mL in RPMI growth medium containing the 

indicated concentration of pyrimidine metabolite and the indicated concentration of 

DHODH inhibitor (GSK983 or teriflunomide) where applicable. Pyrimidine metabolites 

were dissolved directly in the growth medium. GSK983 and teriflunomide were delivered 

from stock solutions in DMSO as described above. Cells were incubated in the presence of 

exogenous pyrimidines and the indicated DHODH inhibitor at 37 °C for 72 h. Following 72 

h treatment, cells were harvested and the density of viable cells was determined by flow 

cytometry (FSC/SSC) using a BD Accuri C6 Flow Cytometer. For 6 day experiments, cells 

were plated as described above and diluted to a density of 50,000 cells/mL after 3 days using 

fresh growth medium containing the appropriate concentrations of GSK983 and pyrimidine 

metabolites, and cell viability was assessed after an additional 3 days (6 days total) as 

described above.

For pyrimidine metabolite supplementation experiments in HeLa and A549 cells, cells were 

seeded into 24-well plates at a density of 20,000 cells/well and incubated for 24 h at 37 °C. 

Following 24 h incubation, the growth medium in each well was removed and replaced with 

fresh DMEM containing the indicated concentration of pyrimidine metabolite and GSK983. 

Pyrimidine metabolites were dissolved directly in the growth medium. GSK983 was 

delivered from a stock solution in DMSO as described above. Cells were incubated in the 

presence of exogenous pyrimidines and GSK983 at 37 °C for an additional 72 h. Following 

72 h treatment, cells were harvested and the density of viable cells was determined by flow 

cytometry (FSC/SSC) using a BD Accuri C6 Flow Cytometer.

Cell cycle analysis based on 5-ethynyl-2′-deoxyuridine (EdU) incorporation

K562 cells were treated with 48 nM GSK983, 1 mM deoxycytidine, both 48 nM GSK983 

and 1 mM deoxycytidine, or neither (untreated) for 24 h. Cells were seeded into 6-well 

plates at a density of 200,000 cells/mL. The final concentration of DMSO in each well was < 

0.1%. After 24 h incubation with GSK983/deoxycytidine, cells were treated with 10 μM 

EdU for 2 h. EdU-treated cells were harvested, pelleted (300g, 5 min), washed (0.5 mL 1x 

PBS), and resuspended in 70% EtOH (1 mL, 0 °C) with mild vortexing. Cells were fixed in 
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70% EtOH overnight at 4 °C. The following day, fixed cells were pelleted (1900g, 5 min), 

washed (0.5 mL 1x PBS) and resuspended in 200 μL of a freshly prepared EdU labeling 

solution containing Tris-HCl (100 mM, pH 8.5), CuSO4 (1mM), ascorbic acid (100 mM), 

and the azide-functionalized fluorophore Azide-fluor 488 (10 μM). Cells were incubated in 

the EdU labeling solution in the dark at room temperature for 30 min. The cells were 

pelleted (475g, 5 min), and the supernatant was removed by vacuum. Cells were washed 

twice (0.5 mL 1x PBS for each wash). Following the second PBS wash, cells were 

resuspended in 200 μL of a freshly prepared total DNA content staining solution containing 

7-AAD (25 μg/mL in 1x PBS; 7-AAD diluted in PBS from a stock solution in DMSO). Cells 

were incubated in the total DNA content staining solution in the dark at room temperature 

for 20 min. Cells were analyzed by flow cytometry using a BD Accuri C6 Flow Cytometer. 

Azide-fluor 488 fluorescence was detected in FL1. 7-AAD fluorescence was detected in 

FL3. In a first control experiment, cells that had not been treated with EdU were subjected to 

the dual staining protocol described above. In the absence of EdU treatment, we observed no 

specific labeling of S phase cells (data not shown). In a second control experiment, cells that 

had been incubated with 10 μM EdU for 2 h were stained with 7-AAD alone. In the absence 

of Azide-fluor 488, we observed no specific labeling of S phase cells (data not shown).

Construction of pDENV-Luc infectious clone

The design of the DENV reporter used here was based on the previously described mDV-R 

construct
47

. Briefly, the viral 5′UTR was followed by a duplication of the first 104 

nucleotides of the C coding region, which contains cis-acting elements required for 

replication (CAE). The CAE was fused to the Renilla luciferase coding region followed by 

the complete DENV open reading frame (ORF). Between the Renilla luciferase and DENV 

structural protein coding sequences, a foot and mouth disease virus (FMDV) 2A sequence 

was introduced to provide co-translational cleavage and luciferase release. The construct was 

based on pD2/IC-30P, which contains a full-length infectious clone encoding dengue virus 

serotype 2 strain 16681
48

. We introduced an Envelope Q399H mutation to enhance viral 

infection in mammalian cells using a QuikChange Site-Directed Mutagenesis kit (Agilent 

Technologies) (primers: 5′-GGAAGTTC TATCGGCCACATGTTTGAGACAAC-3′ and 5′-

GTTGTCTCAAACATGTGGCCGATAGA ACTTCC-3′). We gene-synthesized a fragment 

containing the T7 polymerase promoter sequence followed by the first 102 nucleotides of the 

C coding region in frame with the Renilla luciferase and FMDV 2A sequences. This 

fragment was PCR-amplified, introducing a SacI site at the 5′ end and a NheI site (present in 

the FMDV 2A sequence) at the 3′ end using primers: 5′-CGAAATTCGAGCTCACGCG-3′ 

and 5′-TCCTGCTAGCTTGAGCAAATCAAAGTTC-3′. To create an in-frame fusion of 

FMDV 2A with the DENV-ORF, a second DNA fragment was PCR-amplified from a pD2/

IC-30P template (primers: 5′-TCAAGCTAGCA 

GGAGACGTTGAGTCCAACCCCGGGCCCATGAATAACCAACGGAAAAAGGCG-3′ 

and 5′-GGAAGAGCATGCAG TCGGAAATG-3′), thus introducing 5′ NheI and 3′ SphI 

restriction sites. The two fragments were cut with the respective restriction enzymes and 

ligated into pD2/IC-30P (previously digested with SacI and SphI) to create pDENV-Luc. 

DENV-Luc virus was produced via in-vitro transcription of pDENV-Luc and transfection 

into BHK cells as described previously
48

.
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DENV antiviral assays

For DENV inhibition assays (Fig. 3c), human A549 cells were seeded into 24-well plates at 

a density of 20,000 cells/well and incubated for 24 h. The cells were treated with DMEM 

containing GSK983 at the indicated concentrations for 4 h at 37 °C. Growth medium 

containing GSK983 was removed and cells were incubated for 1 h with DENV-Luc (no 

GSK983) at 37 °C. Following DENV-Luc incubation, cells were washed with 1x PBS and 

treated with fresh DMEM containing GSK983 at the indicated concentrations. Cells were 

incubated at 37 °C for an additional 72 h. Where specified, the growth medium was 

supplemented with 1 mM uridine or 1mM deoxycytidine. DENV-Luc replication was 

monitored by the production of Renilla luciferase, which was measured using the Renilla-

Glo Luciferase Assay System (Promega) according to the specifications of the manufacturer.

For the accompanying cell viability assay (Fig. 3d), A549 cells were seeded into 24-well 

plates at a density of 20,000 cells/well incubated for 24 h at 37 °C. Cells were then treated 

with GSK983 at the indicated concentration for 72 h. Where specified, the growth medium 

was supplemented with 1 mM uridine or 1 mM deoxycytidine. Following 72 h treatment, 

cells were harvested and the density of viable cells was determined by flow cytometry (FSC/

SSC) using a BD Accuri C6 Flow Cytometer.

VEEV antiviral assays

A plasmid encoding the recombinant VEEV-GFP genome (vaccine strain TC-83) was kindly 

provided by Professor Frolov (University of Alabama at Birmingham)
49

. This plasmid was 

used to generate replication competent VEEV (capable of expressing GFP upon infection) in 

Huh7 cells. For the VEEV inhibition assay (Supplementary Fig. 6e), human A549 cells were 

seeded into 96-well plates at a density of 10,000 cells per well and incubated for 24 h at 

37 °C in DMEM containing GSK983 only (at the indicated concentrations), or 

supplemented with 1 mM uridine, 1mM deoxycytidine, 1 mM dihydroorotic acid, or 1 mM 

orotic acid. Following this incubation, VEEV-GFP (at an MOI of 20 plaque forming units/

cell) was added to the media and cells were further incubated for 16 hours at 37 °C. GFP 

expression was then used to measure VEEV-GFP replication in the infected samples using 

flow cytometry. All flow cytometry was performed using a BD LSRFortessaTM cell analyzer 

(BD Biosciences) and data was analyzed and assembled using FlowJo software (TreeStar, 

Inc.).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
shRNA and CRISPR-Cas9 screens to identify the cellular target and mechanism of action of 

GSK983. (a) Structure of GSK983. (b) GSK983 dose response in K562 cells. Viable cells 

were counted by flow cytometry (FSC/SSC) following 72 h GSK983 treatment at the 

indicated concentration. Error bars represent ± standard deviation of 8 biological replicates 

from two independent experiments. Schematic representation of genome-wide shRNA (c) 

and CRISPR-Cas9 (d) screens. (e) Top ten hits from the shRNA and CRISPR-Cas9 screens 

in cellular and biological context. Circle size is proportional to MLE score absolute value. 

Square size is proportional to median fold-enrichment or disenrichment. (f) Comparative 

analysis of results from shRNA and CRISPR-Cas9 screens. Pyrimidine metabolism 

(orange), CoQ10 biosynthesis (blue), regulation of mTORC1 activity (green). (g) Validation 

of selected top hit genes from the shRNA screen using a competitive growth assay. A total of 

27 shRNAs were retested (6 targeting DHODH; 4 targeting CMPK1; 3 each targeting 

COQ2, PDSS2, PDSS1, and COQ10B; and 5 negative controls). Error bars represent ± 

standard deviation of log(mCherry enrichment ratio) values for all retested shRNAs targeting 

each gene. P values were calculated by Mann-Whitney U test. Validation of selected 

sensitizing (h) or protective (i) sgRNAs from the CRISPR-Cas9 screen using a competitive 

growth assay. Bars represent the average of two biological replicates.
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Figure 2. 
GSK983 inhibits DHODH to block virus replication and cell proliferation. (a) Schematic 

representation of mammalian pyrimidine metabolism. Genes that appeared as strong 

sensitizing hits in the shRNA screen (CMPK1, DHODH, UCK2) and CRISPR-Cas9 screen 

(UCK2) are highlighted in yellow. (b) Dihydroorotic acid had no effect on GSK983-induced 

growth inhibition in K562 cells. (c) Orotic acid reversed GSK983-induced growth inhibition 

in K562 cells. For (b) and (c), viable cells were counted by flow cytometry (FSC/SSC) 

following 72 h treatment with 48 nM GSK983 or vehicle and the indicated concentration of 

(dihydro)orotic acid. Error bars represent ± standard deviation of 4 biological replicates. (d) 

GSK983 and analogues inhibited recombinant human DHODH in vitro. Ki values are 

averages of two independent Ki determinations at different inhibitor concentrations. The 

range between independently calculated Ki values for each inhibitor is shown in parentheses. 

IC50 values for inhibition of episomal HPV-16 replication in cell-based antiviral assays are 

those reported by GlaxoSmithKline
3
. (e) Structures of GSK983, 6Br-pF, 6Br-oTol, and 

GSK984.
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Figure 3. 
Deoxycytidine (dC) reverses the anti-proliferative effect of GSK983 but not antiviral 

activity. Uridine (a) and deoxycytidine (b) largely reversed GSK983-induced growth 

inhibition in K562 cells. For (a) and (b), viable cells were counted by flow cytometry (FSC/

SSC) following 72 h treatment with 48 nM GSK983 or vehicle and the indicated 

concentration of uridine or deoxycytidine. Error bars represent ± standard deviation of 4 

biological replicates. (c) GSK983 inhibited replication of luciferase-expressing DENV in 

A549 cells (black). 1 mM uridine reversed antiviral activity (blue), while 1 mM 

deoxycytidine did not (red). Error bars represent ± standard deviation of 3 biological 

replicates. (d) Uridine (blue) and deoxycytidine (red) reversed GSK983-induced growth 

inhibition in A549 cells. Viable cells were counted by flow cytometry (FSC/SSC) following 

72 h treatment with no exogenous pyrimidines (control), 1 mM uridine, or 1 mM 

deoxycytidine and the indicated concentration of GSK983. Error bars represent ± standard 

deviation of 3 biological replicates. (e) Ribonucleoside (uridine) salvage sustains both RNA 

virus replication and cellular DNA synthesis. (f) Deoxyribonucleoside (deoxycytidine) 

salvage sustains cellular DNA synthesis but not RNA virus replication. For (e) and (f), Pyr = 

pyrimidine, rNuc = ribonucleotides, dNuc = deoxyribonucleotides. (g) Deoxycytidine 
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reversed GSK983-induced S phase cell cycle arrest in K562 cells. Following 24 h treatment 

with 48 nM GSK983, cells were treated with 10 μM 5-ethynyl-2′-deoxyuridine (EdU) for 2 

h and fixed in 70% EtOH. Cells were stained with Azide-fluor 488 and 7-AAD and analyzed 

by flow cytometry. Flow cytometry plots depict one of three biological replicates.

Deans et al. Page 27

Nat Chem Biol. Author manuscript; available in PMC 2016 September 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	Introduction
	Results
	Biological activity of GSK983
	shRNA and CRISPR-Cas9 screens for target identification
	Analysis of genomic screen results
	GSK983 inhibits cellular dihydroorotate dehydrogenase
	A new strategy to exploit DHODH as an antiviral target

	Discussion
	Online Methods
	Chemicals and reagents for biological assays
	Cell culture
	GSK983 dose response and growth time course in K562 cells
	Cell cycle analysis based on total DNA content (propidium iodide)
	Annexin V-FITC/7-AAD apoptosis assay
	Genome-wide shRNA screen
	Genome-wide CRISPR-Cas9 screen
	Ranking genes from genome-wide shRNA and CRISPR-Cas9 screens
	GO enrichment analysis
	Lentivirus production and lentiviral infections for individual shRNA retests
	Competitive growth assays for individual shRNA retests
	qPCR to confirm efficacy of individual shRNA reagents
	Lentivirus production and lentiviral infections for individual sgRNA retests
	Competitive growth assays for individual sgRNA retests
	Cloning, expression, and purification of recombinant human DHODH
	In vitro enzyme activity assays with recombinant human Δ29DHODH
	Cloning, expression, and purification of recombinant human CMPK1
	In vitro enzyme activity assays with recombinant human CMPK1
	Pyrimidine metabolite supplementation experiments
	Cell cycle analysis based on 5-ethynyl-2′-deoxyuridine (EdU) incorporation
	Construction of pDENV-Luc infectious clone
	DENV antiviral assays
	VEEV antiviral assays

	References
	Figure 1
	Figure 2
	Figure 3

