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SUMMARY

The joint analysis of multiple traits has recently become popular since it can increase statistical 

power to detect genetic variants and there is increasing evidence showing that pleiotropy is a 

widespread phenomenon in complex diseases. Currently, the majority of existing methods for the 

joint analysis of multiple traits test association between one common variant and multiple traits. 

However, the variant-by-variant methods for common variant association studies may not be 

optimal for rare variant association studies due to the allelic heterogeneity as well as the extreme 

rarity of individual variants. Current statistical methods for rare variant association studies are for 

one single trait only. In this paper, we propose an Adaptive Weighting Reverse Regression 

(AWRR) method to test association between multiple traits and rare variants in a genomic region. 

AWRR is robust to the directions of effects of causal variants and is also robust to the directions of 

association of traits. Using extensive simulation studies, we compare the performance of AWRR 

with canonical correlation analysis (CCA), Single-TOW, and the Weighted Sum Reverse 

Regression (WSRR). Our results show that, in all of the simulation scenarios, AWRR is 

consistently more powerful than CCA. In most scenarios, AWRR is more powerful than Single-

TOW and WSRR.
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Introduction

There is increasing evidence showing that pleiotropy, the effect of one variant on multiple 

traits, is a widespread phenomenon in complex diseases (Sivakumaran et al., 2011). 

Furthermore, in genetic association studies of complex diseases, multiple related traits are 

usually measured. For example, hypertension is evaluated using systolic and diastolic blood 

pressures, the Metabolic Syndrome is based on observing three of five criteria (Sattar et al., 
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2008), and neuropsychiatric disorders depend on a range of overlapping clinical 

characteristics (O'Reilly et al., 2012). Although most published genome-wide association 

studies (GWAS) analyze each of the related traits separately, the joint analysis of multiple 

traits not only can increase statistical power to detect genetic variants (Solovieff et al., 2013; 

Stephens, 2013; Yang & Wang, 2012; Zhou & Stephens, 2014), but can also be crucial to 

understand the genetic architecture of the disease of interest (Aschard et al., 2014). Thus, the 

joint analysis of multiple traits has recently become popular. Several statistical methods for 

the joint analysis of multiple traits have been developed. These methods can be roughly 

divided into three groups: regression methods, combining test statistics from univariate 

analysis, and dimension reduction methods. Regression methods include mixed effects 

models (Korte et al., 2012; Zhou & Stephens, 2014) and reverse regression models (O'Reilly 

et al., 2012; Yan et al., 2013). By modeling the covariance structure of correlated traits and 

dependence structure between individuals, mixed effects models not only can incorporate 

multiple correlated traits, but also can be robust to population stratification. Reverse 

regression models consider genotypes as the response variable and all the traits as 

independent variables, therefore, reverse regression models do not need to know the 

complex distributions of the traits and can be applied to a large number of mixed types of 

traits. For combining the test statistics from univariate analysis, one first obtains univariate 

test statistics by performing association tests for each trait individually and then combines 

the univariate test statistics by linear combinations (O'Brien, 1984; van der Sluis et al., 2013; 

Yang et al., 2010). The dimension reduction methods include canonical correlation analysis 

(CCA) (Tang & Ferreira, 2012), principal components of traits (PCT) (Aschard et al., 2014), 

and principal components of heritability (PCH) (Klei et al., 2008; Lange et al., 2004; Ott & 

Rabinowitz, 1999). CCA is to find a linear combination of traits and a linear combination of 

genotypes at multiple variants such that the correlation between the two linear combinations 

reaches its maximum. PCT is the principal component analysis to the traits. The PCT 

methods are usually based on the first PC or first few PCs of the traits (Feng et al., 2007; 

Klei et al., 2008). Aschard et al. (2014) showed that contrary to the widespread practice, 

tests based on only the first few PCs often have low power, whereas combining signals 

across all PCs can have greater power. PCH is to find a linear combination of multiple traits 

such that this linear combination has the maximum heritability.

Almost all of the aforementioned methods are to test association between one common 

variant and multiple traits. However, the variant-by-variant methods for common variant 

association studies may not be optimal for rare variant association studies due to the allelic 

heterogeneity as well as the extreme rarity of individual variants (Li & Leal, 2008). Recent 

studies show that complex diseases are caused by both common and rare variants (Bodmer 

& Bonilla, 2008; Kang et al., 2010; Pritchard, 2001; Pritchard & Cox, 2002; Stratton & 

Rahman, 2008; Teer & Mullikin, 2010; Walsh & King, 2007). Next-generation sequencing 

technology allows sequencing of the whole genome of large groups of individuals, and thus 

makes rare variant association studies feasible (Andres et al., 2007; Metzker, 2010). 

Recently, statistical methods for rare variant association studies with a single trait have been 

developed by summarizing genotype information from multiple variants. These methods 

include burden tests (Li & Leal, 2008; Madsen & Browning, 2009; Morgenthaler & Thilly, 

2007; Price et al., 2010; Zawistowski et al., 2010), quadratic tests (Neale et al., 2011; Sha et 
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al., 2012; Wu et al., 2011), and combined tests (Derkach et al., 2013; Lee et al., 2012; Sha & 

Zhang, 2014). Burden tests collapse rare variants in a genomic region into a single burden 

variable and then regress the trait on the burden variable to test for the cumulative effects of 

rare variants in the region. These tests implicitly assume that all rare variants are causal and 

that the directions of the effects are all the same. Quadratic tests include tests with statistics 

of quadratic form of score vector, as well as adaptive weighting methods. These tests are 

robust to the directions of the effects of causal variants and are less affected by neutral 

variants than burden tests. Burden tests can only outperform quadratic tests when most of the 

rare variants are causal and the directions of the effects of causal variants are all the same. 

Combined tests combine information from burden tests, quadratic tests, and possibly other 

tests aiming to have advantages of multiple tests.

In this article, we propose an adaptive weighting reverse regression (AWRR) method to test 

association between multiple traits and rare variants in a genomic region. In AWRR, we first 

propose adaptive weights to collapse genotypes. Then, we use the score test to test 

association based on the reverse regression, in which collapsed genotypes is treated as the 

response variable and multiple traits are treated as independent variables. Using extensive 

simulation studies, we compare the performance of AWRR with CCA, Single-TOW, and the 

Weighted Sum Reverse Regression (WSRR). In Single-TOW, we first calculate the TOW 

statistic (Sha et al., 2012) to test the association between each trait and variants in a genomic 

region and then the statistic of Single-TOW is the largest of TOW statistics. In WSRR, we 

first calculate the weighted sum (Madsen & Browning, 2009) of genotypes at variants in a 

genomic region and then the statistic of WSRR is the score test statistic under reverse 

regression model, in which the weighted sum of genotypes is the response variable and traits 

are predictor variables. Our results show that, in all of the simulation scenarios, AWRR is 

consistently more powerful than CCA. In most scenarios, AWRR is more powerful than 

Single-TOW and WSRR.

Method

We consider a sample with n unrelated individuals. Each individual has K (potentially 

correlated) traits and has been genotyped at M variants in a genomic region. Let yik denote 

the kth trait value of the ith individual. Let xim denote the genotype score of the mth variant 

of the ith individual, where xim is the number of minor alleles of the ith individual carried at 

the mth variant. We denote Yi = (yi1,…,yiK)T as the K traits for the ith individual. We 

propose an adaptive weighting reverse regression (AWRR) method to test the null hypothesis 

H0: none of the K traits are associated with the M variants in the genomic region. For 

constructing the test statistic of AWRR, we first collapse the M dimensional genotype (xi1,

…,xiM) into a one dimensional number , where wm is the adaptive weight for 

the mth variant. The adaptive weight wm should satisfy the properties that wm should be 

large if the mth variant has strong association with the K traits and wm should have different 

signs for risk and protective variants. Then, the statistic of AWRR is the score test statistic 
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under the reverse regression model . In details, the AWRR method has 

the following steps.

1. We define a weight Wm for the mth variant such that Wm will be large if the mth 

variant has strong association with the K traits and Wm will be also large if the mth 

variant is a rare variant. For these purposes, we propose , 

where pm is the minor allele frequency of the mth variant and Tm is the score 

statistic to test the null hypothesis H0:β1=⋯=βK = 0 under the reverse regression 

model , where we assume a dominant model 

pim = Pr(xim=1) = Pr(xim=2). In fact, for rare variants, xim essentially is 0 or 1. The 

score statistic is given by , where  and 

, where , and 

. Under the null hypothesis, Tm follows a χ2 distribution with degrees of 

freedom K. However, Wm does not consider the direction of the effects of causal 

variants.

2. In this step, we will define a direction of Wm. We first select a trait (the selected 

trait denoted as the k̃th trait). We use sign(ρ(yk̃,xm)) to denote the direction of the 

associations of the mth variant, where yk̃ = (y1k̃,…,ynk̃)T and xm = (x1m,…,xnm)T. If 

the k̃th trait has no association with the M variants, the directions of the association 

will be random. In order to try to avoid random directions, we propose to choose 

the trait that has the strongest association with the M variants. Let  denote the 

statistic of TOW (Sha et al., 2012) to test association between the kth trait and the 

M variants.  is defined as , where 

 and . We 

choose the k̃th trait such that .

3. The final weight for the mth variant is given by wm = sign(ρ(yk̃,xm))Wm. Let 

. Then, we consider the reverse regression model 

. We apply a score test to test the null hypothesis H0:β1 =⋯= 

βK = 0. The score statistic is given by TAWRR = uTV−1u, where 
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, and 

.

4. In this step, we evaluate the p-value of TAWRR. Since wm depends on the trait 

values and the genotype scores, TAWRR does not follow a χ2 distribution with 

degrees of freedom K. We use a permutation procedure to evaluate the p-value of 

TAWRR. In each permutation, we randomly shuffle Y1,…,Yn and keep the 

genotypes of each individual unchanged. We repeat step 1 to step 3 based on each 

permutated data. Let  denote the test statistic of TAWRR based on the original 

data and  denote the test statistic based on the permuted data. Then the p-

value of the test TAWRR is the proportion of the number of permutations with 

.

Comparison of Tests

We compare the performance of the proposed test AWRR with those of the canonical 

correlation analysis (CCA) (Tang & Ferreira, 2012), the Single-TOW method (Sha et al., 

2012), and the Weighted Sum Reverse Regression (WSRR) method (Madsen & Browning, 

2009).

CCA method

although the asymptotical distribution of the CCA statistic works well for common variants, 

it is very conservative for rare variants. Thus, we propose to use a permutation procedure to 

evaluate the p-value of the CCA statistic.

Single-TOW method

let  denote the statistic of TOW (Sha et al., 2012) to test association between the kth 

trait and the M variants. The statistic of Single-TOW is given by 

. The p-value of TSingle-TOW is evaluated by a permutation 

procedure.

WSRR method

let , where  and pm is the minor allele frequency of 

the mth variant. We consider the reverse regression model . The 

statistic of WSRR, TWSRR, is the score test statistic to test the null hypothesis H0:β1 =⋯=βK 

= 0. Under the null hypothesis, TWSRR follows a χ2 distribution with degrees of freedom K.
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Simulation

Our simulations follow that of Sha et al. (2012). In detail, the empirical Mini-Exome 

genotype data provided by the genetic analysis workshop 17 (GAW17) are used for 

simulation studies. This dataset contains genotypes of 697 unrelated individuals on 3205 

genes. We conduct two sets of simulations. In the first set of simulations, we choose four 

genes: ELAVL4, MSH4, PDE4B, and ADAMTS4 with 10, 20, 30, and 40 variants, 

respectively. We merge the four genes to form a super gene (Sgene1) with 100 variants (Sha 

et al., 2012). In the second set of simulations, we choose ten genes: ELAVL4, FAM73A, 
PSMB4, FSHR, GMCL1, HNMT, GALNT13, NEUROD1, MYEOV2, and TWF2 with 10 

variants in each of them. We merge the ten genes to form a super gene (Sgene2) with 100 

variants. In our simulation studies, we generate genotypes based on the genotypes of 697 

individuals in the Sgene1 and Sgene2. To generate a qualitative disease affection status, we 

use a liability threshold model based on a quantitative trait. For a qualitative trait, an 

individual is defined as affected if the individual’s corresponding quantitative trait is at least 

one standard deviation larger than the phenotypic mean. This yields a prevalence of 16% for 

the simulated disease in the general population. In the following, we describe how to 

generate a quantitative trait.

To evaluate the type I error, we generate K traits of an individual independent of the 

genotypes by using

where u = (u1,…,unu)T ~ MVN (0,I) is a vector of nu independent standard normal latent 

variables, ε = (ε1,…, εK)T ~ MVN (0,I) is a vector of errors, B is a K×nu loading matrix, the 

values of nu and B are based on two variance models: (1) nu = 1, B = (1,…,1)T and (2) nu = 

2, . Thus, Y ~ MVN(0,Σ), where Σ = ρBBT + (1−ρ)I.

To evaluate power, we consider that all causal variants are rare (MAF<0.01). We randomly 

choose nc rare variants as causal variants, where nc is determined by the percentage of causal 

variants among rare variants. Denote nr and np as the number of risk rare variants and 

protective rare variants, respectively, where nr+np = nc. Let  and  denote the genotypic 

scores of the qth risk rare variant and the jth protective rare variant for the ith individual, 

respectively. Suppose that causal variants have impact on L traits among the K traits. Among 

the L traits, there are Lp traits positively correlated with risk variants and there are Ln traits 

negatively correlated with risk variants. Let h denote the heritability of all the nc rare causal 

variants on each of the L traits. Generate nc random numbers r1,…,rnc from a uniform 

distribution between 0 and 1. The heritability of the ith causal variant is given by 

. Under this assumption, we simulated K traits by
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where εi = (εi1,…,εiK)T can be generated in the same way as generating traits of evaluating 

type I error,  and  are constants and their values depend on the heritability.

Results

For type I error evaluation, we only consider the first set of simulations, but consider 

different sample sizes, different significance levels, different variance models and different 

types of traits. In each simulation scenario, the p-values of AWRR, Single-TOW and CCA 

are estimated by 10,000 permutations (the p-values of WSRR are estimated by a χ2 

distribution) and the type I error rates of all of the four tests are evaluated using 10,000 

replicated samples. For 10,000 replicated samples, the 95% confidence intervals (CIs) for 

the type I error rates at the nominal levels 0.05 and 0.01 are (0.046, 0.054) and (0.008, 

0.012), respectively. The estimated type I error rates of the four tests are summarized in 

Tables 1, 2, S1 and S2. From these tables, we can see that only two estimated type I error 

rates of CCA are not within the CIs and these two type I error rates (one is 0.0126 for 

nominal level 0.01 in Table 1, and the other one is 0.05505 for nominal level 0.05 in Table 

S1) are very close to the upper bounds of the corresponding CIs, which indicates that the 

four tests are all valid.

For power comparisons, we consider 10 traits and we assume that all causal variants are rare. 

For each type of traits and each variance model, we consider different values of heritability, 

different percentages of protective variants, and different percentages of causal variants. In 

each of the simulation scenarios, the p-values of AWRR, Single-TOW and CCA are 

estimated using 1,000 permutations (the p-values of WSRR are estimated by a χ2 

distribution) and the power of all of the four tests is evaluated using 500 replicated samples 

at a significance level of 0.05.

We first consider the first set of simulations for quantitative traits under variance model 1. 

Figure 1 provides the power comparisons of the four tests (WSRR, AWRR, CCA and 

Single-TOW) for the power as a function of heritability. This figure shows that WSRR is the 

least powerful one and AWRR is the most powerful one. It is little complicated to compare 

the power of Single-TOW with the power of CCA. When genotypes impact on only one 

trait, Single-TOW is more powerful than CCA; otherwise, CCA is more powerful than 

Single-TOW. Since Single-TOW only depends on the trait that has the strongest association 

with genotypes, it is more favorable for Single-TOW when genotypes impact on fewer traits. 

Power comparisons of the four tests for the power as a function of percentage of protective 

variants are given by Figure 2. This figure shows that, with an increasing percentage of 

protective variants, the power of WSRR decreases while the power of the other three 

methods does not change. Other patterns of the power comparisons are similar to those 
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shown in Figure 1. The power comparisons of the four tests for the power as a function of 

the percentage of causal variants are given by Figure 3. As shown in this figure, with an 

increasing percentage of causal variants, the power of WSRR increases while the power of 

the other three methods does not change. WSRR is the least powerful method when the 

percentage of causal variants is small (≤ 0.15), while WSRR is the most powerful test when 

the percentage of causal variants is large (≥ 0.3). The patterns of the power comparisons of 

CCA, AWRR and Single-TOW are similar to those shown in Figure 1.

Under the first set of simulations, we also compare the powers of the four methods for 

quantitative traits under variance model 2 and for qualitative traits under variance models 1 

and 2. These results are given in Figures S1–S9. For each type of trait, the patterns of the 

power comparisons are similar under variance models 1 and 2. For qualitative traits, CCA is 

consistently less powerful than Single-TOW and AWRR because CCA is designed for 

quantitative traits. For qualitative traits, the powers of AWRR, Single-TOW, and CCA 

decrease with the increase of the percentage of protective variants, although decrease not as 

fast as that of WSRR. As pointed out by Wu et al. (2011) and Sha et al. (2012), the decrease 

in the powers of AWRR, Single-TOW, and CCA in the presence of both risk and protective 

variants is due to the fact that protective variants lower MAFs in cases and thus make 

observing rare variants in the cases more difficult. The larger decrease in power of WSRR is 

additionally driven by the sensitivity to the direction of the effect due to aggregation of 

genotypes.

Under the second set of simulations, we compare the powers of the four methods for 

quantitative traits under variance model 1. Results are given in Figures S10–S12. Comparing 

Figures S10–S12 with Figures 1–3, the patterns of the power comparisons under the second 

set of simulations are very similar to those under the first set of simulations. Under the 

second set of simulations, we also compare the powers of the four methods for quantitative 

traits under variance model 2 and for qualitative traits under variance models 1 and 2 (results 

are not shown). Results also show that the patterns of the power comparisons under the 

second set of simulations are very similar to those under the first set of simulations.

In summary, for all simulation scenarios, AWRR is consistently more powerful than CCA 

and the power of WSRR increases with an increasing percentage of causal variants or with a 

decreasing o percentage of protective variants. For quantitative traits, the powers of AWRR, 

CCA and Single-TOW are robust to the percentage of protective variants and to the 

percentage of causal variants, while for qualitative traits, the powers of AWRR, CCA and 

Single-TOW decrease with the increasing of the percentage of protective variants and are 

relatively robust to the percentage of causal variants.

Discussion

In this article, we proposed the AWRR method to perform joint analysis of multiple traits in 

rare variant association studies based on the following reasons: (1) the development of next-

generation sequencing technology has made directly testing all rare variants feasible and (2) 

there is increasing evidence showing that pleiotropy is a widespread phenomenon in 

complex diseases and multiple related traits are usually measured in genetic association 
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studies of complex diseases. We used extensive simulation studies to compare the 

performance of AWRR with CCA, WSRR and Single-TOW. Our results showed that AWRR 

has correct type I error rates, is robust to the directions of the association of causal variants 

for quantitative traits, and is robust to the percentage of causal variants. AWRR is 

consistently more powerful than CCA. AWRR is more powerful than Single-TOW and 

WSRR in most simulation scenarios.

Our simulation studies showed that the performance of each of AWRR, WSRR and Single-

TOW depends strongly upon the number of traits impacted by genetic variants, the 

percentage of protective variants, and the percentage of causal variants. And no method 

demonstrates consistently good power. To increase the robustness of the test, we can 

combine AWRR, WSRR and Single-TOW aiming to have advantages of the three methods. 

Let pAWRR, pWSRR and pSingle-TOW denote the p-values of AWRR, WSRR, and Single-

TOW, respectively. The combined test statistic can be defined as Tcombined = 

min{pAWRR,pWSRR,pSingle-TOW}. However, the performance of the combined test needs 

further investigation.

In association studies based on unrelated individuals, it has been long recognized that 

population stratification can seriously confound association results (Knowler et al., 1988; 

Lander & Schork, 1994). Several methods have been developed to control for population 

stratification for association studies based on unrelated individuals. These methods include 

the GC approach (Devlin & Roeder, 1999; Devlin et al., 2001; Reich & Goldstein, 2001), the 

PC approach (Bauchet et al., 2007; Chen et al., 2003; Price et al., 2006; Zhang et al., 2003; 

Zhu et al., 2002), and the MLM approach (Kang et al., 2010; Zhang et al., 2010). Like most 

association tests based on unrelated individuals, AWRR is subject to bias due to population 

stratification. To make AWRR robust to population stratification, we can use the PC 

approach. Let Pi = (pi1,…,piL)T denote the first L PCs of the genotypes at a set of genomic 

markers for the ith individual. In step 3 of AWRR, we can use the residuals of the regression 

xi = α + βTPi + εi to replace xi and use the residuals of the regression  to 

replace yik. The performance of using the PC approach to control for population 

stratification in AWRR also needs further investigation.

The computation time required for running AWRR depends on the sample size, the number 

of variants in the genomic region, the number of traits, and the number of permutations. The 

running time of AWRR with 1000 permutations on the data set with 1000 individuals, 10 

traits, and 100 variants in the genomic region on a laptop with four Intel Cores @ 2.00GHz 

and 4 GB memory is no more than 0.5s. To perform genome-wide studies, we can first select 

genomic regions that show evidence of association based on a small number of permutations 

(e.g. 1000), and then a large number of permutations can be used to test the selected regions.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Power comparisons of the four tests (WSRR, AWRR, CCA and Single-TOW) for the power 

as a function of heritability for quantitative traits under variance model 1. The sample size is 

1000 and ρ = 0.5. The percentage of the causal variants is 0.1. All causal variants are risk 

variants. The total number of traits is 10. This set of simulations is based on Sgene1.
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Figure 2. 
Power comparisons of the four tests (WSRR, AWRR, CCA and Single-TOW) for the power 

as a function of percentage of protective variants for quantitative traits under variance model 

1. The sample size is 1000, the percentage of causal variants is 0.2, the total heritability is 

0.03, and ρ = 0.5. The total number of traits is 10. This set of simulations is based on 

Sgene1.
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Figure 3. 
Power comparisons of the four tests (WSRR, AWRR, CCA and Single-TOW) for the power 

as a function of the percentage of causal variants for quantitative traits under variance model 

1. The sample size is 1000 and ρ = 0.5, and the total heritability is 0.03. All causal variants 

are risk variants. The total number of traits is 10. This set of simulations is based on Sgene1.
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Table 1

The estimated type I error rates of four methods for quantitative traits under variance model 1. 10,000 

replicates are used. This set of simulations is based on Sgene1.

Sample size

500 1000 2000

α = 0.05 CCA 0.0518 0.0519 0.04645

Single-TOW 0.04995 0.05255 0.0506

WSRR 0.0464 0.0506 0.0496

AWRR 0.0519 0.0527 0.0531

α = 0.01 CCA 0.012 0.00845 0.0126

Single-TOW 0.0117 0.00965 0.012

WSRR 0.0081 0.009 0.0097

AWRR 0.01075 0.0097 0.01135
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Table 2

The estimated type I error rates of four methods for qualitative traits under variance model 1. 10,000 replicates 

are used. This set of simulations is based on Sgene1.

Sample size

500 1000 2000

α = 0.05 CCA 0.052 0.0527 0.04985

Single-TOW 0.0519 0.0534 0.05

WSRR 0.0502 0.0493 0.0487

AWRR 0.054 0.0505 0.05265

α = 0.01 CCA 0.0101 0.01115 0.00955

Single-TOW 0.0109 0.01165 0.01115

WSRR 0.0106 0.0092 0.0106

AWRR 0.00955 0.00965 0.012
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