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Abstract

Objective—To develop a multivariate method for quantifying the population representativeness 

across related clinical studies and a computational method for identifying and characterizing 

underrepresented subgroups in clinical studies.

Methods—We extended a published metric named Generalizability Index for Study Traits 

(GIST) to include multiple study traits for quantifying the population representativeness of a set of 

related studies by assuming the independence and equal importance among all study traits. On this 

basis, we compared the effectiveness of GIST and multivariate GIST (mGIST) qualitatively. We 

further developed an algorithm called “Multivariate Underrepresented Subgroup Identification” 

(MAGIC) for constructing optimal combinations of distinct value intervals of multiple traits to 

define underrepresented subgroups in a set of related studies. Using Type 2 diabetes mellitus 

(T2DM) as an example, we identified and extracted frequently used quantitative eligibility criteria 

variables in a set of clinical studies. We profiled the T2DM target population using the National 

Health and Nutrition Examination Survey (NHANES) data.
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Results—According to the mGIST scores for four example variables, i.e., age, HbA1c, BMI, and 

gender, the included observational T2DM studies had superior population representativeness than 

the interventional T2DM studies. For the interventional T2DM studies, Phase I trials had better 

population representativeness than Phase III trials. People at least 65 years old with HbA1c value 

between 5.7% and 7.2% were particularly underrepresented in the included T2DM trials. These 

results confirmed well-known knowledge and demonstrated the effectiveness of our methods in 

population representativeness assessment.

Conclusions—mGIST is effective at quantifying population representativeness of related 

clinical studies using multiple numeric study traits. MAGIC identifies underrepresented subgroups 

in clinical studies. Both data-driven methods can be used to improve the transparency of design 

bias in participation selection at the research community level.
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Keywords

Clinical Trial; Knowledge Representation; Selection Bias

1. INTRODUCTION

Well-designed clinical studies play a vital role in generating evidence-based medical 

knowledge [1]. However, patient selection bias introduced during study design (e.g., use of 

overly-restrictive eligibility criteria) [2] and patient recruitment (e.g., patient self-selection 

[3] and cross-referral [4]) often compromise population representativeness and thus limit 

results generalizability [2–4]. This has been a concern of both the general public [5] as well 

as the scientific community [4]. Lack of population representativeness or inadequate sample 

size may lead to inaccurate estimate of treatment efficacy and safety problems [6]. As a 

consequence, some drugs have to be withdrawn from the market after serious adverse drug 

reactions (e.g., organ damage and toxicity) were reported when they were administered to a 

broader patient population [7].

To assess the representativeness of study populations in clinical studies, researchers typically 

compare the study sample derived from summary data in the literature and a convenience 

sample of real-world patients for the target medical condition [8–13]. These approaches 
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often reveal the lack of a posteriori generalizability among clinical studies. For example, 

Schoenmaker et al. [13] reported a wide age gap between the demented patients enrolled in 

diagnostic/therapeutic studies and demented patients from the general population in 

Netherlands. However, such a posteriori generalizability assessment studies can be done 

only after study completion and results publication, thereby delaying detection of patient 

selection biases and missing the opportunity for preventing such biases during study design. 

In contrast, a priori generalizability, which focuses on the representativeness of eligible 

patients, can be assessed during the study design. As clinical research eligibility criteria 

subsume the characteristics of study sample, a posteriori generalizability is naturally lower 

than a priori generalizability [14]. At present, methods for analyzing a priori generalizability 

are scarce or laborious, and only itemize restrictive eligibility criteria [14, 15].

Hypothesizing that the population representativeness problem may exist not only at the 

individual study level but also across a whole body of studies for a clinical domain [16], 

Weng et al. proposed a metric for quantifying the population representativeness of a set of 

related studies. This metric, called Generalizability Index for Study Traits (GIST) [17], 

allows quantification of collective a priori generalizability of multiple studies using one 

study trait at a time. Since population representativeness is a multi-dimensional problem 

[18] involving multiple criteria, it is not informative to apply GIST on multiple variables 

linearly one after another for assessing multivariate population representativeness. Thus, we 

are motivated to extend GIST in a multivariate setting. Built upon our previous work [17, 

19–22], this paper presents a framework for multivariate analysis of population 

representativeness of related clinical studies. The contribution of this work is two-fold: (1) a 

quantitative measure of a priori generalizability incorporating multiple numeric eligibility 

criteria variables (referred to as “mGIST” from this point on); and (2) a method called 

MAGIC for identifying and characterizing underrepresented population subgroups with 

combinations of value intervals across multiple eligibility criteria variables. This work has 

the potential to improve the transparency of population representativeness of related studies 

and enable clinical research stakeholders (e.g., policy makers, clinical researchers) to make 

informed patient selection decision during clinical study design. We illustrate this 

framework on example study traits of Type 2 diabetes mellitus (T2DM) studies.

2. MATERIALS AND METHODS

We first define the following:

Target population: patients to whom the results of clinical studies are intended to be 

applied. The target population can be only approximated with available patient data.

Study population: patients who are eligible for a clinical study (i.e., they satisfy the 

study inclusion and exclusion criteria).

Underrepresented patient population: a subset of the target population rarely eligible 

for a set of clinical studies.

Figure 1 explains the overall workflow for multivariate analysis of population 

representativeness of related clinical studies, which includes two steps: data preprocessing 

and data analysis. In the data preprocessing step, we retrieve T2DM studies in 
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ClinicalTrials.gov and select frequent eligibility criteria variables in these studies (Section 

2.1.1). We identify real-world T2DM patients (target population) and extract their data from 

the database of National Health and Nutrition Examination Survey (NHANES) (Section 

2.1.2), a continuous health survey conducted by the National Center for Health Statistics 

[23]. The data analysis step includes two components: (1) population representativeness 

quantification (Section 2.2); and (2) underrepresented population subgroup identification 

and characterization (Section 2.3).

2.1. Data Preprocessing

2.1.1. Retrieving T2DM Studies and Selecting Frequent Eligibility Criteria 
Variables—To facilitate aggregate analysis of clinical studies, we have previously built a 

database called COMPACT [19], which transformed all the study summaries in 

ClinicalTrials.gov into discrete study metadata and eligibility criteria variables. We have 

created a web-based visualization tool VITTA (http://is.gd/VITTA) to show how studies vary 

in their study populations with respect to study traits, one at a time [20]. Different trait 

names and measurement units were normalized by the Valx system [24] developed in house. 

Valx leveraged the Unified Medical Language System (UMLS) [25] and domain knowledge 

from Web resources such as MedLinePlus [26] to parse numeric expressions into a 

structured format. Quantitative variables (e.g., HbA1c and BMI) and their comparison 

statements in eligibility criteria, such as “HbA1c > 7.5%”, are therefore made readily 

analyzable.

The version of our COMPACT database used for this study stores parsed data of 162,586 

clinical trial summaries downloaded from ClinicalTrials.gov as of 03/18/2014, out of which 

3,897 were indexed as T2DM studies by ClinicalTrials.gov (i.e., condition = ‘Type 2 

diabetes’). Note that ClinicalTrials.gov’s API may return T2DM studies for either treating or 

preventing T2DM. To match the year range for patient data retrieved from NHANES 

(described in Section 2.1.2), we included 3,158 T2DM studies with a start date between 

January 2003 and December 2012 for analysis in this study. We used the VITTA system [20] 

to find frequent quantitative variables in the eligible criteria of all the selected 3,158 T2DM 

studies. Age, HbA1c and BMI were identified as the most frequently used quantitative 

variables, appearing in 97.1% (3,066), 48.6% (1,534), and 42.8% (1,351) of the selected 

T2DM studies, respectively. We also included the categorical variable “gender”, which is a 

required field in the eligibility criteria section of each trial summary. In this work, we 

selected age, HbA1c, BMI, and gender for multivariate analysis of population 

representativeness.

2.1.2. Deriving Target Population Characteristics from NHANES—To ensure 

statistical power with sufficient patients, we combined NHANES data of five two-year 

survey cycles between 2003 and 2012. We extracted the interview results of demographic 

(i.e., age, gender, and ethnicity), medical conditions, body measures (i.e., BMI), as well as 

lab test results of Glycohemoglobin (HbA1c). After excluding Type 1 diabetes subjects 

using an existing method [27], we identified 3,082 subjects with T2DM. Out of these 3,082 

subjects, 2,695 had no missing values for age, HbA1c, and BMI and were included for 

further analysis.
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Given that the number of subjects with missing data exceeded 10% (387/3082 = 12.6%) of 

the total number of subjects, we used two categorical variables, gender and ethnicity, to 

assess the representativeness of these 2,695 subjects for all the 3,082 T2DM subjects. We 

employed chi-square test to assess the differences between any pair of three sets of samples: 

(1) all 3,082 subjects, (2) 2,695 subjects without missing values, and (3) 387 (3,082 - 2,695) 

subjects with some missing values. No statistically significant difference was observed for 

gender and ethnicity between any pair of samples (all p-value > 0.05). We also used t-test to 

assess the pairwise difference for age, HbA1c, and BMI among these three samples. No 

statistical significant differences were observed (all p-value > 0.05). Therefore, we 

concluded that the 2,695 subjects included for this analysis represented all the identified 

T2DM subjects in NHANES.

To account for complex survey design (e.g., oversampling of certain ethnic groups), non-

response, and post-stratification, each sample in NHANES was assigned a two-year sample 

weight “WTMEC2YR”, the number of people in the U.S. national population that each 

sample can represent [28]. According to the analytic guideline of NHANES [29], we 

normalized the sample weight for each sample in the combined five survey cycles as 

WTMEC10YR (=1/5 * WTMEC2YR). After taking the normalized sample weight into 

account, these 2,695 subjects, who can represent 15,575,484 T2DM patients in the U.S. 

national population in the midpoint of the combined survey years, were used to profile 

T2DM target population in this study. All our analyses were performed after taking the 

sample weight into account.

2.2. Multivariate Generalizability Index for Study Traits (mGIST)

To assess the population representativeness of clinical studies, we extend GIST to 

accommodate multiple variables jointly. The GIST score is the sum of the products of the 

percentage of patients and the percentage of studies falling into each value interval across all 

the intervals of a single trait (e.g., age: (20, 21], (21, 22], ...) (“[]” refers to being inclusive, 

while “()” refers to being non-inclusive), whereas the multivariate GIST (mGIST) score is 

the sum of the products of the percentage of patients and the percentage of studies falling 

into each value interval combination for multiple study traits (e.g., age: (20, 21], BMI (kg/

m2): (15, 16], HbA1c (%): (7, 8], gender: male) across all the combinations.

mGIST represents the percentage of patients in the target population (TP) that would have 

been eligible for a given set of studies (TS) when all the variables in the variable set (VS) are 

considered jointly. The formula of the mGIST is as follows,

(1)

where C is the number of study criteria in VS, Nc is the number of distinct intervals within 

each study variable c, N is the total combination of distinct intervals across all study 

variables. T is the number of studies in TS, P is the number of patients in TP, wj,c is the 

inclusion interval of variable c for the jth study, such that an indicator I can be defined when 

the jth study interval subsumes the ith interval low and high boundary threshold for study 
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variable c. For example, if a study’s permissible value interval for age is (25, 45], the 

indicator I for age of this study would be 1 for intervals (25, 26], (26, 27], … (44, 45], but 

would be 0 for intervals (45, 46], (46, 47], and thereafter. The product of Is will be 1 if and 

only if the indicators I for all the intervals in a combination are 1. yk,c is the observed value 

of the variable c for the kth patient such that an indicator I can be defined when the kth 

patient’s value falls within the ith interval of study variable c. For simple categorical 

variables, we construct value intervals with the category values of the variable. It does not 

yet process sophisticated categorical variables such as those with context information. We 

provide the algorithms of mGIST below. Algorithm 1 is the main algorithm for computing 

mGIST score. Algorithm 2 is applied for creating value intervals of the same width for each 

variable in Algorithm 1.

Algorithm 1

mGIST

Input: study set T = {t1, t2,…, tN}, patient set P = {p1, p2, …, pM},

  variable set V = {v1, v2, …, vL | vi (min, max, increment, category_values, intervals)}

Output: mGIST

Begin

for vi in V do

 if vi is a quantitative variable

  vi_intervals = create_value_intervals(vi _min, vi_max, vi_increment);

mGIST = 0;

//create all the combinations of value intervals

C = create_combinations (V);

for c in C do // for each combination of value intervals

   //percentage of patients falling in a combination c

        ;

   //percentage of studies considering a combination c

        ;

 mGIST += Percentage_of_patients * Percentage_of_studies;

return mGIST

End

Algorithm 2

create_value_intervals

Input: v_min, v_max, v_increment

Output: value_intervals

Begin

value_interval_borders = [];
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cur_value = v_min;

while cur_value < v_max do

 value_interval_borders.add(cur_value);

 cur_value += v_increment;

//create value intervals using the border values

value_intervals = create_intervals (value_interval_borders);

return value_intervals

End

Note that value interval can also be created by sorting all the distinct threshold values of a 

variable in TS. For example, assume that we want to quantify the population 

representativeness of two studies with respect to age and BMI. Study A imposes a restriction 

on age 20–50 and BMI >= 25 kg/m2, whereas Study B only imposes a restriction on age 

>=20. Thus, there are three value intervals for age: 0–20, 20–50, 50-inf. There are two value 

intervals for BMI: 0–25, 25-inf. Table 1 lists six possible combinations of the distinct value 

intervals of these two variables, the number of patients in each combination, percentage of 

studies recruiting patients in each combination, and the observed percentage of patients in 

each combination. Accordingly, mGIST = 0%*10% + 0%*10% + 50%*20% + 100%*40% 

+ 50%*10% + 50%*10% = 0.60, indicating that 60% of the real-world patients would be 

represented in these two studies if age and BMI were considered jointly.

The formula of mGIST can accommodate different numbers of value intervals for multiple 

quantitative variables. If a study does not specify a certain allowable value range for either 

inclusion or exclusion in the eligibility criteria, we consider that it accepts all possible values 

of that variable for patient selection. For example, the study NCT01741181 specifies the 

permissible value range for HbA1c (6.0% – 10.0%) and age (21 – 80), but does not specify 

an allowable range for BMI, so we assume all BMI values are acceptable for this study. As 

such, variables used by more studies with a narrow permissible value range play a more 

important role in mGIST than those used by fewer studies with a wide permissible value 

range. Also, variables in mGIST may be correlated and not have independent additive 

effects.

2.3. Multivariate Underrepresented Subgroup Identification (MAGIC)

We now focus on identifying and characterizing underrepresented population subgroups in 

terms of combinations of value intervals of multiple variables in the eligibility criteria. We 

define the problem of identifying underrepresented population subgroups as follows: given a 

study set TS, a target population TP, and a variable set VS, the algorithm will return a list of 

combinations of distinct value intervals of all the variables in VS, each of which 

characterizes a subgroup of patients in TP that is underrepresented in the study population of 

studies in TS, i.e., satisfying all the criteria in a small proportion of studies in VS, or in other 

words, eligible for few studies. We propose an iterative algorithm named “Multivariate 
Underrepresented Subgroup Identification” (MAGIC), which identifies a set of rules that 

define subgroups underrepresented in the study population of studies. The algorithm 

explores combinations of value intervals for each study criterion to create composite rules, 
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which can be evaluated to determine the proportion of patients and the proportion of studies 

for which the patients would be eligible. MAGIC aims to identify subpopulations that 

include large groups of the target population but are ineligible for most studies. We define 

the parameters in MAGIC, illustrate its flowchart in Figure 2, and describe the details of 

each step.

Definition of parameters—“β” (0% – 50%): The percentage of patients to be considered 

as underrepresented patients.

“δ” (0% – 20%): The percentage of well-represented patients who fall into combinations 

representing underrepresented patients. This parameter is used for evaluating the identified 

underrepresented subgroups in the current iteration.

“θ” (0% – 10%): The reduction of “β” to a smaller value.

“ω”: The minimum width of value intervals created by k-means clustering.

Step 1: Analyze the percentage of studies for which each patient satisfies the criteria of age, 

HbA1c, BMI, and gender simultaneously.

Step 2: Identify underrepresented patients and well-represented patients. We rank each 

patient in TP by the increasing number of studies that person would be eligible for, then take 

the top β patients as underrepresented patients and bottom β patients as well-represented 
patients.

Step 3: Divide each quantitative eligibility criterion variable’s value range in NHANES with 

the threshold values defined based on domain knowledge. For example, the minimum 

HbA1c value of NHANES subjects is 3.9% and the maximum 18.0%. According to 

MedlinePlus [30], HbA1c for normal people is less than 5.7%, for pre-diabetic is between 

5.7% to 6.4%, and for diabetic is at least 6.5%. Therefore, we divide the value range of 

HbA1c (%) in NHANES (3.8, 18.0] into four intervals (3.8, 5.7], (5.7, 6.4], (6.4, 18.0]. 

Similarly, we divide the value range of age in NHANES (12, 85] into (12, 14] (children), 

(14, 24] (youth), (24, 64] (adults), and (64, 85] (seniors) according to [31]. We divide the 

value range of BMI (kg/m2) in NHANES (15, 82] into (15, 18.5] (underweight), (18.5, 25] 

(normal), (25, 30] (overweight), (30, 82] (obese) according to [32]. For the categorical 

variable "gender" with allowable values "male" and "female", we create value intervals [1,1], 

[2,2], and [1,2] to represent "male," "female," and "both gender," respectively.

Step 4.1: Create combinations of distinct value intervals for all the quantitative variables and 

category values for all the categorical variables. We start the iterative process, whose goal is 

to create the combinations of value intervals, such that bins representing underrepresented 
patients include as few well-represented patients as possible.

Step 4.2: Fit the underrepresented patients (identified in Step 2) into the combinations 

created in Step 4.1 and rank the combinations in a descending order of the number of 

patients.
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Step 4.3: Analyze the percentage of well-represented patients (identified in Step 2) who fit 

in the combinations characterizing underrepresented patients analyzed in Step 4.2. If the 

percentage value is lower than δ, print out the combinations of underrepresented population 

subgroups and terminate the algorithm. Otherwise, execute Step 4.4.

Step 4.4: Subdivide the value intervals for quantitative variables, so that fewer well-
represented patients are included in each one. In this step, we apply unsupervised 

discretization method to find boundary values in eligibility criteria and use them to 

subdivide the value intervals. K-means clustering, which takes the distribution of attribute 

values into account, is a popular unsupervised discretization method for quantizing one-

dimensional continuous variables into non-uniform value intervals [33, 34]. We first retrieve 

all the occurrences of the boundary values of each quantitative variable in the eligibility 

criteria of T2DM studies. We apply k-means clustering with k = 2 on all the occurrences of 

these boundary values in each execution of this step. Note that k-means clustering may 

generate different clusters each time, we therefore run k-means multiple times until the same 

clusters are generated three times. We then retrieve four border values of the two clusters, 

sort them in ascending order, and discard border values that would create new intervals 

whose width is less than ω. Then we use the remaining border values to divide the current 

intervals into smaller intervals. If k-means clustering has been executed for the variable in 

the last iteration of this step, k-means will be executed separately for each cluster generated 

in the last k-means (divide-and-conquer). If any value intervals can be subdivided by the 

border values identified by k-means, create new value intervals and go to Step 4.1. 

Otherwise, go to Step 4.5.

Step 4.5: Reduce β by θ. The rationale is that if fully refined combinations of value intervals 

cannot represent underrepresented patients selected in Step 2, current β may not be small 

enough to define underrepresented patients. Therefore, we reduce β to exclude some patients 

who are eligible for relatively more studies in the current selection of underrepresented 
patients. As long as β is > 0%, go to Step 2 to identify underrepresented and well-
represented patients using the current β value. Otherwise, terminate the algorithm with the 

note “no underrepresented patient subgroups were identified”. In Section I of the 

supplementary material, we give a hypothetical example to illustrate the algorithm of 

MAGIC.

3. RESULTS

In the recently published paper of He et al. [21], we used the same T2DM patients from the 

NHANES data to assess the population representativeness of T2DM studies with respect to 

one variable at a time. We visualized the distributions of a single variable (i.e., age, HbA1c, 

and BMI) along with their distributions in the NHANES T2DM patients. With the univariate 

GIST metric, we observed that T2DM studies are the most representative of the population 

with respect to age, followed by BMI and then HbA1c. Figure S.1 in the supplementary 

material shows the univariate and bivariate distributions of patients with respect to age, 

HbA1c, and BMI. We analyzed the distribution of real-world T2DM patients with their 

eligibility for all the T2DM studies and visualized the distribution in MATLAB. Figure 3 

illustrates the percentage of 3,158 T2DM studies for which T2DM patients satisfy the 
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criteria of HbA1c, BMI, age, and gender simultaneously. Since at most three dimensions can 

be visualized in a figure, Figure 3 only shows the results for female patients. We found that a 

significant proportion of patients are eligible for fewer than 40% of studies (light blue and 

dark blue color). The dark blue area resided on the top, indicating that elderly patients (e.g., 

age > 70) are not eligible for most of the T2DM studies. Patients younger than 60 with 

HbA1c > 7.0% have better chances to be eligible for existing T2DM studies (red color). The 

distribution of studies for male patients is almost identical to that for female patients.

3.1. mGIST Scores for Different Study Sets

Table 2 shows the mGIST scores of age, HbA1c, BMI, and gender as well as the GIST 

scores of age, HbA1c, and BMI. In the computation, we discretized the value range of the 

three quantitative variables (i.e., age, HbA1c, and BMI) into value intervals of size 1. We 

assumed that studies without any eligibility criterion on a certain variable accept participants 

with all the values of the variable. For example, if a study does not specify eligibility criteria 

about HbA1c, we assume this study recruits patients of any HbA1c value. The GIST scores 

for all three variables for observational studies are consistently higher than those of 

interventional studies.

The GIST score of age increases from Phase I to Phase III, whereas the GIST score of 

HbA1c decreases from Phase I to Phase III. The mGIST score for all the 3,158 T2DM 

studies is 0.47. Observational studies have superior population representativeness than 

interventional studies (0.69 vs. 0.43), which is expected because interventional studies 

usually have stricter eligibility criteria than observational studies. The mGIST score 

increases from Phase I to Phase III, which is also to be expected because Phase I and II 

studies focus on safety and preliminary efficacy and are often conducted on relatively 

healthier individuals, while Phase III studies focus on efficacy so they try to include a 

population close to the target. The studies sponsored by other U.S. federal agencies have 

superior population representativeness than the studies sponsored by NIH, industry, other 

universities and organizations. In contrast, industry studies have the lowest mGIST score 

among all the studies, which is also expected because they are known to have relatively poor 

population representativeness [4]. Between 2003 and 2012, the declining mGIST score, 

primarily driven by stricter HbA1c limit, indicates that T2DM studies are focusing on a 

narrower segment of the clinical diabetes population. In order to investigate the reason for 

the issue of population representativeness, we applied MAGIC to characterize 

underrepresentation in the form of combinations of value intervals of multiple eligibility 

criteria variables.

3.2. Underrepresented Population Subgroups in T2DM Trials

According to the mGIST scores, as expected, interventional studies are less representative 

and therefore less generalizable than observational studies. We focused on identifying 

underrepresented population subgroups in the 2,731 interventional T2DM studies (T2DM 

trials). For each T2DM patient, male or female, in NHANES, we analyzed the percentage of 

T2DM trials for which s/he satisfies the criteria of age, HbA1c, BMI, and gender 

simultaneously. Figure 4 shows the percentage of T2DM trials for which the percentage of 

patients satisfy the criteria. We found that 93.9% of patients would qualify for at least 20% 
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of T2DM studies, but only 24.4% of patients would qualify for at least half of the studies. 

Only 15.9% of T2DM patients satisfy the criteria in >= 60% T2DM trials. Note that no 

patient is eligible for more than 80% of the trials, because some trials use restrictive 

eligibility criteria. For example, 45 T2DM trials between 2003 and 2012 recruited patients < 

20 years old.

To illustrate the feasibility and the results of the MAGIC algorithm, we applied it with 

empirical values of the parameters β = 20%, δ = 1%, θ = 5%, ω = 1/10 * 

value_range_in_NHANES to identify underrepresented population subgroups in the study 

set. Table 3 reports on the percentage of well-represented patients included in 

underrepresented subgroups in each iteration of MAGIC. When β was reduced to 10%, the 

percentage of well-represented patients included in underrepresented subgroups dropped 

below δ after value intervals were refined by the second k-means. See Table 4 for the value 

intervals for age, HbA1c, BMI, and gender for constructing combinations to represent 

underrepresented patients after the value intervals of numeric variables were refined by k-

means twice. Of note divide-and-conquer k-means clustering in MAGIC also retrieved 

boundary values that were close to those in well-accepted domain knowledge, e.g., 25 kg/m2 

for BMI (lower limit for overweight), 25 (lower age limit for adults) and 65 (lower age limit 

for seniors) for age, demonstrating its effectiveness in identifying clinically meaningful 

boundary values from eligibility criteria. One may set a higher value of “δ” so that the 

combinations may consist of wider value intervals, or may include more patients deemed to 

be underrepresented by our algorithm.

After its termination, MAGIC identified 50 combinations as underrepresented population 

subgroups. See Section III of the supplementary material for all the 50 combinations. Table 

5 lists the top 10 underrepresented subgroups in descending order of their proportion in 

underrepresented patients (10% of all the patients who are eligible for <= 22.5% of trials). 

These 10 subgroups represent 64.3% of all the underrepresented patients determined by 

MAGIC. We can see that all the top 10 underrepresented population subgroups include 

elderly (> 64 years old) patients with relatively low HbA1c (less than 7.2%) and a wide 

range of BMI (18.5 kg/m2–39 kg/m2). This finding is consistent with our population 

representativeness analysis using one variable at a time [17, 21]. Compared with 

underrepresented subgroups, the well-represented patients (eligible for >= 66.4% of trials) 

are younger (age between 44 and 64) and have higher HbA1c (> 7.2%).

4. DISCUSSION

Many clinical studies are scientifically justified not to represent the real-world population 

broadly. The research presented in this paper does not aim to maximize the generalizability 

for clinical studies. Instead, it aims to improve the transparency of a priori generalizability of 

related clinical studies using a quantitative metric that considers multiple study traits. In this 

paper, we contribute a measure “mGIST” for quantifying population representativeness 

using multiple study traits as well as a method called MAGIC to identify underrepresented 

target population. Compared with the original GIST, mGIST is more effective and efficient 

in comparing the population representativeness of multiple study sets, i.e., if m variables and 

n study sets are considered, m*n GIST scores are needed while only n mGIST scores are 
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needed. Yet, GIST can reveal the problem of population representativeness of a study set 

with respect to a specific variable. When determining permissible value intervals of a 

variable in the eligibility criteria, one can assess the global population representativeness 

using mGIST as well as the variable–specific population representativeness using GIST.

Using MAGIC, we were able to identify that it was elderly T2DM patients (> 64 years old) 

with HbA1c <= 7.2% who are underrepresented in T2DM trials. The under-

representativeness of elderly patients was also reported for RCTs concerning other diseases 

such as cardiovascular diseases [35], cancer [36, 37], and Type 2 diabetes [38]. Relaxing the 

age limit in the eligibility criteria alone may not improve the representativeness of elderly 

due to other exclusion criteria [39]. Beers et al. [40] reported that older patients were 

underrepresented in Phase II and III trials of medical conditions characteristically associated 

with aging, partly because of age-sensitive exclusion criteria that are often not well justified.

We believe that our multivariate analysis method consisting of mGIST and MAGIC lays a 

foundation for improving the transparency of a priori generalizability in a scalable fashion. 

As demonstrated in the Results Section, mGIST can efficiently quantify the population 

representativeness of related studies, while MAGIC provides an automated and robust way 

to define and characterize underrepresented patients. MAGIC would be more informative 

than simply reporting whether or not the population median is present in the median 

inclusion intervals of each covariate, if normalized joint distributions were multi-modal in 

any of the covariates and the median inclusion interval only captured one of the peaks2. In 

this framework, the variable set can include continuous variables (e.g., HbA1c, BMI, and 

age) and categorical variables (e.g., gender). This framework, which can be applied to 

studies on any condition with a representative sample of real-world patients, is significant in 

advancing data-driven clinical trial design by enabling future users of clinical evidence to 

have precise understanding of population subgroups that are systematically under-studied. 

The fact that the results generated by our method are consistent with the findings reported in 

literature proves the feasibility and effectiveness of developing computational methods for 

assessing population representativeness at scale and with efficiency.

4.1. Preliminary Evaluation of MAGIC

Previously, researchers have proposed methods for subgroup discovery aimed at finding 

patterns of subgroups with interesting properties in the data. Friedman and Fisher introduced 

the Patient Rule Induction Method (PRIM) [41], a technique from data mining for finding 

modal regions in datasets of continuous variables. Nannings et al. [42] later applied PRIM 

for selecting high-risk subgroups in elderly ICU patients. Breiman et al. [43] introduced 

Classification and Regression Trees (CART) for subgroup discovery. Tree-based methods, 

typically designed for classifying observations when the number of classes is fixed or known 

in advance, are expected to perform worse than PRIM for our problem as the number of 

subgroups is unknown. In this work, we performed a preliminary evaluation of MAGIC 

using PRIM as a baseline. We used the following two metrics to compare the accuracy of 

underrepresented patient subgroups discovered by MAGIC and PRIM:

2We would like to thank an anonymous reviewer for pointing this out.
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a. The percentage of well-represented patients (patients eligible for >= 66.4% of 

T2DM trials) who can be characterized by the underrepresented subgroups 

discovered;

b. The percentage of neither well-represented nor underrepresented patients (patients 

eligible for > 22.5% and < 66.4% of T2DM trials) who can be characterized by the 

underrepresented subgroups discovered.

Lower percentages of metric (a) and (b) indicate more accurate characterization of 

underrepresented patients. In this preliminary evaluation, we used an R package of PRIM 

[44] with default parameters (peel.alpha = 0.05, paste.alpha = 0.01) and identified six 

underrepresented subgroups. Table 6 shows the six underrepresented subgroups identified by 

PRIM. Table 7 shows the results of the evaluation of MAGIC using PRIM as the baseline. 

As shown in the table, the accuracy of underrepresented subgroups identified by MAGIC is 

higher than those identified by PRIM (metric (a): 0% vs. 30.4%; metric (b): 31.2% vs. 

58.7%) in this experiment. Note that the parameters of MAGIC are used for controlling the 

flow of the iterative algorithm while the parameters of PRIM are used for its pasting and 

peeling process. Thus, these native parameters of PRIM and those of MAGIC are not 

comparable. PRIM has limited capacity for characterizing underrepresented population 

subgroups with multiple variables, possibly because: (1) PRIM is not exhaustive in its search 

for subgroups; (2) PRIM will fail or perform poorly when variables are highly correlated 

[41]. Nevertheless, future work is warranted to evaluate the MAGIC algorithm for other 

medical conditions with other patient data. The results of this evaluation suggested that 

MAGIC is comparable to PRIM in identifying and characterizing underrepresented 

population subgroups in related studies.

4.2. Limitations and Future Work

Some limitations should be noted for this study.

Our method for assessing multivariate population representativeness has the following major 

limitations. First, all study traits were considered independently and the dependency among 

them was not accounted for. However, eligibility criteria variables have inherent dependency 

or correlations. For example, impaired fasting glucose is correlated with age [45]. Second, 

every trait was equally weighted, i.e. all traits were assumed to be of equal relevance. This is 

contrary to the clinical setting, where some traits may be more relevant than others. 

Consideration of the relevance of individual traits is currently lacking but should be 

accounted in the future. Third, it does not yet process sophisticated categorical variables 

such as those with contextual information. We only processed simple categorical variables 

such as gender. Moreover, MAGIC may yield a large number of subgroups when the number 

of variables and value intervals is large. Future work is needed to further aggregate the 

subgroups when necessary. In Step 3 of MAGIC, we used clinically relevant values to 

discretize the value range of a variable. The obstacles to this step include the acquisition and 

availability of domain knowledge. As the clinically relevant threshold values for some 

variables may be controversial or even unavailable, one may only identify important 

boundary values in clinical trial eligibility criteria to divide the value range or may create 

equal-sized intervals. Besides divide-and-conquer k-means clustering, future research is 
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needed to test other methods for identifying important threshold values of a quantitative 

eligibility criterion. When only categorical variables are included in the analysis, one may 

skip the part of iterative optimization of value intervals of quantitative variables in the 

algorithm and optimize upon the percentage of patients being considered as 

underrepresented patients. Another limitation is the choice of empirical values of parameters 

(i.e., β, δ, θ, ω) in MAGIC. Overly restrictive parameters may lead to over-fitting [46] (i.e., 

when a model describes the features that arise from noise or variance in the data) and thus 

limit the capability of MAGIC for identifying underrepresented patient subgroups. Future 

methodological research opportunities also include automating the selection of parameters 

and evaluating other algorithms for subgroup identification.

A study design limitation is that NHANES uses self-reported medical condition that may not 

have been confirmed by laboratory tests; thus, there might be subjects that should not be 

included in our analysis. We used the method employed by Dodd et al. [27] to distinguish 

between Type 2 diabetes and Type 1 diabetes patients. There might be some misclassified 

samples using this method. Sample weights, which are post hoc adjustments based solely on 

demographic and socioeconomic characteristics of U.S. national Census, may not be 

sufficient to account for value difference between respondents and non-respondents of 

NHANES [47]. While the results are specific to NHANES, the approach is applicable to any 

real-world evidence source. Analyses could be performed using other observational data, 

e.g., patient registries, administrative claims, and electronic health records, to determine how 

clinical studies generalize to other populations of interest.

Another limitation is that we only used frequently used eligibility variables in this work. In 

the future, we plan to extend the method to ethnicity and fine-grained qualitative eligibility 

features. Additionally, location is an important factor for patient recruitment. In order to take 

the location of trial participants into account, we can extract study locations in 

ClinicalTrials.gov and combine them with geocoded census data. These will improve the 

accuracy of the representativeness assessment.

We believe it would be valuable to apply this method to a broader set of eligibility criteria 

and across multiple disease areas to evaluate a priori generalizability of clinical studies to 

the real-world populations. Beyond studying population representativeness across 

collections of studies, we also believe applying the method to individual studies will be 

valuable in supporting study design and results interpretation.

5. CONCLUSIONS

We contribute two data-driven computational methods, mGIST and MAGIC, for assessing 

the population representativeness for related clinical studies. We demonstrated how this 

framework may facilitate data-driven improvement of clinical trial design towards optimized 

generalizability. This methodology framework paves the way for transparent and population-

representative clinical research design as well as more precise evidence-based medicine.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• We extend GIST for quantifying population representativeness of related studies

• We contribute a method for iteratively characterizing underrepresented patients

• We demonstrated the value of this method using Type 2 diabetes mellitus studies

• Our study confirms knowledge in literature and can generalize to other diseases
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Figure 1. 
The workflow for multivariate analysis of population representativeness of related clinical 

studies.

He et al. Page 19

J Biomed Inform. Author manuscript; available in PMC 2017 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Pipeline of Multivariate Underrepresented Subgroup Identification (MAGIC).
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Figure 3. 
(a) Visualization of the distribution of the real-world T2DM patients with their eligibility for 

3,158 T2DM studies with respect to age, HbA1c, BMI, and gender jointly. The x-axis 

represents HbA1c value intervals. The y-axis represents BMI value intervals. The z-axis 

represents age value intervals. Each dot represents patients with the same set of 

characteristics. The size of every dot is proportional to the number of real-world patients 

(normalized sample weight “WTMEC10YR”) that each dot represents. The color of a dot 

represents the percentage of studies for which each sample satisfy all the variables, scaled 

such that red indicates the highest proportion of studies and blue indicates the lowest 

observed proportion of studies. Regions in blue highlight target populations that are 

systematically underrepresented across all the studies. The six transparent boxes represent 

the top six underrepresented female subgroups identified by the MAGIC algorithm; (b) A 

different orientation of the figure showing age and BMI; (c) A different orientation of the 

figure showing age and HbA1c; (d) A different orientation of the figure showing BMI and 

HbA1c. We provide the MATLAB figure file as a supplementary material. One can open the 

file in MATLAB and change the orientation of the figure and view it from different angles
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Figure 4. 
Percentage of T2DM patients who satisfy four criteria of interventional T2DM studies.
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Table 1

Six possible combinations of the distinct value intervals of age and BMI for two hypothetical studies and the 

observed patients in each combination.

Combinations of value intervals Number of Patients Percentage of studies recruiting patients 
with the characteristics

Percentage of patients eligible 
for the trials

Age BMI (kg/m2)

0–20 0–25 10 0% 10%

0–20 25-inf 10 0% 10%

20–50 0–25 20 50% (Study B) 20%

20–50 25-inf 40 100% (Studies A and B) 40%

50-inf 0–25 10 50% (Study B) 10%

50-inf 25-inf 10 50% (Study B) 10%
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Table 3

The percentage of well-represented patients who are included in underrepresented subgroups in each step of 

the algorithm (β = 20%, δ = 1%, θ = 5%, ω = 1/10 * value_range_in_NHANES).

Iteration Domain knowledge (DK) DK + 1st k-means clustering DK + 2nd k-means clustering

β

20% 96.0% 38.5% 32.2%

15% 65.4% 12.4% 6.2%

10% 1.5% 1.5% 0%
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Table 4

Value intervals for age, HbA1c, BMI, and gender after value intervals of numeric variables were refined by k-

means (k = 2) clustering twice.

Variable Value intervals

Age (12, 14], (14, 24], (24, 44], (44, 64], (64, 85]

HbA1c (3.8, 5.7], (5.7, 6.4], (6.4, 7.2], (7.2, 8.6], (8.6, 9.7], (9.7, 18.0]

BMI (15, 18.5], (18.5, 25], (25, 30], (30, 39), (39, 60], (60, 82]

Gender [1, 1], [2, 2]
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Table 6

Underrepresented population subgroups identified by PRIM with default parameters (peel.alpha = 0.05, 

paste.alpha = 0.01).

HbA1c (%) BMI (kg/m2) Age Gender Characteristics of Subgroups

[2.5, 19.4] [45.0, 87.8] [5.8, 92.2] [0.9, 2.1] Obese male and female

[2.5, 19.4] [40.7, 44.8] [5.8, 92.2] [0.9, 2.1] Obese male and female

[2.5, 8.0] [38.1, 40.6] [5.8, 92.2] [0.9, 2.1] Obese male and female with normal to diabetic HbA1c

[2.5, 6.9] [9.3, 28.7] [67.0, 92.2] [0.9, 2.1] Elderly male and female with normal to pre-diabetic HbA1c

[2.5, 19.4] [34.7, 36.6] [5.8, 92.2] [0.9, 2.1] Obese male and female

[2.5, 19.4] [25.8, 33.5] [60.0, 92.2] [0.9, 2.1] Elderly overweight male and female
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Table 7

Results of the preliminary evaluation of MAGIC using PRIM as the baseline.

Metric (a) (b)

Method

PRIM 30.4% 58.7%

MAGIC 0% 31.2%
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