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Abstract

The main tenet of physical biology is that biological phenomena can be subject to the same 

quantitative and predictive understanding that physics has afforded in the context of inanimate 

matter. However, the inherent complexity of many of these biological processes often leads to the 

derivation of complex theoretical descriptions containing a plethora of unknown parameters. Such 

complex descriptions pose a conceptual challenge to the establishment of a solid basis for 

predictive biology. In this article, we present various exciting examples of how synthetic biology 

can be used to simplify biological systems and distill these phenomena down to their essential 

features as a means to enable their theoretical description. Here, synthetic biology goes beyond 

previous efforts to engineer nature and becomes a tool to bend nature to understand it. We discuss 

various recent and classic experiments featuring applications of this synthetic approach to the 

elucidation of problems ranging from bacteriophage infection, to transcriptional regulation in 

bacteria and in developing embryos, to evolution. In all of these examples, synthetic biology 

provides the opportunity to turn cells into the equivalent of a test tube, where biological 

phenomena can be reconstituted and our theoretical understanding put to test with the same ease 

that these same phenomena can be studied in the in vitro setting.
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We present various exciting examples of synthetic biology as a means to distill biological systems 

to their essential features in order to make them theoretically tractable. This approach 

complements the use of synthetic biology as an engineering tool by making it possible to bend 

nature to understand it. We discuss various exciting experiments featuring this approach to turn 

cells into test tubes and uncover the theoretical basis of phenomena ranging from bacteriophage 

infection, to transcriptional regulation in bacteria and in developing embryos, to evolution.
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Introduction

In recent years we have witnessed a revolution in our ability to reprogram and control 

cellular behavior. From the creation of biofuels, medicines and food, to cells that can seek 

and target tumors, to tissues and organs grown in vitro, synthetic biology is rapidly 

developing as a modern engineering discipline that leverages our understanding of the inner 

workings of cells, rewiring them for a host of interesting and important tasks.[1] In parallel 

with these efforts at synthetic biology as bioengineering, an alternative view of the subject 

has emerged that goes beyond reprogramming cells to do our own bidding. Inspired by the 

dictum of biochemistry of in vitro reconstitution as a proof of understanding through 

synthesis, the objective of these alternative synthetic biology efforts is to construct 

simplified systems that allow us to test rigorous and quantitative hypotheses about biological 

processes.[2]These approaches strip biological phenomena down from their full and 

amazing complexity, leaving only the essential elements that are being tested. In our view, 

such synthetic efforts make it possible to determine which biological details matter and 

which ones are of lesser relevance when trying to achieve a predictive understanding of 

biological processes. In this review we feature some of our favorite examples of how this 

synthetic biology toolbox has advanced our understanding of diverse phenomena ranging 

from cellular decisions in “simple” bacteria all the way to experimental evolution where 

entire ecosystems and evolutionary trajectories are contrived to make it possible to test 

specific hypotheses. Note that this article intends to provide just a few of our favorite 

representative examples that reveal a different style of synthetic biology and thereby falls 

way short of giving a scholarly survey of the many exciting contributions from the recent 

literature.

A central thesis of this article is that a predictive view of many processes in biology can be 

achieved in much the same way that approaches in physics have provided us with a 

predictive understanding of a wide range of phenomena in the inanimate world. In our view, 

the complexity of biological phenomena does not render them inaccessible to such 

predictive approaches. In fact, in many experiments only a few “knobs” are tuned with 

reproducible consequences, seeming to imply that the process of interest admits of a reduced 

description controlled by those knobs. We hypothesize that the roadblock to such predictive 

power stems from our ignorance about many of the molecular details underlying biological 

phenomena, not all of which actually matter. This is, of course, not a new discussion. 

Indeed, it was not until Friedrich Wöhler’s synthesis of urea that the influence of a 

mysterious vital force in synthesizing organic compounds was disproved [3, 4] and it 

appears that approaches from synthetic biology now provide the opportunity to augment and 
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complement in vitro approaches by turning the cell into what our friend Jon Widom liked to 

call “the test tube of the 21st century” [5, 6].

A combinatorial explosion of biological interactions

Efforts to achieve a predictive understanding of biological phenomena are often met with 

resistance. One common argument is that biology is different from other branches of science 

in that it is inherently too complex to admit of predictive approaches. In this view, the 

plethora of combinatorial interactions between the different molecules mediating the 

phenomenon of interest present an insurmountable barrier to a description that captures all 

molecular detail. Hence, the argument goes, such lack of access to the details of all 

interactions makes it impossible to predict the outcome of biological processes. Yet, in other 

contexts we understand considerably complex phenomena that do not require access to all 

the microscopic degrees of freedom. Type into Google the words “cloud streets” and look at 

the beautiful patterns that emerge in the collective motions of the many molecules of 

different types that make up our atmosphere. Here, though we have no access (nor do we 

want it) to the underlying molecular details, this does not imply that one cannot construct 

predictive understanding of this phenomenon. Perhaps more compellingly, think about 

predicting what will happen when a given individual is driving a car. Will that person have 

an accident? Will their car stall at an intersection while waiting for a left turn? Who knows. 

And yet, like in the case of atmospheric patterns, we can say much about the number of 

accidents on a given stretch of highway with great confidence, belying the need for knowing 

the details of individual behavior. Similarly, in some cases, complex biological phenomena 

have been successfully described with reduced models that depend on only a few key 

parameters and ignore a vast majority of the complexity to predict a reproducible biological 

response.

Biological complexity is indeed a fact of nature. As a toy example, we consider the case of a 

hypothetical DNA regulatory region bearing three binding sites for an activator as shown 

schematically in Fig. 1A. When bound, each activator interacts with the transcriptional 

machinery. In addition, these activators interact with each other cooperatively. As a result, 

activator concentration will determine the output rate of mRNA production in a non-linear 

manner as shown schematically in Fig. 1B,[7, 8, 9] though we should emphasize that one of 

the biggest challenges to making predictive models of such regulatory motifs is that we 

don’t know the rules relating the occupancy of a particular constellation of binding sites and 

the level of transcription. The simplest theoretical model that describes how the 

concentration of activator dictates mRNA production will need to account for the different 

configurations that activator molecules can adopt on the DNA. This exercise alone yields 

eight possible states (Fig. 1C), characterized by at least nine unique molecular parameters: 

three binding energies accounting for the interaction of activator with each binding site, 

three energies of interactions between bound activators, and three energies of interaction of 

each bound activator with the transcriptional machinery. A theoretical model that affords 

predictive power over this regulatory architecture thus has at least nine parameters. Inferring 

the parameters of such a nine-dimensional model by fitting to what is effectively one-

dimensional data (Fig. 1B) is a challenge not only computationally, but even more 

importantly, conceptually. This example already illustrates the limits of a theoretical 
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approach aimed at predictively describing how wild-type DNA regulatory regions function 

and really underlines the important role synthetic biology can play in allowing us to 

manipulate the system one parameter at a time to tease apart these complex systems. One 

strategy also highlighted in the figure is to systematically reduce the number of binding 

sites. As shown in Fig. 1C, a decrease in binding site number leads to a decrease in the 

number of possible states and in the number of parameters. Hence, this strategy can be used 

to attempt to determine parameters hierarchically.

The large number of states and parameters is a reality of biology. To illustrate this 

complexity in the context of transcriptional regulation in E. coli we resort to the RegulonDB 

database [10]. This database reveals that the average annotated operon contains 

approximately 4 (3.6, to be more precise) transcription factor binding sites.[11] Hence, 24 = 

16 unique states are required to describe all possible binding arrangements of activators and 

repressors in the average bacterial operon. Further, as shown in Fig. 2A, many E. coli 
operons have more than 100 unique binding states. Regulatory complexity goes well beyond 

the realm of transcriptional regulation and into other significant aspects of biological 

regulation such as signaling. To illustrate this point, in Fig. 2B we show a hypothetical 

“typical” protein and consider the number of residues on the surface of this protein that can 

be subject to phosphorylation. We estimate that this average protein contains 14 such 

residues on its surface. Thus, this average protein can be found in any of the unique 214 ≈ 

16, 000 signaling combinations! [12]

All of these examples illustrate the challenges associated with reaching a predictive 

description of signaling and regulation. However, we are hopeful that such challenges are 

not insurmountable. Instead, we argue that the road to predictive understanding necessitates 

a fundamentally different approach. In particular, we believe there is much to be gained by 

moving away from the “real” biology to model situations in which the system is sufficiently 

simple to permit a rigorous interplay between theory and experiments. Perhaps an analogy 

from the emergence of mechanical engineering can make our thinking more clear. Hardly 

anyone fails to be impressed by the great cathedrals of Europe, adorned as they are with 

their magnificent flying buttresses. These structures, though beautiful, serve an important 

mechanical function as well. Their emergence was based upon empirical observations. But 

to go beyond such enlightened empiricism to get to the architectural structures of the 

modern world required a step back away from the “real” architecture to consider instead 

highly simplified geometries such as slender rods subjected to point loads on their ends. 

Though one could denigrate such efforts by noting that they are not the real structures one 

“really cares about”, over the long haul, by mastering such simple systems, our 

understanding of the real systems passed to a much higher level. Similar analogies apply in 

the emergence of the digital revolution. Before developing sophisticated modern integrated 

circuits, one has to first establish the intellectual infrastructure associated with seemingly 

trivial RC circuits. Perhaps this philosophy can be more useful in the biological setting than 

has been considered thus far.
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Bending nature to understand it

At first cut, one might think that biological complexity requires us, as described above, to 

develop theoretical efforts that involve complex models with many unknown parameters. In 

this article we emphasize an alternative approach: rather than bending our models to fit 

nature, we argue that we should bend nature such that we can have a direct dialogue between 

our models and experiments. In this kind of approach, as our predictive understanding of 

natural phenomena increases so too can the complexity of the experimental situations we 

explore, where steps forward are built confidently upon rigorous foundations.

To illustrate the concept of bending nature to understand it, we draw an example from what 

could be called “synthetic quantum mechanics”. One of the challenges that defined the early 

days of trying to understand the world of atoms and molecules was to predict the different 

energy levels of these systems. These energy levels in turn determine the atomic and 

molecular spectra which are accessible experimentally. However, these calculations are very 

complex, even in the case of the simplest atoms such as hydrogen. There are many layers of 

complexity coming from various interactions that the electrons and nuclei are subjected to. 

For example, a precise calculation of atomic energy levels needs to account not only for the 

electrostatic interaction of the electron with the proton in the nucleus, but also for the 

coupling of the electron spin to its orbital angular momentum.[13] An alternative route to a 

first understanding of the energy levels of quantum particles in nuclei, atoms, molecules and 

even solids is the so-called particle in a box. The idea of such a model is to pretend that the 

electron feels no potential when it is within the confines of the box and it meets an infinite 

barrier when it reaches the walls. Of course, the energy levels of the particle in a box are not 

considered a precise representation of atomic or molecular energy levels. However, this 

“quantum corral” serves the purpose of providing an initial, tractable system with which to 

put our most basic understanding of quantum mechanics to a test. Interestingly, these 

oversimplified models went a long way towards interpreting the spectra of dye molecules 

that are central to the process of photosynthesis, long before computer power was sufficient 

to make it possible to do more realistic calculations.[14, 15]

The surprising feat of experimentally creating a quantum corral was accomplished by using 

a scanning tunneling microscope to arrange iron atoms on a copper surface to form a circle 

as shown in Fig. 3A.[16] The resulting circular structure serves as a “box” that electrons 

cannot escape from. Using a scanning tunneling microscope, it is possible to measure the 

energy levels of electrons confined within this corral. The wave function of the electrons is 

shown in Fig. 3B and the energy levels for such an electron can be found in Fig. 3C. As 

shown in Fig. 3C, these measured energy levels coincide to a large degree with those 

expected from a simple textbook calculation. This interplay between theory and experiment 

in the context of the quantum corral is just one synthetic step along the way to a precise 

description of complicated molecules. In the following sections we explore how a similar 

synthetic approach in the context of biology can lead to a predictive understanding of 

cellular decision-making.
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The knobs of the synthetic biology toolbox

Building a quantum corral such as shown in Fig. 3 necessitates knowledge about the atoms 

to be used to make the corral as well as the ability to manipulate these atoms at will. In the 

biological context, bending nature by building simple, theoretically tractable biological 

systems required both knowledge of the molecular players as well as the capability to 

synthetically exploit these players. Further, in analogy with the quantum case, the 

construction of such an experimental system should be motivated by a putative theoretical 

understanding of that system. For example, for the case of transcriptional regulation Fig. 4 

shows several examples of the available regulatory “knobs” that can be synthetically tuned 

to systematically alter, for instance, transcription factor copy number, transcription factor 

binding site affinity, separation, and number. In addition, in the context of eukaryotes, 

binding site accessibility can be tuned by dictating the relative position of these binding sites 

with respect to nucleosomes. Finally, in the bacterial case, the number of copies of a gene 

on, for example, a plasmid, has also emerged as a relevant control knob.

The effect of these various knobs on gene expression has been characterized theoretically in 

great detail. The predictions afforded by these theoretical models can only be tested in the 

context of biological systems where these regulatory knobs can be tuned experimentally one 

at a time. It is virtually impossible to implement such an approach in the context of 

biological phenomena whose relevant molecular players are unknown. Hence, to enable the 

bending of nature to reach a predictive understanding of some signaling or transcriptional 

regulatory circuit, it is important to focus on biological case studies where the identities of 

the underlying molecular players has already been uncovered. We define such case studies as 

the analog of the “hydrogen atom” in physics: a study that is simple enough to be 

theoretically and experimentally tractable, yet rich enough in its phenomenology to capture 

the essence of more complex phenomena. Work to systematically dissect the molecular 

underpinnings of bacterial case studies has made it possible to harness their molecular 

components to test our understanding and engineer novel biological function. Impressive 

examples range from the construction of toggle-switches [17] and oscillators [18, 19] to the 

engineering of bacteria that respond to light [20] to the construction of logic gates [21, 22, 

23, 24]. Indeed, the design of bacterial synthetic circuits has become a widespread practice 

which has led to the creation of biological parts lists in the hope of standardizing synthetic 

design efforts.[25] In the next sections we will explore several such “hydrogen atoms” in the 

context of bacterial gene regulation, the lysis-lysogeny decision associated with 

bacteriophage infecting bacteria, embryonic development, and evolution.

Bending the lac operon in bacteria

Many of the most important initial insights into the study of transcriptional regulation have 

originated from exercises in bending nature to understand it. Some examples of these 

synthetic efforts that we find most inspiring are provided by the series of activator-bypass 

experiments conducted in the 1990s.[26, 27, 28, 29] These experiments were aimed at 

testing the modularity of the proteins involved in transcriptional activation, and were 

enlightening and successful in both bacteria and yeast. For instance, in one class of activator 

bypass experiments the DNA binding domain of activator I was fused to the activation 
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domain of activator II. The result is a new chimeric activator that uniquely combines the 

DNA binding sequence of activator I with the molecular mechanism of activation of 

activator II.[30, 31] In addition to shedding light on the design principles behind 

transcriptional activators, the insights afforded by bypass experiments opened the door to the 

construction of synthetic transcription factors. The Gal4 and TetR systems with all their 

variants, are perhaps two of the best examples of the far-reaching consequences of these 

pioneering experiments.[32, 33] Furthermore, this knowledge has been harnessed as a tool to 

discover in vivo interactions between molecules such as protein-DNA interactions in 

promoter regions where the regulatory interactions were previously unknown [34, 35] or 

novel protein-protein interactions [36].

For us, the “hydrogen atom” of bacterial transcriptional regulation is the lac operon of E. 
coli [37]. 50 years of continuous work on this system has provided us with an exquisite 

understanding of its molecular players as well as with numerous strategies to manipulate 

them by tuning regulatory knobs.[38] The lac operon encodes for the enzyme β-

galactosidase, which mediates lactose metabolism. In the absence of lactose, the Lac 

repressor (LacI) binds to three DNA sites in the vicinity of the lac promoter. Lac repressor 

can also bind to two of these sites simultaneously resulting in the formation of a loop of the 

intervening DNA. This interplay between DNA binding and looping leads to a decrease in 

the rate of β-galactosidase production. However, the presence of lactose leads to the 

production of the disaccharide allolactose, which binds to Lac repressor and reduces its 

DNA-binding affinity. Hence, lactose induces the production of β-galactosidase. Thus, as 

shown in Fig. 5, regulation of the lac operon has multiple layers: repressor binds to multiple 

sites and loops the DNA excluding RNA polymerase from the promoter, and inducer is 

transported into the cell and binds to repressor, which leads to an allosteric change in 

repressor conformation that decreases its DNA binding affinity. A superficial assessment of 

regulation in the lac operon would then be prone to claims that these multiple layers of 

regulation make it too complex to be understood from a quantitative perspective. However, 

through the exercise of rewiring the lac operon to make it simpler, recent experiments have 

led to an impressive list of successes in the predictive understanding of transcriptional 

regulation, and even in those cases where the predictions fall short, this reveals shortcomings 

in our presumed understanding.

How does one navigate the numerous states and molecular parameters necessary to describe 

the lac operon (Fig. 5)? Over the last 30 years, multiple labs have embarked on a systematic 

effort aimed at reaching a predictive understanding of this operon by rewiring it to create 

simplified DNA regulatory motifs. For example, by constructing operons with only one 

binding site for Lac repressor, all the complexity originating from DNA looping can be 

avoided. Furthermore, if the number of Lac repressor molecules within the cell are directly 

tuned, then the inducer import pathway and its interaction with repressor can be 

circumvented. Indeed, this simple repression architecture is characterized by one free 

parameter: the in vivo binding energy of repressor to the DNA. Hence, simple repression, 

despite not being the “real biology”, provides an ideal platform for an initial dissection of 

the lac operon. Experiments performed on this regulatory architecture by the Müller-Hill lab 

[39] were analyzed using thermodynamic models in order to extract the in vivo binding 

energy of Lac repressor to its various DNA targets [40, 9]. These binding energies were then 
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used as input parameters of thermodynamic models in order to generate the predictions 

shown as lines in Fig. 6A.[41, 42] These curves predict the fold-change in gene expression 

as a function of repressor copy number, binding site affinity, and gene copy number (which 

can be controlled by placing the operon on a plasmid or by integrating multiple copies on 

the genome). To respond to such predictions, a series of experiments was undertaken where 

these regulatory knobs were systematically tuned. The result of these experiments are shown 

in Fig. 6A. The agreement between theory and experiment is a testament to the predictive 

power that can be achieved by a combination of synthetic biology with theoretical models.

The satisfactory agreement between predictions and experiments featured in Fig. 6A should 

not be taken as unequivocal proof that the theoretical models underlying these predictions 

are valid. For example, an assumption permeating these models is that of equilibrium of the 

Lac repressor DNA interaction: Lac repressor is assumed to equilibrate by binding and 

unbinding the DNA much faster than any other temporal scale in the system. Thus, under 

this assumption, the tools of equilibrium statistical mechanics can be used to mathematically 

describe simple repression. Recent experiments have harnessed synthetic Lac repressor 

variants to perform an in vivo pulse-chase experiment.[43] Here, individual molecules of a 

LacI-Venus fusion were visualized as they bind and unbind DNA. By out-competing this 

fusion molecule with “dark” Lac repressor molecules, this experiment made it possible to 

measure the rates of association and dissociation of Lac repressor to various operator 

sequences. The rates obtained through this experiment do not fully support a simple 

equilibrium-based view of simple repression. The authors then went on to explore a variety 

of non-equilibrium models for simple repression, many of which they argue are more 

convincingly aligned with the experimental data. These results support the view that 

predictions such as shown in Fig. 6A could be yielding the right answer for the wrong 

reasons. Indeed, it was recently shown that non-equilibrium models can lead to the exact 

same functional forms as the equilibrium ones shown in the Figure.[44] More experiments 

aimed at measuring the in vivo rates involved in the transcriptional process need to be 

designed in order to directly test the conditions under which equilibrium considerations can 

be used to describe transcriptional regulation.

Finally, theoretical models of transcriptional regulation can be further expanded to go 

beyond the mean level of gene expression and predict the noise (cell-to-cell variability) in 

expression of these synthetic lac operon variants.[45, 46] Fig. 6B shows the predictions 

made by these stochastic models. These predictions serve as zero-parameter fits for the 

experimental data obtained by measuring noise as the binding affinity and repressor copy 

number regulatory knobs are systematically varied.[47] These successes also provided the 

basis for the further theoretical and experimental dissection of lac operon variants with 

increasingly complex regulatory architectures.

A further layer of complexity in the lac operon is afforded by DNA looping. Lac repressor 

can bind to any two of the three sites in the operon in order to form a loop. Thus three 

different loops can be formed in the wild-type setting. This complexity of loops poses a 

challenge to the determination of the role of DNA mechanics in transcriptional regulation. In 

order to uncover the precise contribution of DNA looping to gene expression, the Müller-

Hill lab spearheaded a set of experiments where the lac operon was reengineered to contain 
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only two repressor binding sites.[48] These constructs can only form one loop and were built 

to allow for the easy modulation of loop length by changing the distance between operators. 

These experiments unequivocally revealed the role of DNA looping in the lac operon as 

shown in Fig. 6C, where repression as a function of operator distance is shown. These data 

display a periodic dependence of gene expression with binding site separation that is 

consistent with the helical periodicity of DNA, hence demonstrating that DNA loops are 

involved in repression. Theoretically, this regulatory architecture is described by the binding 

energy of repressor to each of its sites and by the energy required to loop the DNA. 

However, the previous synthetic dissection of the lac operon based on the simple repression 

architecture (Fig. 6A,B) already reported on the in vivo binding energy of repressor to its 

various operators. Thus, the information afforded by this previous round of experimentation 

can be used as known parameters in the new DNA looping experimental round in order to 

reduce the number of free parameters. More importantly perhaps, previous knowledge of the 

in vivo binding energies makes it possible to test a fundamental hypothesis: that the looping 

energy remains unaltered upon changes in the affinity of the intervening binding sites. This 

hypothesis was put to both experimental and theoretical tests as shown in Fig. 6D. Here, the 

level of gene expression was measured for the same loop length, but different combinations 

of binding site sequences. The lines were generated using the already known in vivo binding 

energies and assuming that only one looping energy is necessary to describe all experimental 

outcomes.[40, 9] This graph shows that indeed DNA looping is independent of the particular 

choice of operators that make the loops. These experiments highlighted the modularity of the 

looping process in transcriptional regulation and launched this synthetic version of the lac 
operon as a platform from which to query the in vivo mechanical properties of DNA.[49, 50, 

51]

One of the properties of the lac operon that has captured the fascination of researchers for 

years is its switch-like response when inducer molecules are present: large changes in gene 

expression are triggered in response to small changes in inducer concentration. This 

sensitivity in inducer response is captured quantitatively by the black curve in Fig. 6E. The 

curve shows the level of gene expression of the wild-type lac operon as a function of inducer 

concentration. The slope of this wild-type curve is to be compared to the yellow curve slope, 

which measures the in vitro binding of Lac repressor to a single binding site as a function of 

inducer concentration. These experiments show that in vitro Lac repressor binding is much 

less sensitive to inducer than in vivo gene expression. It could be argued that this is not a 

surprising result given the multiple layers of complexity that exist in the in vivo setting that 

are not present in vitro (Fig. 5). However, several laboratories embarked on a set of 

experiments that made it possible to turn this qualitative claim into a quantitative one: how 

much does each layer of complexity contribute to the sensitivity of the lac operon? First, it 

was recognized that the transport of inducer into the cell is not a passive process. Rather, 

inducer is actively transported by the LacY permease. This permease contributes to operon 

sensitivity as demonstrated by the red curve in Fig. 6E, which presents the level of gene 

expression in a mutant background for the permease. Finally, DNA looping leads to non-

linearities in the dependence of gene expression on inducer concentration. These non-

linearities also contribute to an increase in sensitivity as shown by the blue curve in Fig. 6E, 

which was obtained using the simple repression architecture of Fig. 6A. Interestingly, the in 
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vivo sensitivity of this synthetic construct now becomes comparable to the sensitivity of the 

in vitro system. These results illustrate how, by systematically creating synthetic versions of 

the lac operon aimed at removing extra layers of complexity, the in vivo behavior of the lac 
operon becomes quantitatively comparable to its in vitro response.

Synthetic biology beyond the lac operon

The above examples illustrate the power that synthetic approaches offer in dissecting, in this 

case, the lac operon to study particular features of bacterial transcriptional regulation in E. 
coli, such as cis regulation, repression by looping, and small molecule induction, “one at a 

time.” Similar approaches have led to beautiful experiments aimed at uncovering the 

constraints behind gene network wiring in the bacterium B. subtilis.[52] Under 

environmental stress, this bacterium can enter a competent state that favors the uptake of 

extracellular DNA and the incorporation of this DNA into the chromosome. A regulatory 

protein known as ComK mediates entry into this competent state. Furthermore, expression 

of ComK actually induces its own degradation by repressing ComS, the protein responsible 

for protecting ComK from proteolysis. This circuit, shown in Fig. 7A thus forms a negative 

feedback loop that results in exit from the competent state about 20 hours after its initiation 

(Fig. 7C). However, this is not the only network architecture that can lead to such transient 

dynamics. For example, ComK could have activated a protein which, in turn, would increase 

ComK degradation. Such network wiring is shown in Fig. 7B and would also lead to a 

negative feedback loop and, presumably, to similar transient competence dynamics. This 

then begs the question of why one strategy was chosen over another, is it just happenstance 

or are there important features of this specific network that lead to the resulting physiology? 

Although the alternative network architecture described above does not exist in wild-type B. 
subtilis, synthetic biology was used to rewire this competence decision. These experiments 

revealed that, indeed, this alternative network can also lead to a transient competent state 

with the same physiological function. However, the synthetic circuit did so far less 

efficiently. The primary physiological distinction between the two regulatory architectures 

was a dramatic difference in their resulting cell-to-cell variability: Fig. 7C shows how the 

wild-type network led to a distribution of competence-state duration that is two-fold broader 

than the distribution afforded by the synthetic circuit. The authors determined that this noise 

was necessary for the efficient response to varying environmental conditions. Hence, by 

rewiring cells to build circuits that did not previously exist, important insights can be 

garnered into the dynamical constraints on the design of gene regulatory networks.

The power of these techniques is, by no means, limited to bacteria. Another excellent 

example of a synthetic dissection of a biological process focuses on signaling between 

neighboring eukaryotic cells. Notch-Delta signaling mediates the adoption of alternative 

cellular fates in adjacent cells and is ubiquitously used in embryos to generate checkerboard-

like developmental patterns. A few occurrences of this strategy in development include the 

determination of alternative cellular fates in vulva development in C. elegans, the shaping of 

a checkerboard pattern of bristle formation in the fruit fly D. melanogaster, and neurogenic 

patterning in both flies and vertebrates.[53] Like in the lac operon (Fig. 5), Notch-Delta 

signaling has multiple layers of complexity. Here, the Notch receptor is translocated to the 

cell membrane, where it is transactivated by Delta ligands on the membrane of a neighboring 
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cell. Upon activation, the Notch intracellular domain is cleaved and translocated into the 

nucleus, where it carries out its transcriptional regulatory function. In addition, Notch can be 

inhibited by binding in cis to Delta ligands present in the cell membrane. To uncover how 

these different layers of complexity mediate Notch-Delta signaling, a similar approach to 

that taken for the “deconstruction” of the lac operon shown in Fig. 6 was undertaken.[54] 

Here, the Notch-Delta signaling system was reconstituted in cells that do not normally 

express it. This strategy made it possible to construct Notch “receiver cells” which can be 

exposed to systematically controlled concentrations of Delta ligand that are presented either 

on a microscope cover slip, on the membrane of engineered Delta “sender cells” or on the 

membrane of the same “receiver cells”. Much like in the case of controlling Lac repressor 

concentration in the lac operon, the ability to tune the amount of Delta ligand present on 

different substrates showed that, while the activating response to Delta concentration from 

sender cells is graded, the inhibiting response to the concentration of Delta ligands on the 

membrane of the receiver cells is much sharper. This reconstitution showed that the interplay 

between cis and trans signaling is necessary for the switch-like adoption of mutually 

exclusive cellular fates.

The experiments mentioned above have relied on deliberate synthetic manipulation of 

specific molecular targets as a means to systematically tune the system and arrive at a 

predictive understanding of the mechanisms underlying cellular decision making. An 

alternative to these systematic manipulations has emerged in the last few years thanks to the 

enabling power of high-throughput sequencing technologies. These experiments rely on 

obtaining massive amounts of data in order to draw correlations that make it possible to 

formulate and test hypothesis regarding biological function. Such approaches have 

uncovered, for example, insights into the mechanisms of transcriptional initiation, elongation 

and translation in cells.[55, 56, 57, 58] These experiments have also enabled the mapping of 

the binding landscape of almost any DNA-binding protein as well as the 3D conformation of 

chromatin.[59, 60, 61] Despite the amount of data provided by these high-throughput 

sequencing techniques, the diversity of such data is not always enough to draw statistically 

significant conclusions. This limitation recently became evident in the study of the N-

Terminal codon bias in bacterial genes.[62] It was known that rare codons are usually found 

in the N-terminus of genes, but the reason for this bias was unclear. Previous approaches had 

mostly relied on the measurement of translation levels of endogenous genes and the 

correlation of these levels with their codon usage. However, the diversity of sequences 

existing in the E. coli genome made it challenging to test different hypothesis aimed at 

explaining this bias. Thus, the researchers decided to use synthetic biology in order to 

increase the repertoire of sequences to be analyzed. The authors created a library of more 

than 10,000 reporter genes where the promoter, ribosomal binding site, and the N-terminal 

codons of a reporter protein were systematically varied. By measuring the correlations 

between DNA sequence, transcription, and translation levels, the authors realized that the 

key factor determining N-terminal codon usage is secondary structure: the N-terminus of 

mRNA molecules is selected against the formation of secondary structure, which facilitates 

the initiation of translation. Thus, synthetic biology was used once again to bend nature and 

augment the reach of high-throughput studies by going beyond sequences found in the wild-

type setting and enriching them using precisely designed libraries.
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Similar high-throughput synthetic approaches have been used to go beyond translational 

efficiency and uncover the sequence rules governing transcriptional regulation. Here, 

promoter libraries containing random or designer regulatory regions are transformed into 

single cells such that each cells harbors a unique promoter.[63, 64, 65] The expression level 

of each cell is then measured and correlated with its promoter sequence. By these means, a 

vast set of data can be generated which enables an exploration of the transcriptional 

regulatory code that goes far beyond what could be afforded if only endogenous regions 

were considered.

Bending the fruit fly developmental program

As cells within a developing fly embryo multiply, they “decide” on their ultimate 

developmental fates. Often, these decisions are predicated by their spatial position along the 

embryo. The elegant French Flag model proposed that cells determine their spatial position 

by reading out a spatially-varying concentration of a morphogen.[66] This model is 

illustrated diagrammatically in Fig. 8 in the context of the early embryo of the fruit fly 

Drosophila melanogaster. Here, the concentration of a morphogen (green curve) varies along 

the anterior-posterior (A–P) axis of the embryo. Cells exposed to morphogen concentrations 

above threshold 1 adopt a blue developmental fate, cells located at concentrations between 

thresholds 1 and 2 take on the white developmental fate, and cells in regions with 

concentrations below threshold 2 assume the red fate.

Qualitatively, the French Flag model has been put to the test repeatedly in embryos using 

what is perhaps one of the most common forms of synthetic biology in the study of 

development: misexpression, where patterns of gene expression are synthetically altered in 

order to test hypotheses about their role in dictating body plans. Misexpression has been 

repeatedly used to reshape protein gradients and reveal the regulatory logic behind 

embryonic patterns of gene expression.[67, 68, 69, 70] For example, the Bicoid activator is 

expressed in an exponential gradient spanning from the anterior to the posterior end of the 

embryo as shown in Fig. 8. To test the role of Bicoid as a morphogen, the activator was 

synthetically introduced by injection on the posterior end of the embryo.[71] The result was 

the formation of head structures where tail structures would normally be found. Thus, 

through experiments based on rewiring embryonic development, the qualitative role of 

transcription factors such as Bicoid as morphogens in development was established.

Synthetic biology provides opportunities to go further and quantitatively test this French 

Flag model. These tests go beyond the qualitative insights afforded by coarse misexpression 

experiments. For example, the model predicts that a change in Bicoid activator 

concentration, illustrated by the purple curve in Fig. 8, will lead to a quantifiable change in 

the position of developmental boundaries. Bicoid’s exponential-like gradient along the 

anterior-posterior axis of the embryo can be described mathematically by the formula

(1)

Here, x denotes the position along the axis of the embryo, Bcd0 corresponds to the Bicoid 

concentration at x = 0, and λ = 0.165L, where L is the embryo length.[72] One 
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developmental boundary dictated by Bicoid concentration is the cephalic furrow, which 

demarcates the separation between the head and the thorax of the embryo. In the wild-type 

fly, the cephalic furrow is positioned at about x0 = 0.34 L of the embryo length.[72] 

However, by systematically perturbing the bicoid gene dosage (as in Fig. 9), one can tune 

the spatial gradient of the Bicoid protein by a constant scaling factor D to produce curves 

like those shown in Fig. 8. Under this perturbation, the French Flag model predicts that the 

new position of the cephalic furrow, xnew will be given by

(2)

This new cephalic furrow position is plotted as a function of bicoid gene dosage as a line in 

Fig. 10. In order to test this quantitative prediction synthetically several flies bearing 

different copies of the bicoid gene were generated. These multiple copies were created either 

using wild-type Bicoid or using a Bicoid-GFP fusion.[73, 72] Each one of these flies forms 

its cephalic furrow at different positions depending on the gene dosage. This position can be 

measured using light microscopy or fluorescence microscopy for the particular case of 

Bicoid-GFP as shown in Fig. 10. The results obtained from these experiments are also 

shown in Fig. 10. Qualitatively, the data is consistent with the model: a higher Bicoid dosage 

pushes the cephalic furrow towards the posterior side of the embryo. However, a clear 

quantitative disagreement between the theoretical prediction and the quantitative data is 

observed. Indeed, the data show that the embryo compensates for changes to the bicoid 
dosage. When the embryo is exposed to higher Bicoid concentrations, the cephalic furrow 

moves, but it does not move as much as expected. These results suggest that multiple genes 

within the developmental network work simultaneously to determine the position of the 

cephalic furrow. These genes also respond to changes in bicoid dosage and their combined 

action leads to a buffering of the näve effect predicted by the French Flag model.[72]

A common reaction to these experiments is that such models are too simple and, of course, 

they should not be expected to work. However, we find that there is a missed opportunity to 

learn something by trying to understand where such models fall short. To our mind, this is 

the analog of disregarding the quantum mechanical particle-in-a-box models because they 

do not describe hydrogen atoms. The point of view advocated here is that the failure to 

understand simple systems does not merit throwing our hands up in defeat, but rather, 

requires a redoubling of our efforts to figure out precisely how these “simple” systems work. 

Indeed, recent work went beyond just controlling bicoid dosage and into synthetically 

engineering Bicoid protein patterns that are uniform throughout the embryo.[70] This work 

revealed that there is a system of repressors that counters activation by Bicoid. It is the 

combined action of Bicoid activation and repression by these repressors that determines the 

position of developmental boundaries in the early embryo. These insights now open the door 

to a new generation of quantitative and predictive models which take account of the presence 

of several regulatory gradients.

This experiment is perhaps one of the clearest examples of the use of synthetic tools to 

unnaturally simplify a biological system to uncover the mechanisms behind developmental 

programs. As such, it also has great pedagogical value. We have successfully carried out this 

experiment multiple times in laboratory courses that we have run for students ranging from 
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freshman at Caltech to advanced participants in the Physiology Course at the Marine 

Biological Laboratory. Here, students learn about fly genetics and the techniques required to 

create synthetic flies, they measure the position of the cephalic furrow using brightfield 

microscopy, write custom image analysis code to extract cephalic furrow position from their 

data, and compare their results against the model’s predictions shown in Equation 2.

Finally, the synthetic exploration of pattern formation is by no means limited to the realm of 

multicellular organisms. Much in the same way that the quantum corral created a synthetic 

atom, researchers have used synthetic biology to devise a bacterial system that mimics how 

morphogen gradients can establish positional information in the controlled context of a Petri 

dish.[74] Here, theoretical modeling was used to engineer bacterial strains that generate 

spatial patterns of gene expression. In this scheme, three strains are spotted on agar. First, 

bacteria that emit a signal that diffuses throughout the agar are plated on a disk. Second, two 

band-detection strains of bacteria are grown on this same dish. These band-detection strains 

contain synthetic gene regulatory circuits tuned to trigger the expression of fluorescent 

proteins when exposed to certain concentration ranges of the emitted signal. The result of 

these efforts was the creation of a synthetic bacterial bullseye pattern. Because of the 

completely synthetic nature of this system, model parameters regarding the underlying gene 

regulatory network such as the lifetime of the involved transcription factors can be easily 

manipulated. Thus, this pattern formation system can be used as a platform to test ideas 

similar to the French Flag model in the much more controllable setting of bacteria.

Hidden variables

An intriguing outcome of the kind of understanding through synthesis highlighted 

throughout the paper is that these approaches can help us discover what one might call 

“hidden variables”. This nomenclature is inspired by the early days of quantum mechanics 

when the interpretation of the atomic world was still largely in question.[75] Physicists such 

as Einstein and Schrödinger were unhappy about the fall of determinism and argued that 

perhaps there were hidden variables that would restore determinacy in much the same way 

that knowing the initial velocity and rotation rate of a flipped coin would allow us to predict 

heads or tails.[76] Alas, such was not to be the case in quantum mechanics. On the other 

hand, the argument to be made in this section is that such hidden variables may have a role 

to play in thinking about biological problems such as transcription and signaling. 

Specifically, there are a number of interesting examples where what appears to be distinct or 

stochastic biological outcomes in fact, can be predicted by knowing some underlying hidden 

variable which causes the apparent stochasticity to vanish. That is, hidden variables in our 

system can mask biological phenomena behind noise when not properly controlled, 

increasing the apparent complexity of these phenomena.

To see the idea of hidden variables in play, we turn to an example from the classic lysis-

lysogeny decision in phage lambda. Though this example is not given here to illustrate the 

idea of bending nature to test models, we offer it as one of the most transparent examples we 

can imagine of biological hidden variables. In this case, the infection of a bacterial host by 

phage lambda can lead to one of two eventualities: either the infected cells are the seat of 

synthesis for a burst of new viral particles (≈ 100) or the phage genome is integrated into the 
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host genome where it now becomes a passenger as the cells replicate generation after 

generation.[77]One hypothesis has been that the decision of whether to become lytic or 

lysogenic as shown in Fig. 11A is a random decision, based upon the flipping of some 

dishonest coin, and that is, that it is a noisy decision.

The control variable in these experiments is the concentration of viruses the bacteria are 

exposed to.[78] This concentration dictates, in turn, the average multiplicity of infection 

((MOI)): the average number of infecting phages per cell. As shown in Fig. 12A, the 

probability of a cell adopting the lysogenic fate as a function of the average MOI is 

described by a broad distribution. The width of this distribution supports the hypothesis that 

each cell makes a random decision to undergo lysogeny, and that this stochastic decision is 

biased by the number of phages the cell encounters. However, upon closer examination of 

the infection process hidden variables emerge. As shown in Fig. 12B, the phages can be 

labeled with GFP. The ability to visualize these phages makes it possible to measure the 

single-cell MOI and to relate this magnitude to the lysogen probability. This enabled the 

testing of the hypothesis that the concentration of viral genomes in a cell dictates the 

lysogeny decision. In this scenario the probability of lysogeny is only a function of the ratio 

of the MOI and the cell volume. Fig. 12C shows this single-cell lysogeny probability as a 

function of viral concentration for different MOIs. As seen in the figure, the data cannot be 

described by a single function. Instead, each MOI falls on a separate curve, suggesting that 

the hypothesis of the lysogeny probability being dictated solely by viral concentration is 

incorrect. This observation led to the formulation of a second hypothesis that goes beyond 

describing lysogeny as a decision made at the cellular level. Rather, this second model states 

that the lysogeny decision is made at the subcellular level, with each infecting phage 

randomly “deciding” whether they are going to adopt the lysogenic pathway. In this model, 

cells will undergo lysogeny only if all infecting phages adopt the lysogenic pathway. Fig. 

12D shows the inferred single-phage lysogeny probability as a function of the viral 

concentration. The collapse of all the data on the same master curve indicates that, indeed, 

each phage randomly decides whether it will lead to lysogeny and that only in the case of an 

unanimous decision will the infected cell actually enter this lysogenic state. Thus, it was 

discovered that there are hidden variables captured both by the cell size and the number of 

viruses that have infected a given cell of interest. When these quantities are acknowledged, 

the lysis-lysogeny decision appears much more predictable in the same way that if we have 

106 receptors that bind some ligand, we may not be able to tell which receptor will be 

occupied by a ligand, but we can say very well what fraction of those receptors will be 

occupied.

With the hidden-variable concept in mind, we now turn to the use of synthetic biology as a 

tool for discovering the existence of such variables. We have already described the way in 

which a variety of different knobs can be used to elicit different regulatory responses in 

bacterial transcription as shown in Fig. 4. Specifically, Fig. 4A shows experimental data 

corresponding to a host of different regulatory scenarios all involving the simple repression 

motif. Recall that in this regulatory architecture, there is a single regulatory binding site that 

makes it so that RNAP cannot bind. As a result, as the number of repressors is increased, the 

gene expression is reduced in a predictable fashion. The different curves in the figure 

correspond to different ways of setting up this simple repression motif, with different 
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binding site strengths and with different chromosomal or plasmid arrangements that give rise 

to different gene copy numbers. Ostensibly, this data makes it appear as though each and 

every curve and associated set of data points is a unique regulatory scenario; the possible 

responses vary widely with unique character and shape as the number of repressors is 

changed. However, this view is belied by the results shown in Fig. 13 where we see that if 

instead of working in the language of repressor copy number (the x-axis variable in Fig. 4A) 

we instead use the idea of the fugacity, then all of the data follows one master curve.[79] The 

fugacity framework reveals a hidden variable. When this hidden variable is used, all the data 

is seen to collapse onto one master curve signifying that it is really the “effective 

concentration” of repressor (dictated by complicated features such as how many competing 

binding sites are present on the genome and on plasmids, the strength of their competition 

and indeed the total number of repressors in the cell) that determines the level of expression 

and that there is a very particular mathematical way of capturing this effect that is only 

revealed by suppressing the full complexity of the “real” regulatory network and 

constructing a simplified scenario that allows us to test our understanding.

Synthesizing evolution

The idea of rewiring biological systems to generate understanding is not unique to cell and 

developmental biology. Similar approaches have been instructive at much larger scales as 

well. One of the most exciting frontiers in the study of evolution in the last half-century has 

been the emergence of a rigorous field of experimental evolution. Just as with our earlier 

examples, many of these studies sacrifice the “real biology” in order to set up a precisely 

controlled and measurable system that admits of a direct confrontation with our theoretical 

understanding.

In this section, we describe several inspiring examples in flies of what one might call 

synthetic evolution. These experiments are complemented with assays that harness the 

power of high-throughput sequencing to track complex evolutionary events in carefully 

controlled microbial populations. Thus, through these examples, we show just how long 

such “synthetic” approaches have had a place in evolutionary biology and how important 

they will be in shaping our understanding of evolution in the future.

Synthesizing genetic drift

A textbook example of genetic drift was provided by the classic experiment of Buri in the 

1950s.[80] The idea of this experiment was to use a simple marker (eye color) as a tool to 

measure changes in allele frequencies in a population that was not subjected to any form of 

selection. By using a small population size, namely, 8 male and 8 female flies in each vial, 

Buri was able to watch as the initial population composed strictly of heterozygotes drifted to 

fixation of one of two alleles. A schematic of the experimental protocol followed by Buri is 

shown in Fig. 14.

To be concrete, Buri had 107 distinct populations, all of which started out as heterozygotes, 

with each vial containing 8 orange-eyed males and 8 orange-eyed females. For 20 

generations, he followed the protocol described above as shown schematically in Fig. 15. In 

each generation Buri chose the 8 males and 8 females that would seed the next generation 
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randomly. The result is that, over time, he found more and more red- and white-eyed 

homozygotes. This experiment revealed how allele frequencies change over time without the 

action of selection. The data that captures these changes in allele frequencies is shown in 

Fig. 16. Note that in generation zero, there are 107 populations, all of which have allele 

frequency 0.5 of bw and bw75. However, over time, as more and more flies have become 

homozygotes, the allele frequency distribution broadens and certain vials end up being taken 

over by all red or all white homozygotes, permanently losing the other allele.

Synthesizing natural selection

As pointed out by Darwin himself in the first chapter of his “On the Origin of Species”, 

synthetic biology has been underway as long as humans have used artificial selection to 

generate new organisms. We only need turn to the freakish canine creations at any given dog 

show to see how far such breeding efforts have pushed the mighty wolf. Similar amazing 

results have been marshaled in the case of domestic pigeons, one of Darwin’s most beloved 

model systems.

Evolution experiments have been used to probe not only genetic drift, but also the selection 

process itself. Unlike in the case of dog breeding, for example, evolution experiments set up 

a population which is then subjected to rigorous and reproducible rules for propagating the 

population forward in time. In another series of classic studies using flies, Cavener and 

Clegg explored the reproductive success of flies grown in the presence of ethanol.[81] In this 

case, there were two alleles of alcohol dehydrogenase present: AdhF and AdhS. The allele 

AdhF has a higher activity than its AdhS counterpart. As shown in Fig. 17A, over the 57 

generations of the experiment, the frequencies of these different alleles were followed in 

populations grown in the presence and absence of ethanol. As the experiment progressed, 

the frequencies of these different alleles were monitored. The results of this controlled 

experiment are a clear demonstration of how selection pressures can lead to the fixation of 

an advantageous allele. Fig. 17B shows how, in the presence of alcohol, the AdhF quickly 

became fixed or almost fixed in the population. In contrast, in control experiments lacking 

ethanol in the growth media, neither allele became fixed. Instead, their frequencies drifted 

within the population over the generations of the experiment.

As evidenced in the examples above, flies have provided a dramatic and well-controlled 

setting for synthetic evolution, with easily distinguishable phenotypic markers such as eye 

color. However, the sequencing revolution has touched nearly all aspects of the synthetic 

biology research agenda, and few areas have been so deeply altered as have the study of 

evolution. As a result microbes, thanks in part to their short generation times, have provided 

some of the most powerful examples of synthetic evolution.[82, 83, 84, 85, 86] In these 

studies, cultures of carefully designed and controlled microbial populations can be left to 

evolve over tens of thousands of generations all the while freezing small aliquots of culture 

which serves as a chronological history of the organisms evolution that can later be 

sequenced or re-animated. These approaches have shed light on many evolutionary 

phenomena that would be inaccessible with a slow-growing organism such as the fruit fly. 

For example, by carrying out a repeated bacterial culture experiment over 30,000 

generations, the evolution of the ability to metabolize a completely new carbon source 
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(citrate) was demonstrated.[82] Further, technology to deeply sequence the genomes 

contained within a microbial population has made it possible to track the temporal dynamics 

of multiple mutations.[86] These type of experiments have uncovered, for example, how the 

genetic context a mutation appears in reveals itself in a process called “clonal interference”: 

beneficial mutations occurring in unfit genetic background cannot fix, whereas neutral or 

deleterious mutations taking place in fit genetic background can proceed to fixation.

Concluding Thoughts

The ability to manipulate the genomes of living organisms of all kinds is a stunning advance 

that would have been rightly considered science fiction at the time when the structure of 

DNA was first elucidated just a little over a half century ago. In the intervening decades, 

biology has undergone one spectacular revolution after another with methods such as 

cloning, polymerase chain reaction, DNA sequencing and CRISPR-Cas9 gene editing 

making it possible to read and write genomes nearly at will.[87, 88, 89, 90]

But what are we to make of all of these achievements? Of course, many have been tempted 

by the exciting prospects of rewiring living organisms to do our own bidding in contexts 

ranging from new kinds of energy to bioremediation, and this certainly constitutes one 

compelling vision for synthetic biology. However, a second view of synthetic biology argued 

for in this paper is as a powerful new tool for biological discovery, where we really raise our 

standards about what it means to understand a biological phenomenon. In this view of 

synthetic biology, it can be used to excise some of the complexities found in the “real” 

biological context making it possible for us to construct a serious and rigorous dialogue 

between theory and experiment. Specifically, this article was founded upon a single thesis 

best exemplified by the quantum corral shown in Figure 3. Recall that in that case, 

effectively what was done was to synthesize experimental realizations of one of the most 

famous “toy” problems of quantum mechanics, namely, the so-called particle in a box, the 

quantum mechanicians version of the spherical cow. But out of this quantum cow and others 

like it came great opportunities to explore some of the deepest aspects of our understanding 

of quantum mechanics. We argue that synthetic biology is poised to help explore some of 

biology’s deepest aspects as well.

One of the most powerful ways to proceed in building a solid foundation of actionable, 

rigorous scientific infrastructure is to design experimental systems that allow us to test what 

we think we really understand. Clearly, when our hypotheses fail this litmus test, they are a 

weak foundation for the more complicated “real” systems that many researchers favor. As a 

result, we hope that some readers will be inspired to find new ways not to attack “real” 

biological problems, but rather to make “unreal” biological systems that will realize the 

ambition of turning cells into this century’s new test tubes.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Combinatorial complexity of a simple regulatory motif. (A) Even for a modest regulatory 

architecture featuring only three activator binding sites and a binding region for RNA 

polymerase, the number of distinct states and parameters is daunting. (B) These molecular 

parameters and multiple occupancy states conspire together to dictate a non-linear input-

output function determining rate of mRNA production as a function of activator 

concentration. (C) Counting up the number of distinct states of occupancy for the activator. 

By synthetically simplifying the regulatory architecture it is possible to reduce the 

combinatorial complexity and determine parameters dictating levels of gene expression.
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Figure 2. 
Combinatorial complexity in biology. (A) Distribution of regulatory states in annotated E. 
coli operons according to RegulonDB. The number of states was obtained by calculating 2N, 

where N is the number of binding sites per operon. (B) Signaling complexity of a model 

protein. We consider a protein radius R = 2 nm, a residue radius r = 0.5 nm, and that only 2 

(serine and threonine) out of the 11 polar residues can be phosphorylated.[91]
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Figure 3. 
Synthetic quantum mechanics. (A) Building a quantum corral by placing iron atoms in a 

circle on a crystalline surface. (B) Electronic wave function within the corral measured using 

a scanning tunneling microscope. (C) Observed (dots) and computed (lines) energy levels 

for a quantum corral. (Adapted from [16].)
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Figure 4. 
A synthetic biology toolkit. Regulatory knobs that can be tuned both theoretically and 

experimentally in order to control gene expression.
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Figure 5. 
The multiple layers of complexity of the lac operon. Inducer can enter the cell actively 

through a channel or passively through the membrane. Inducer binds Lac repressor and 

reduces its affinity to DNA. In the absence of inducer, Lac repressor can be bound to any of 

its three sites in the operon. The repressor can bind to multiple sites simultaneously, 

resulting in the formation of a DNA loop.
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Figure 6. 
Regulatory knobs for the synthetic dissection of the lac operon in E. coli. (A,B) Tuning the 

simple repression motif by modulating binding site affinity, repressor copy number, and 

reporter gene copy number. The resulting (A) mean and (B) noise in gene expression are 

measured and compared to predictions from theoretical models based on statistical 

mechanics. The fold-change in gene expression is defined as the ratio between the gene 

expression levels in the presence and absence of repressor. The Fano factor is used as a 

measure of cell-to-cell variability. (C,D) The DNA loop length knob. (C) Repression (inverse 

fold-change) as a function of operator distance in a lac operon mutant bearing only two 

repressor binding sites. (D) The fold-change in gene expression as a function of repressor 

concentration can be described by the same looping free energy regardless of the choice of 

binding sites indicating that this energy is only a function of the DNA in the loop. (E) Level 

of in vivo gene expression or in vitro Lac repressor binding as a function of inducer 

concentration for several lac operon variants. The systematic elimination of key regulatory 

effects in vivo, such as the presence of an active pump for the inducer and DNA looping in 

the lac operon, leads to a regulatory behavior comparable to that of the simple in vitro 
situation (A, adapted from [42]; B, adapted from [47]; C, adapted from [48]; D, adapted 

from [40, 9]; E, adapted from [92, 93].)
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Figure 7. 
Gene network driving competence in B. subtilis. (A) Endogenous gene network driving the 

expression of ComK through a negative feedback loop, which dictates entrance into the 

competent state. (B) Synthetic network providing an alternative negative feedback loop as a 

driver of ComK expression. (C) Distribution of competence state duration for the 

endogenous and synthetic gene networks. (Adapted from [52].)
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Figure 8. 
The French Flag Model of developmental patterning. A schematic of the wild-type 

morphogen profile is shown in green and a mutant version with a reduced gene dosage is 

shown in violet. The threshold for a developmental boundary between blue and white is 

shifted to the left in the embryo with the reduced gene dosage of the morphogen.
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Figure 9. 
Experiment to test the spatial information provided by a morphogen gradient in the fruit fly 

embryo. Flies with different copy numbers of the bicoid gene were synthesized through 

mating and the resulting cephalic furrow positions were measured.
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Figure 10. 
Cephalic furrow position as a function of bicoid gene dosage. The red and blue dots 

correspond to different experiments, one done using brightfield microscopy and the other on 

the basis of fluorescence. (Adapted from [73, 72].)
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Figure 11. 
Hidden variables behind bacteriophage lysogenic or lytic pathway adoption. In the noisy 

decision picture, it is imagined that after phage infection, stochastic factors determine 

whether the infected bacterium will take the lysogenic or lytic developmental pathway. In 

the hidden variable picture, the size of the infected cells as well as their so-called 

multiplicity of infection (MOI) determine the cell fate.
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Figure 12. 
Revealing the hidden variables behind bacteriophage infection. (A) The probability of a cell 

undergoing lysogeny as a function of the average multiplicity of infection ((MOI), the 

average number of infecting phages per cell) is given by a broad distribution. (B) GFP-

labeled phages allow for the measurement of the single-cell MOI. Green cells indicate an 

infection in progress as new phages are produced, while red cells mark the lysogenic cell 

fate. (C) Probability of a cell becoming a lysogen as a function of viral concentration 

(defined as the ratio of the single-cell MOI and the normalized cell length). (D) Probability 

of a phage deciding on lysogeny as a function of viral concentration. (Adapted from [78].)
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Figure 13. 
Hidden variables and the simple repression motif. The fugacitybased description (λre−βεr) 

accounts for both the number of repressors and their tendency to be taken up by other gene 

copies and by the nonspecific genomic background, resulting in an effective repressor 

concentration. Here, εr is the binding energy of the repressor to the DNA and λr accounts for 

the chemical potential associated with a repressor moving from the solution to a DNA-bound 

state. (Adapted from [79].)
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Figure 14. 
Synthesis of genetic drift using flies. Schematic of the Buri experimental protocol, where 

orange-eyed flies with the genotype bw75/bw are crossed. The genotype of their progeny 

will be homozygous for the red-eye allele (bw75/bw75), homozygous for the white-eye allele 

(bw/bw), or heterozygote (bw75/bw), resulting in orange eyes. By randomly selecting a set 

of flies in each generation, genetic drift can be simulated.

Garcia et al. Page 37

Integr Biol (Camb). Author manuscript; available in PMC 2017 April 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 15. 
Schematic of the Buri experiment. Initially, all 107 vials contain 8 male heterozygotes and 8 

female heterozygotes, implying that all 107 vials have an allele frequency for bw75 of 0.5. 

Each generation, 8 males and 8 females are selected at random and used as the basis of the 

next round of mating.
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Figure 16. 
Results from the Buri experiment. In generation 0, all 107 vials have 8 male heterozygotes 

and 8 female heterozygotes, implying that all 107 vials have an allele frequency for bw75 of 

0.5. In subsequent generations, the allele frequencies change as a result of genetic drift and 

after 19 generations, many of the vials contain flies all with the same eye color, implying 

fixation of alleles and evolution due to genetic drift. (Adapted from [80].)
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Figure 17. 
Experimental evolution approach using fruit flies. (A) Four populations were breeded over 

57 generations, with two of the populations grown on ethanol, and two of them grown in the 

absence of ethanol. (B) The allele frequencies of two different alcohol dehydrogenase alleles 

were monitored as a function of time. (B, adapted from [81].)
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