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Abstract

Greater physical activity and cardiorespiratory fitness are associated with reduced age-related 

cognitive decline and lower risk for dementia. However, significant gaps remain in the 

understanding of how physical activity and fitness protect the brain from adverse effects of brain 

aging. The primary goal of the current study was to empirically evaluate the independent 

relationships between physical activity and fitness with functional brain health among healthy 

older adults, as measured by the functional connectivity of cognitively and clinically relevant 

resting state networks. To build context for fitness and physical activity associations in older 

adults, we first demonstrate that young adults have greater within-network functional connectivity 

across a broad range of cortical association networks. Based on these results and previous 

research, we predicted that individual differences in fitness and physical activity would be most 

strongly associated with functional integrity of the networks most sensitive to aging. Consistent 

with this prediction, and extending on previous research, we showed that cardiorespiratory fitness 

has a positive relationship with functional connectivity of several cortical networks associated with 

age-related decline, and effects were strongest in the Default Mode Network (DMN). Furthermore, 

our results suggest that the positive association of fitness with brain function can occur 

independent of habitual physical activity. Overall, our findings provide further support that 

cardiorespiratory fitness is an important factor in moderating the adverse effects of aging on 

cognitively and clinically relevant functional brain networks.
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1. Introduction

Research has demonstrated the protective and restorative potential of physical activity and 

fitness for age-related cognitive decline and neurodegenerative diseases including 

Alzheimer’s Disease (AD) (Buchman et al., 2012; Colcombe and Kramer, 2003; Hamer and 

Chida, 2009; Liu et al., 2012; Smith et al., 2010; Sofi et al., 2011). This is important because 

age-related neurodegenerative conditions like AD are associated with enormous costs from 

morbidity, mortality, and loss of independence (Barnes and Yaffe, 2011; Hurd et al., 2013). 

These public health challenges are likely to surge along with growth in the proportion of 

adults over age 65 in the United States and around the world (CDC, 2013; NIA, 2007). 

Physical exercise is a prime candidate for treating the aging brain because in addition to 

being effective, it is also low-cost, it can reduce or eliminate the need for costly drug 

treatments with negative side effects, and it is safe and accessible. However, we still do not 

understand how physical exercise protects the brain from the adverse effects of aging, and 

thus we are unable to maximize the benefits of physical activity for the brain across a broad 

population.

A critical aspect of understanding how physical activity is protective for brain aging is 

identifying the fundamental principles by which physical activity positively affects brain 

health. Physical activity is defined as bodily movement that increases energy expenditure 

relative to seated rest (Casperson et al., 1985), and is often categorized by intensity levels 

such as light, moderate, and vigorous, based on how much energy expenditure increases 

relative to rest. Some studies support that total daily physical activity is protective against 

age-related brain atrophy (Varma et al., 2014) and risk for cognitive decline and AD (Barnes 

et al., 2008; Buchman et al., 2012; Middleton et al., 2011). However, often other studies 

have relied on self-reported physical activity, which best captures moderate intensity 

exercise rather than total daily physical activity (Larson et al., 2006; Yaffe et al., 2001). 

Compared to physical activity, exercise is defined as a subset of physical activity that is 

planned, structured, and repetitive, and has an objective of improving or maintaining 

physical fitness (Casperson et al., 1985).

In the context of aging and AD, studies have also measured cardiorespiratory fitness (e.g., 

Barnes et al., 2003; Boots et al., 2014; Colcombe et al., 2004; Erickson et al., 2009; Hayes et 

al., 2013; Honea et al., 2009; Nyberg et al., 2014; Spirduso, 1980; Voss et al., 2010b), often 

intended as an objective biomarker of moderate intensity physical activity. Cardiorespiratory 

fitness is a physiological attribute defined as the ability for circulatory and respiratory 

systems to deliver oxygen to working muscles and the ability of the muscles to extract and 

use the oxygen to generate energy. The gold standard measurement of cardiorespiratory 

fitness is the highest rate of oxygen consumption during exhaustive exercise and is often 

expressed as oxygen capacity per kilogram of body weight over time (mL/kg/min) (ACSM, 
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2013; Casperson et al., 1985). Thus, while physical activity and cardiorespiratory fitness are 

related, they measure distinct outcomes related to a physically active lifestyle.

The research linking individual differences in cardiorespiratory fitness and training-related 

changes in fitness to brain health has led to a hypothesis that cardiorespiratory fitness is a 

critical mediator of these benefits (Angevaren et al., 2008; Etnier et al., 2006; Smith, 2012; 

Spirduso, 1980). This fitness hypothesis can be differentiated from one about total physical 

activity (i.e., movement) because it implies that training-related improvements in fitness are 

needed to improve brain health (Voss et al., 2014), rather than simply increasing physical 

activity. Supporting the fitness hypothesis, studies have shown a cross-sectional association 

between fitness and brain structure in older adults (Erickson et al., 2009; Gordon et al., 

2008; Weinstein et al., 2012), and also between fitness and brain function (Dupuy et al., 

2015; Dustman et al., 1990; Gauthier et al., 2014; Prakash et al., 2011; Voss et al., 2010b). 

Prospective studies have shown that cardiorespiratory fitness predicts cognitive decline and 

risk of dementia-related death (Barnes et al., 2003; Liu et al., 2012; Wendell et al., 2014). In 

addition, intervention studies have shown that changes in exercise-induced fitness correlates 

with training-related change in brain structure (Erickson et al., 2011; Voss et al., 2013a) and 

hippocampal blood flow and volume (Maass et al., 2014; Pereira et al., 2007).

However, there are also studies that do not show an association between fitness and brain 

health (Angevaren et al., 2008; Brickman et al., 2014; Dustman et al., 1984; Etnier et al., 

2006; Smiley-Oyen et al., 2008; Young et al., 2015). Indeed, as noted in Dustman et al., 

1984, “Since VO2 max is not specific for brain oxygen consumption and since there is no 

reason to expect that exercise related increases in oxygen to the brain would closely parallel 

increases to muscle, a direct relationship between VO2 max and neuropsychological 

measures would not be predicted” (pp. 39–40). Therefore, there is mixed support for the 

fundamental significance of cardiorespiratory fitness in the relationship between physical 

activity and brain health. One step towards clarifying this relationship further is for more 

studies to directly contrast multiple features of a physically active lifestyle (e.g., intensity of 

daily physical activity, cardiorespiratory fitness) to determine their unique contributions to 

health benefits on the aging brain.

For instance, studies have shown that physical activity and fitness are separable at the level 

of individual differences (Jacobs et al., 1993; Laye et al., 2015; Williams, 2001), either 

because it is feasible that the same individual can achieve daily moderate-to-vigorous 

exercise while being sedentary the rest of the day (Craft et al., 2012; Pate et al., 2008), or 

because there are determinants of cardiorespiratory fitness that account for variance beyond 

habitual physical activity such as genetics, which may account for about half of the variance 

in individual differences in fitness (Bouchard et al., 1999; Bouchard et al., 2011). In 

addition, more nuanced approaches for objectively measuring physical activity are now 

available (Chen et al., 2012; Rowlands et al., 2015), and these provide an opportunity to 

more objectively test what features of daily physical activity (Copeland and Esliger, 2009; 

Tudor-Locke et al., 2013) are associated with brain health in aging populations (Makizako et 

al., 2014; Varma et al., 2014). Thus, similar to research on other health outcomes such as 

cardiovascular disease risk or mortality (e.g., Lee et al., 2011), it is important to determine 
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the independent associations of physical activity and cardiorespiratory fitness with brain 

health in older adults.

One approach to measuring functional brain health is assessing the functional connectivity 

of brain networks observed during the resting state with functional magnetic resonance 

imaging (rsfMRI). Resting-state functional connectivity (FC) is a valuable measure of brain 

health because it is suggested to be a correlate for normal age-related decline in brain 

function (Andrews-Hanna et al., 2007; Dennis and Thompson, 2014) and a biomarker of AD 

(Brier et al., 2012; Greicius et al., 2004; He et al., 2014; Seeley et al., 2009; Sorg et al., 

2007). Briefly, resting-state FC measures the correlation between regional fluctuations in the 

fMRI blood oxygenation level-dependent (BOLD) signal while a participant is resting 

quietly in the scanner without exposure to an experimentally controlled task. The motivation 

for this approach is the discovery that many of the brain systems that are evoked by 

experimentally controlled cognitive tasks are also fluctuating in synchrony during rest (e.g., 

Smith et al., 2009), that these resting state networks can be identified across the lifespan 

(Chan et al., 2014; Damoiseaux et al., 2008), and that their functional integration and 

segregation may be predictive of individual differences in cognitive performance and clinical 

status or trajectories (Brier et al., 2012; He et al., 2014; Shaw et al., 2015). Thus, rsfMRI 

networks provide a means to measure the functional integrity of a broad range of brain 

systems without confounds related to task performance, in a relatively shorter period of time 

than most task-based imaging, and without targeting a specific system with an experimental 

manipulation.

The association between age and network integrity tends to be stronger in specific networks 

rather than being a global phenomenon. One of the most replicable findings is an association 

between aging and lower FC in the default mode network (DMN; see Figure 1 and Table 1 

for description of anatomical regions in the DMN) (Agosta et al., 2012; Andrews-Hanna et 

al., 2007; Damoiseaux et al., 2008; Meier et al., 2012; Voss et al., 2010b). Another common 

trend is for older adults to have poorer FC in what are commonly referred to as the 

Executive Control Network (ECN, see Figure 1 and Table 1) and the Salience Network 

(SAL, see Figure 1 and Table 1) (He et al., 2014; Meier et al., 2012; Onoda et al., 2012; Voss 

et al., 2010a), though there have been more mixed findings with respect to this pattern (e.g., 

Agosta et al., 2012; Mowinckel et al., 2012). Networks that tend to show the weakest or no 

differences with aging include sensory systems such as the visual, motor, and auditory 

systems (Andrews-Hanna et al., 2007; Mowinckel et al., 2012), though some studies have 

shown that the functional specificity of these systems is vulnerable to adverse effects of 

aging (Brier et al., 2012; Chan et al., 2014).

Given these findings, it is significant that our previous research has suggested that the 

functional networks most sensitive to age-related decline are also sensitive to individual 

differences in fitness (DMN) (Voss et al., 2010b) and they show improved FC following 1 

year of aerobic exercise training (DMN, SAL) (Voss et al., 2010a). However, these studies 

did not assess functional connectivity during a dedicated rsfMRI scan (since this was not 

acquired) and rather used a simulated resting state following statistical removal of signal 

related to basic sensory stimulation. Therefore, in addition to evaluating the independent 

relationships of fitness and physical activity with brain health, the current study also serves 
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as an opportunity to replicate and extend previous results describing the relationship 

between cardiorespiratory fitness and FC of the DMN and other rsfMRI networks associated 

with aging. Based on our previous research and the extant literature, we predicted that older 

adults would have the most disruption in the DMN, ECN, and SAL networks compared to 

healthy young adults, and that individual differences in fitness and physical activity would 

be most strongly associated with the functional integrity of the networks most sensitive to 

aging. Additionally, based on the replicable benefits of physical activity on temporal and 

prefrontal cortex brain health (Voss et al., 2013b), we predicted the strongest associations 

with fitness or physical activity would occur within regions including the prefrontal and 

temporal cortices (Voss et al., 2010a; Voss et al., 2010b).

Regarding the distinction between fitness and physical activity, we do not have strong 

predictions about their independent relationships with functional brain networks. Although 

we have previously shown that MVPA was linked to white matter integrity even after 

controlling for fitness (Burzynska et al., 2014), there is still little empirical evidence for a 

strong prediction about their independent relationships with functional brain health.

2. Materials and Methods

2.1. Participants

MRI, physical activity, and cardiorespiratory fitness data were collected from 247 

community-dwelling healthy older adults (average age of 65 years, 68% female, average of 

15.6 years of education), and MRI data were collected from 59 college-age adults (average 

age of 22 years, 47% female, average of 15.1 years of education). Fitness and physical 

activity data were not collected on the young adults. The young adults are included in the 

current study to examine age effects on network functional connectivity within the same 

sample of older participants in which we examine relationships with fitness and physical 

activity in older adults.

Eligible older adult participants met the following criteria: (1) were between the ages of 60 

and 80 years old, (2) were free from psychiatric and neurological illness and had no history 

of stroke, transient ischemic attack, or head trauma, (3) scored > 23 on the Mini-Mental 

State Exam (MMSE) and >21 on a Telephone Interview of Cognitive Status (TICS-M) 

questionnaire, (4) scored < 10 on the geriatric depression scale (GDS-15), (5) scored > 75% 

right-handedness on the Edinburgh Handedness Questionnaire, (6) demonstrated normal or 

corrected-to-normal vision of at least 20/40 and no color blindness, and (7) were screened 

for safe participation in an MRI environment (e.g., no metallic implants that could interfere 

with the magnetic field or cause injury and no claustrophobia). The older adults are a cross-

sectional subsample from a randomized controlled exercise trial. We further excluded 

participants with MMSE < 27 to exclude those with possible mild cognitive impairment. 

Finally, our participants were screened for good quality MRI data (see below).

Eligible younger adult participants (1) were free from psychiatric and neurological illness 

and had no history of stroke, transient ischemic attack, or head trauma, (2) scored ≥75% 

right-handedness on the Edinburgh Handedness Questionnaire, (3) demonstrated normal or 

corrected-to-normal vision of at least 20/40 and no color blindness, and (4) were screened 
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for safe participation in an MRI environment (e.g., no metallic implants that could interfere 

with the magnetic field or cause injury and no claustrophobia). The young adult sample was 

further trimmed to a subset based on quality of the MRI data and to achieve a comparable 

proportion of females and years of education between the young and older adult groups. 

This was done to minimize gender and other demographic variables as confounds when 

operationalizing network peaks (described below) and when evaluating age-related 

differences in functional connectivity.

The final sample of older adults included 189 community-dwelling healthy older adults 

(68% female) with an average age of 65 years (SD=4.4) and average education of 16 years 

(SD=2.9). The final sample of young adults included 36 adults (64% female) with an 

average age of 22 years (SD=3) and average education of 15.6 years (SD=2). See Table 2 for 

full descriptive statistics and more demographic and health variables.

2.2. Physical activity and health history assessment

Older participants were instructed to wear the GT3X ActiGraph accelerometer (ActiGraph; 

Pensacola, Florida) for 7 consecutive days on an elastic belt on the left hip during all waking 

hours, except for when bathing or swimming. The participants completed a daily log to 

record the time that the accelerometer was worn, and this log was used to verify the 

accelerometer data for processing with the ActiLife v5.6.0 software. For the purposes of this 

study, a valid day of data consisted of at least 10 hours of valid wear-time (Matthews et al., 

2008; Troiano et al., 2008), where hours flagged as “invalid” were defined as 60 minutes of 

consecutive zeros. In this way, there could only be a couple minutes of registered movement 

within the hour, but as long as they were distributed enough to not allow 60 or more minutes 

of consecutive zeros then the data was considered valid. Only data for individuals with a 

minimum of 3 valid days were included in analyses (Hart et al., 2011).

Each valid measurement epoch (minute) was classified into light physical activity (LIPA) or 

moderate-to-vigorous physical activity (MVPA) based on displacement magnitude and 

frequency. We used activity intensity cut-off ranges appropriate for older adults (Copeland 

and Esliger, 2009) using MeterPlus v4.2 software (Santech, Inc.; San Diego, CA). MVPA 

was defined as > 1040 counts/minute and LIPA was defined as 51–1040 counts/minute. The 

total minutes of each intensity was divided by total valid days to yield average time in 

minutes spent daily in a specific physical activity intensity (see summary descriptive 

statistics of physical activity variables in Table 2). Observed MVPA was positively skewed 

so we used a natural log-transformation to improve normality of the distribution (see 

supplementary figure 2).

2.3. Cardiorespiratory fitness assessment

All older participants obtained physician’s approval to engage in cardiorespiratory fitness 

testing. Cardiorespiratory fitness was defined as maximal oxygen consumption (VO2max in 

mL/kg/min), measured with indirect calorimetry during a modified Balke graded maximal 

exercise test on a motor-driven treadmill test. Oxygen consumption (VO2) was calculated 

from expired air sampled at 30-s intervals until peak VO2 was reached or the test was 

terminated due to volitional exhaustion and/or symptom limitation. VO2max was determined 
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after two of three criteria were met: (1) a plateau in VO2 after increase in workload; (2) a 

respiratory exchange ratio >1.10, and (3) a maximal heart rate within 10bpm of their age-

predicted maximum.

2.4. MRI acquisition

All images were acquired during a single session on a 3T Siemens Trio Tim system with 45 

mT/m gradients and 200 T/m/sec slew rates (Siemens, Erlangen, Germany). T2*-weighted 

resting state images were acquired with a fast echo-planar imaging (EPI) sequence with 

BOLD contrast (6min, TR = 2s, TE = 25ms, flip angle = 80 degrees, 3.4 × 3.4 mm2 in-plane 

resolution, 35 4mm-thick slices acquired in ascending order, Grappa acceleration factor = 2, 

64 × 64 matrix), while the participants were asked to lay still with their eyes closed. 

Additionally, dual-echo gradient field maps were acquired to account for geometric 

distortions caused by magnetic field inhomogeneity (Jezzard and Balaban, 1995). The 

gradient field maps were collected as 35, 4 mm-thick slices, 3.4 × 3.4 mm2 in-plane 

resolution, TR = 700ms, TE = 10/12.46 ms, and flip angle = 35 degrees. Resting state and 

field-map images were obtained parallel to the anterior-posterior commissure plane with no 

inter-slice gap.

High-resolution structural MR scans were acquired using a 3D MPRAGE T1-weighted 

sequence (TR = 1900 ms; TE = 2.32 ms; TI: 900 ms; flip angle = 9°; matrix = 256 × 256; 

FOV = 230 mm; 192 slices; resolution = 0.9 × 0.9 × 0.9 mm; GRAPPA acceleration factor 

2) and used as an intermediate step in registration of functional images to standard MNI 

space.

2.5. Data Processing

Image processing and analyses were carried out with an in-house script library using tools 

from FSL 5.0.4 (Functional Magnetic Resonance Imaging of the Brain’s Software Library, 

http://www.fmrib.ox.ac.uk/fsl), AFNI (http://afni.nimh.nih.gov/afni), FreeSurfer (http://

surfer.nmr.mgh.harvard.edu), and MATLAB (The MathWorks, Natick, MA, USA). Raw 

DICOM images were converted to a NIfTI image using FreeSurfer’s mri_convert tool and 

reoriented to RPI orientation with FSL’s fslorient. FSL’s BET (Brain Extraction Technique) 

algorithm was then used to strip voxels containing non-brain tissue from the T1 structural 

images (Smith, 2002). Skull-stripped T1 images were manually inspected and corrected for 

errors. A 6 degree-of-freedom rigid-body head motion correction was applied to rsfMRI EPI 

data using AFNI’s 3dvolreg function, producing six parameters of head motion (root-mean-

squares of translational and rotational movement: X, Y, Z, pitch, roll, and yaw directions) for 

use as regressors to partial out variance in the BOLD signal associated with motion. 

Gradient field map images were skull-stripped with BET and then processed for subsequent 

EPI unwarping using FSL’s fsl_prepare_fieldmap. The processed field maps were applied to 

the motion corrected EPIs using FSL’s epi_reg for simultaneous EPI distortion correction 

and registration to the T1. Finally, non-brain tissue was removed from the corrected rsfMRI 

EPI image using BET, and spatial smoothing was applied using a 6.0 mm three-dimensional 

Gaussian kernel of full-width at half-maximum.
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AFNI’s 3dBandpass tool was then used to temporally filter the time series data to restrict the 

signal to a frequency band of .008 < f < 0.08 Hz; this was done to reduce sources of noise 

such as high frequency physiological signals (e.g., cardiac pulse) and low frequency scanner 

drift. This frequency band is also reflective of the spontaneous, low frequency fluctuations 

of the BOLD fMRI signal (Leopold et al., 2003; Salvador et al., 2005). Following temporal 

filtering, the mean time series was extracted from a region in deep white matter 

(retrolenticular portion of the left internal capsule), a region in the lateral ventricle, and 

global signal derived from a whole-brain mask. These were considered nuisance signals and 

used as covariates to further control for physiological artifacts that could confound FC 

measures. In addition, the six head motion parameters described above were bandpassed 

with the same temporal filter applied to the fMRI data and included as nuisance regressors 

(Hallquist et al., 2013). Together, the 9 bandpassed nuisance regressors (white matter, CSF, 

global, and 6 motion parameters) were entered into a multiple regression as independent 

variables predicting the preprocessed rsfMRI data (using FSL’s FEAT tool). The residual 

time series data from the nuisance regression was then evaluated for any motion-

contaminated volumes (Power et al., 2012). Briefly, volumes above a frame-wise 

displacement threshold of 0.5 mm that coincided with BOLD signal changes were removed 

from subsequent FC analyses. Overall, motion scrubbing only affected 9 older participants 

with an average of 5.9 volumes (3%) removed from analysis.

2.6. FC analysis of resting state networks

Two FC analyses were performed on the preprocessed rsfMRI data: 1) a targeted pairwise 

region of interest (ROI) analysis based on correlations between pairs of ROIs and 2) a 

whole-brain exploratory analysis based on the correlation of selected network ROIs with all 

other voxels in the brain. For the targeted approach, our ROIs were derived from a group-

level independent components analysis (ICA) that was applied to the pre-processed rsfMRI 

data using FSL’s MELODIC with automatic dimensionality estimation. The rsfMRI data 

were decomposed into 13 independent spatiotemporal components (IC) that were common 

across the young and older adults. Of the 13 ICs, we identified 4 cognitively relevant and 

well-replicated ICs: 1) default-mode network (DMN), 2) dorsal attention network (DAN), 3) 

executive control network (ECN), and 4) salience network (SAL) (see Figure 1). We also 

identified 2 ICs resembling sensory-related networks: visual network (VIS) and a somato-

motor network (MOT) (see Figure 1). For each of these 6 networks we constructed 14-mm 

diameter spheres centered on the peak coordinates within the IC statistical map (listed in 

Table 1; illustrated in Figure 1). These target ROIs served as a set of empirically derived 

nodes for the analysis of pairwise correlations within and between networks of interest.

Target ROIs were each created in standard MNI (2 mm) space and then registered to native 

(functional) space through a multi-stage procedure. First, each participant’s EPI was 

registered to their high-resolution structural T1 image using the boundary-based registration 

(BBR) algorithm (Greve and Fischl, 2009). Registration of the participant’s high-resolution 

structural image to standard MNI space was carried out with FNIRT nonlinear registration 

using a default 10 mm warp resolution (Andersson et al., 2007a, b). The resulting two 

transformations were then concatenated and applied to the participant’s functional image to 
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register their functional image to standard MNI space; a reverse transform was used to 

register the ROIs from standard MNI space to each participant’s native functional space.

For FC analyses with these target ROIs, the mean (preprocessed) time series was extracted 

from all ROIs and cross-correlated with all other ROIs using MATLAB. Cross-correlations 

of all ROI pairs were estimated as Pearson’s correlation coefficients and then transformed to 

Fisher’s Z estimates Z(r) using Fisher’s r-to-z transformation. Initial exploratory analyses of 

bivariate connectivity patterns as a function of age, fitness, and physical activity, but 

uncorrected for multiple comparisons, are presented in the supplementary materials. To 

address the multiple comparisons issue, we used the network-based statistic (NBS) to 

identify network components that have ROI-ROI pairs with greater or lesser functional 

connectivity as a function of age or fitness and physical activity. The NBS algorithm has 

been well-validated (Zalesky et al., 2012; Zalesky et al., 2010) and widely applied (Bai et 

al., 2012; Cocchi et al., 2012; Thompson and Fransson, 2015; Wang et al., 2013) as a tool to 

provide both statistical power and protection against multiple comparisons when examining 

effects proposed to occur across distributed sub-systems of network nodes. Based on the 

literature, there is evidence that there are important sub-networks or sub-systems within the 

broader cortical systems that are vulnerable to normal aging (e.g., Andrews-Hanna et al., 

2007; Damoiseaux et al., 2008). Our studies and others have also shown that the association 

of fitness and fitness training with brain health is likely at the level of sub-systems rather 

than expressed robustly throughout a network (Voss et al., 2010a; Voss et al., 2010b). 

Therefore, the strengths of this approach map onto our goal of detecting effects at the level 

of sub-systems while still being able to examine inter-regional associations both within and 

between broadly distributed cortical systems.

Briefly, the NBS approach tests whether a set of multiple pairwise connections associated 

with a contrast or effect of interest (e.g., t-test or correlation) form a connected component 

of ROI-ROI pairs that would be highly unlikely to have occurred at random. The statistical 

significance of a connected component is determined through a combination of an initial 

cluster-forming probability threshold on each individual ROI-ROI link and the size of 

connected components. Similar to how typical statistical parametric mapping considers 

whether a cluster is statistically significant based on the number of contiguous voxels, the 

NBS approach evaluates whether a component of ROI-ROI pairs of a certain size is non-

random based on comparison to a null distribution of maximal component size empirically 

derived from permutations of randomized data (Zalesky et al., 2010). Thus similar to how 

we would not interpret a single voxel within a functional cluster on an activation map, NBS 

is not designed for the interpretation of isolated ROI-ROI links within identified network 

components. All NBS statistics reported here were computed using the GraphVar toolbox 

(Version 5.1) (Kruschwitz et al., 2015), which is publicly available on NITRC (http://

www.nitrc.org/projects/graphvar/). For all NBS analyses, we used an initial cluster-forming 

threshold of p<.01, generated randomized data with 1000 permutations, and considered 

network components statistically significant at a FWER corrected threshold of p<.01. NBS 

results are visualized with BrainNet Viewer (https://www.nitrc.org/projects/bnv).

For the whole-brain exploratory analyses, the mean preprocessed time series was extracted 

from a subset of the target ROIs above. Then a cross-correlation of the ROI’s time series 
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with the time series of all other voxels in the brain was computed using MATLAB to 

generate Pearson’s correlation coefficient maps designating a value to each voxel that 

corresponds to the strength of correlation with the seed ROI. This map was then converted 

into Z-score maps with a Fisher’s r-to-z transformation, resulting in individual-subject level 

Fisher’s Z maps representing voxels whose resting BOLD signal have a positive correlation 

with the ROI seed.

For group analysis of these voxel-wise seed maps, individual-subject level seed maps were 

registered to standard MNI (2 mm) space through the multi-stage procedure described 

above. Once in standard space, the seed maps from individual subjects were concatenated to 

form a 4D image file (subject as the fourth dimension) and this 4D image was input to a 

between-subjects ordinary least-squares (OLS) regression using FSL’s flameo (Beckmann et 

al., 2003). Multiple comparisons for the resulting group-level statistical maps were 

controlled by thresholding group contrast maps at Z>2.33, with cluster correction of p < 

0.05 (Worsley et al., 1992). Results for whole-brain exploratory analyses are visualized with 

the MRIcron toolbox (https://www.nitrc.org/projects/mricron).

3. Results

3.1. Descriptive statistics and relationships between physical activity and 
cardiorespiratory fitness variables

Table 2 presents descriptive statistics for the study sample, including demographics, physical 

activity, and cardiorespiratory fitness. Although young and older adults differed in 

chronological age, they did not differ in gender composition of the samples or average self-

reported years of education (all p >.05). Histograms of cardiorespiratory fitness and physical 

activity variables are available in the supplementary materials. Within the older adults, 

chronological age was negatively correlated with cardiorespiratory fitness (r =−.22, p<.01) 

and MVPA (r=−.33, p<.001), but not LIPA (r=−.11, p>.05). Cardiorespiratory fitness was 

positively correlated with LIPA (r=.17, p<.05) and MVPA (r=.46, p<.001), and LIPA was 

correlated with MVPA (r=.48, p<.001). Although cardiorespiratory fitness and physical 

activity were moderately correlated, the modest correlations between fitness and physical 

activity variables support the notion that there is non-overlapping variance between the 

variables, which may be meaningfully related to brain health.

3.2. Determining age-related differences in the FC of resting state networks

In order to evaluate whether fitness or physical activity are positively associated with 

network characteristics that are vulnerable to aging, we first sought to characterize age-

group differences in the FC of resting-state networks. To this end, we compared the target 

ROI-ROI correlation matrices between the younger and older participants in two ways.

First, we compared the cumulative distributions for young and older adults, for both the 

average within-network correlation of all ROI pairs defined as part of the same network and 

the average between-network correlation of all ROI pairs defined as part of different 

networks. As shown in the cumulative distribution graphs in Figure 2, the within-network 

FC is approximately 0.10 Z(r) greater for young adults compared to older adults across a 
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broad spectrum of the distribution. In contrast, the between-network FC is nearly identical 

for young and older adults across the distribution. This result helps provide a reference for 

meaningful differences in FC as measured by Fisher’s Z(r) correlations, and suggests that 

within-network FC is more vulnerable to age effects than between-network FC.

Next, we applied NBS to describe age group differences in FC within and between networks 

with more regional and network specificity. NBS identified one significant network 

component (p<.01, FWER corrected) that included the 47 target ROIs. As shown in Figure 

3, component links with greater FC for young adults were primarily within networks such as 

the ECN and DMN. In contrast, the component links with greater FC for older adults were 

primarily between networks (illustrated as gray links in Figure 3). Note these results are also 

consistent with the pattern of age-group differences observed in the simple bivariate 

connectivity of ROI pairs shown in the supplemental materials (see supplementary figure 2).

Together, these analyses justified reducing the full ROI-ROI correlation matrix by averaging 

within-network FC to estimate the effect size for age differences in favor of young adults for 

each network. Results showed age effects in favor of young adults in the DMN (t(223)=2.99, 

p=.003, d=.56), the ECN (t(223)=7.83, p<.001, d=1.25), and the SAL network (t(223)=2.76, 

p=.006, d=.56) (see Figure 4). Young adults also had greater FC in the DAN network with a 

p-value that equaled the alpha criterion (t(223)=2.49, p=.01, d=.43.

3.3. Are fitness and physical activity associated with network characteristics vulnerable to 
aging?

To determine the independent associations between fitness and physical activity with 

network FC in the older adults, we used multiple linear regression to create residuals for 

each variable of interest after regressing out (i.e., controlling for) variance associated with 

covariates. For instance, to determine the unique relationship between cardiorespiratory 

fitness and FC, we entered age, sex, MVPA, and LIPA as independent predictors in a linear 

regression predicting the dependent variable of cardiorespiratory fitness. Unstandardized 

residuals from this regression analysis represent individual differences in cardiorespiratory 

fitness after controlling for variance in covariates, and were then used as the variable of 

interest in computing the correlation between cardiorespiratory fitness and FC for each ROI-

ROI pair.

NBS identified one network component (p<.01, FWER corrected) correlated with fitness 

that included 34 regions, including primarily within-network links in the DMN and DAN 

showing a positive correlation with fitness, and primarily between-network links showing a 

negative correlation with fitness (see Figure 5). A full list of the regions identified in this 

component is provided in Table 1 of supplementary materials and a list of component links 

is shown in Figure 5. Results of the NBS analysis are consistent with the exploratory results 

of all bivariate relationships for cardiorespiratory fitness shown in the supplemental 

materials. Briefly, at a more strict link-wise threshold of p<.001 (uncorrected), FC between 

regions of the DMN were positively correlated with cardiorespiratory fitness. In particular, 

the DMN regions from both analyses notably included the theoretically proposed “core” of 

the DMN including the PCC and mPFC (Andrews-Hanna et al., 2010) (see supplementary 

figure 3).
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The same regression approach was used to identify variance in MVPA and LIPA that was 

independent of cardiorespiratory fitness. For each of MVPA and LIPA variables we ran 

independent regressions where the variable of interest for associations with ROI-ROI pair 

FC was the dependent variable with all covariates as predictors. The residuals from each of 

these independent regressions were then used for computing correlations with the FC of 

each ROI pair. However, NBS did not identify any statistically significant network 

components associated with MVPA or LIPA. The simple bivariate (uncorrected) analyses 

shown in supplementary materials also suggest little to no within-network structure for ROI 

pairs positively correlated with MVPA (see supplementary figure 5, supplementary figure 6) 

or LIPA (see supplementary figure 7,supplementary figure 8).

Overall, these results support the conclusion that cardiorespiratory fitness has a positive 

association, independent of physical activity, with FC within networks that exhibit age-

related reductions in FC. To further quantify this association and because results 

emphasizing the DMN Core in part involved uncorrected multiple comparisons of many ROI 

pairs, we performed follow-up analyses with extreme fitness groups based on 

cardiorespiratory fitness that utilized complementary imaging analyses. Fitness groups were 

formed as a “lower fit” (LF) older adult group comprised of the bottom 25% of the 

unstandardized residuals and a “higher fit” (HF) group comprised of the top 25% of the 

unstandardized residuals, following the multiple linear regression approach described above 

to identify variance in cardiorespiratory fitness independent of physical activity. This 

resulted in N=47 older participants in each group, and the groups did not differ in age, 

gender proportion, MVPA, or LIPA (see Table 2, supplemental figure 1E and 1F). We then 

compared the LF and HF groups on average within-network FC of the DMN, DMN Core, 

DAN, ECN, and SAL with a one-directional independent samples t-test, based on our 

hypothesis that the HF group would have greater FC than the LF group. Results showed that 

compared to the LF older adults, HF older adults had greater FC selectively in the DMN 

(t(92)=2.24, p=.01, d=.46) and DMN Core (t(92)=2.85, p=.003, d=.59) (see Figure 6).

Finally, we conducted a whole-brain seed-based analysis of the DMN Core. Again, the 

rationale for this analysis is to add a complementary perspective for evaluating the 

specificity of fitness group differences in FC with the DMN Core. Given our first set of 

approaches utilized defined ROIs and indicated the association with fitness is strongest in 

the DMN Core, a seed-based approach with the DMN Core as a joint seed ROI allowed us to 

evaluate where the effects are strongest with these regions without imposing constraints 

about where in the brain effects could be realized. Results are shown in Figure 7 and are 

consistent and complementary with our results from other approaches. The contrast of HF 

greater than LF identified one cluster of 1176 voxels with a peak Z=3.67 centered in the left 

amygdala and extending into the right amygdala, left and right hippocampus, subcallosal 

cortex, and left and right ventral mPFC; the contrast of LF greater than HF identified one 

cluster of 828 voxels with a peak Z=3.78 centered in left dorsal precentral gyrus, extending 

into right precentral gyrus, left post central gyrus, and left and right supplementary motor 

cortex. Overall, results from the seed-based analysis showed that HF had greater FC with the 

mPFC of the DMN Core and in particular with the medial temporal lobe (MTL) sub-system 

of the DMN as conceptualized by Andrews-Hanna and colleagues (Andrews-Hanna, 2012; 
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Andrews-Hanna et al., 2010). However, LF had greater FC with regions outside of the DMN 

and DMN Core (see Figure 7).

4. Discussion and Conclusions

The current study replicates and extends previous research demonstrating a positive 

relationship between cardiorespiratory fitness and FC of cognitively and clinically relevant 

brain networks observed during the resting state and which are vulnerable to adverse effects 

of aging (Voss et al., 2010b). Overall, there are three important themes from our results. 

First, our results replicate previous studies showing that the DMN, ECN, and SAL networks 

are most disrupted with advanced age (e.g., Figure 4). We also show that young adults had 

greater FC in the DAN compared to the older adults, but that the effect was weaker for this 

network compared to other association networks. Importantly, results suggest that at least 

some of the effects related to age on the DMN are not inevitable and may be moderated by 

cardiorespiratory fitness. Secondly, the positive associations between cardiorespiratory 

fitness and FC were specific rather than global to all FC correlates of aging. Consistent with 

our predictions, FC in the PFC and temporal cortex showed the strongest associations with 

cardiorespiratory fitness (see Figures 5 and 7). A third important theme is that the 

association between cardiorespiratory fitness and functional correlates of brain aging was 

independent of lifestyle MVPA and LIPA. Research in other domains of public health has 

demonstrated a similar effect with respect to cardiovascular disease and mortality (e.g., Lee 

et al., 2011) and our results, especially with replication from follow-up prospective and 

training studies, may extend this finding to brain health.

The significance of the specificity of the relationships between fitness and FC, within the 

context of aging, is that it provides insight into the possible mechanisms through which 

cardiorespiratory fitness has been linked to specific and general aspects of cognition in 

healthy aging and better long-term cognitive outcomes in prospective studies (Barnes et al., 

2003; Colcombe and Kramer, 2003; Hillman et al., 2008; Liu et al., 2012; Wendell et al., 

2014). Note that because NBS resulted in one significant component comprised of multiple 

theorized networks for both the age and fitness analysis, we should interpret the specificity 

of effects on different networks cautiously from the NBS analysis alone. However, follow-up 

analyses of average within-network FC and the whole-brain seed-based analysis also support 

the idea that some networks are more sensitive to aging and individual differences in fitness 

than others. In our results, the DMN and particularly the DMN Core had the strongest 

association with cardiorespiratory fitness while also showing sensitivity to individual 

differences in age. Because the DMN is associated with self-referential thoughts and spatial 

processing and its FC has also been implicated in executive function and selective attention 

(Andrews-Hanna et al., 2014; Andrews-Hanna et al., 2007; Damoiseaux et al., 2008; Kelly 

et al., 2008; Menon and Uddin, 2010), these relationships may represent a systems-level 

mechanism for the association commonly observed between cardiorespiratory fitness and 

performance on tasks that emphasize executive function, selective attention, and cognitive 

control as well as general cognitive functioning (Barnes et al., 2003; Colcombe and Kramer, 

2003; Colcombe et al., 2004; Hillman et al., 2008; Smith et al., 2010).
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The specificity of the relationships between fitness and FC observed in the current study is 

significant from a public health perspective because it provides mechanistic insight into 

understanding the positive relationship between fitness and brain health in exercise training 

studies (Erickson et al., 2011; Maass et al., 2014; Pereira et al., 2007; Voss et al., 2013a). 

Overall, our results are most consistent with the cardiovascular fitness hypothesis, which 

suggests that cardiovascular (i.e., aerobic) fitness is the key physiological mediator that 

explains the positive relationship between physical exercise and cognitive performance, with 

the implication that gains in cardiovascular fitness are necessary for gains in brain health to 

be observed (Barnes et al., 2013; Brickman et al., 2014; Dustman et al., 1984).

One mechanism through which cardiorespiratory fitness may be linked to better brain 

function includes improved oxygen transport and metabolism, not only in muscle but also in 

the brain. This in turn is thought to enable more efficient neurotransmitter function 

supporting neuronal signaling, and less oxidative stress and inflammation-related neuronal 

injury, both resulting in improved cognitive performance (Davenport et al., 2012; Dustman 

et al., 1990; Dustman et al., 1984). Another, not mutually exclusive possibility, is that 

aerobic training directly affects the heart and central vessels, which then affect compliance 

and pressure of flow in end organs such as the kidney and brain; accordingly, greater 

vascular compliance would lower pulsatile pressure-related damage in cerebral micro-

vessels that supply energy for neuronal processing (Gauthier et al., 2014; Mitchell et al., 

2011; Tarumi et al., 2013). Finally, another not mutually exclusive mechanistic pathway 

associated with cardiorespiratory fitness could be training-related improvements in the 

oxidative capacity of large skeletal muscles, through both enhanced mitochondrial function 

and muscle capillarization. These improvements would allow for more exchange of muscle-

derived circulating humoral factors that could up-regulate central expression of neurotrophic 

factors, such as brain-derived neurotrophic factor, in the hippocampus and neocortex (Voss 

et al., 2013b; Wrann et al., 2013).

Given that these mechanisms are proposed to work from adaptations initiated by physical 

activity or training at moderate-to-vigorous intensities, what could account for the specific 

association we observed between cardiorespiratory fitness and brain health independent of 

physical activity? One possibility is the strong genetic influence (up to 50%) over 

cardiorespiratory fitness and over the capacity for training-induced changes in fitness 

(Bouchard et al., 1999; Bouchard et al., 2011). Similarly, there may be overlapping genetic 

predictors of the responsiveness of central and peripheral cellular and vascular systems to 

regular MVPA and training. For example, increased distribution of blood flow to the muscle 

is a very important predictor of cardiorespiratory fitness, and this is influenced by the heart’s 

ability to generate more cardiac output (e.g., via increases in stroke volume) and to recruit 

and form new capillaries (i.e., angiogenesis) in the muscle. Another important training-

related adaptation includes changes in the oxidative capacity of mitochondria in active 

muscle fibers. Angiogenesis and mitochondrial function also increase in the brain in 

response to exercise training (Marques-Aleixo et al., 2012; Voss et al., 2013b), and so it is 

possible that individuals that are genetically predisposed to have relatively higher levels of 

cardiorespiratory fitness or have greater training-induced increases in fitness will experience 

the most protection against adverse effects of aging on the brain from through these vascular 

and cellular pathways.
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Interestingly, the distribution of cardiorespiratory fitness for our sample is similar to other 

studies that have detected significant relationships between fitness and cognitive and brain 

health. For instance, prospective studies evaluating the predictive value of cardiorespiratory 

fitness for cognitive decline and other health outcomes have generally found that the greatest 

benefit is in the difference between the lowest to moderate levels of cardiorespiratory fitness 

(Barnes et al., 2003; Berry et al., 2011; Liu et al., 2012), which is consistent with the relative 

differences between our LF and HF older adult groups. In addition, our sample has a similar 

distribution of fitness as other studies linking variation in fitness to individual differences in 

DMN FC (Voss et al., 2010b) and hippocampal volume in healthy older adults (Erickson et 

al., 2009) and early AD (Honea et al., 2009). This suggests that the mechanism linking 

fitness and brain health may not depend on extremely high levels of fitness, and rather is 

sensitive to individual differences in (or training related improvements in) fitness from even 

low to moderate fitness levels.

Finally, our conclusions should be interpreted within the context of several limitations. First, 

our sample was relatively homogenous in regard to age, health, ethnicity, and education and 

so it will be important for follow-up studies to generalize our findings to more diverse 

samples with a variety of age-related chronic conditions. Second, our cross-sectional design 

precludes making causal statements about the influence of cardiorespiratory fitness on brain 

health, so future research will be needed to test our hypotheses and extend our findings 

within the context of training-induced changes in cardiorespiratory fitness. In addition, we 

generated a number of predictions about the cognitive and clinical relevance of the 

specificity of our results for the DMN, and it will be important to follow these predictions 

with explicit tests of whether these FC measures mediate the relationships between 

cardiorespiratory fitness and cognitive performance and clinical outcomes. A particularly 

good framework for testing these relationships will be an analysis that integrates across 

multiple measures of brain structure and function (Hedden et al., 2014). A final limitation is 

that our measure of physical activity was only a brief sample of physical activity rather than 

a measurement over months or years of behavior. While this is standard practice (e.g., 

Troiano et al., 2008; Varma et al., 2014), this may add noise to the measurement of physical 

activity compared with the measurement of cardiorespiratory fitness, since fitness is a 

physiological attribute that may be affected by years of physical activity and other lifestyle 

choices. Thus it is possible that fitness is a marker for more long-standing physical health 

and activity. In addition, it should be noted that while we used a hip-worn accelerometer, 

accelerometers can also be worn on the wrist or ankle and each site has advantages and 

disadvantages for the types of activities they are sensitive to (e.g., Hildebrand et al., 2014). 

In turn, longitudinal studies that measure both physical activity and cardiorespiratory fitness 

regularly over a long duration of training for inactive adults, and studies with different or 

additional accelerometer sites, could further test the extent to which our results stem from 

matters of measurement or mechanism.

Another important set of limitations relates to factors that could be associated with 

individual differences in resting state network FC that also correlate with fitness, but are not 

reflective of the functional integrity of brain networks. The methodological steps important 

for detecting network measures sensitive to neuronal versus non-neuronal aspects of brain 

networks continue to be carefully evaluated, and there is no clear single optimal processing 
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or covariate strategy at this time (e.g., Bright and Murphy, 2015; Zeng et al., 2014). Thus, 

although we have used a processing stream that is consistent with much of the published 

literature investigating individual differences in resting state FC in relation to aging and 

cognition, it will be important for future studies to replicate our findings with additional 

consideration for individual differences in resting heart rate and blood pressure during 

scanning and examining training-related changes in FC within the same individuals that are 

likely to have similar movement and signal-to-noise profiles during scanning (e.g., Zeng et 

al., 2014).

In summary, our results suggest that cardiorespiratory fitness is related to greater FC of brain 

networks that are relevant to age-related changes in cognition and risk for neurological 

diseases. Our results suggest that the positive association of fitness with brain function could 

occur independent of habitual physical activity. This highlights the importance of measuring 

both physical activity and cardiorespiratory fitness as results that show relationships with 

physical activity without accounting for individual differences in fitness may actually be 

attributable to fitness among high responders to regular physical activity. As the world’s 

aging population continues to grow, our results may also suggest that cardiorespiratory 

fitness is an important physiological attribute to modify for improved cognitive and brain 

health throughout the lifespan.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Normal aging is associated with selective disruption of large-scale brain 

networks

• Cardiorespiratory fitness is related to the function of networks affected by aging

• Fitness is related to network function independent of physical activity
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Figure 1. 
Association networks and their ROI peaks. ROI acronyms correspond to the labels in Table 1 

and are used as so throughout the paper; lateralized ROIs are visualized on the appropriate 

hemisphere (shown as L=L and R=R).
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Figure 2. 
The cumulative frequency plot visualizes the average functional connectivity for the set of 

ROI pairs that are either within the same network or in different networks (i.e., between), 

separated by young and older adults.
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Figure 3. 
Visualization of age differences in FC as identified by NBS, p<.01 FWER corrected. Within-

network links are illustrated with the same color as the network nodes as described in the 

color key in the figure; between-network links are illustrated as gray. Of all possible within-

network ROI pairs for each network, those showing an effect in favor of young adults (Y>O) 

included 60% of ECN pairs, 22% of DMN pairs, 20% of DAN pairs, and 18% of SAL pairs. 

Consistent with Figure 2, young adults have greater FC primarily within networks.
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Figure 4. 
Summary of age group comparisons for average functional network connectivity. Boxes 

represent the width between the 25th and 75th quartiles (interquartile range) and the whiskers 

represent the 5th to 95th percentiles of the data, and the middle bar represents the median. 

*p<.01, ^p=.01, based on two-tailed t-tests.
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Figure 5. 
Visualization of relationship between cardiovascular fitness and FC as identified by NBS, 

p<.01 FWER corrected, after controlling for age, gender, MVPA, and LIPA. For both 

positive (A) and negative (B) correlations, within-network links are illustrated with the same 

color as the network nodes and between-network links are illustrated as gray. The panel on 

the right (C) lists the ROI pair labels shown in panels A and B, where “W” is listed for 

within-network pairs and “B” is listed for between-network pairs; ROI pairs are listed in 

order of strength of their association with fitness as indicated on x-axis. Nodes, links, and 

bar graph elements for within-network pairs are colored with the same labeling scheme as 

previous figures. Of all possible within-network ROI pairs for each network, those showing 

a positive correlation with fitness in the identified component included 0% of ECN pairs, 

15% of DMN pairs, 9% of DAN pairs, and 4% of SAL pairs.
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Figure 6. 
Summary of extreme fitness groups comparisons for average functional network 

connectivity: OLD-LF=Older adult lower-fit group, OLD-HF=Older adult higher-fit group, 

YOUNG=younger adult group. Boxes represent the width between the 25th and 75th 

quartiles (interquartile range), whiskers represent the 5th to 95th percentiles of the data, and 

the middle bar represents the median. *p<.01, ^p=.01, based on one-tailed t-tests.
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Figure 7. 
Visualization of results for whole-brain seed-based analysis of the DMN core. Regions in the 

DMN Core (L and R mPFC and L and R PCC) were used as a joint seed and are shown in 

blue. Regions positively correlated with the seed for each contrast (LF mean, HF mean, 

HF>LF, LF>HF) are shown in hot colors. The Z-plane for each axial slice is indicated along 

the bottom in white in MNI coordinate space. For all images L=L/R=R.
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Table 1

Network regions of interest (ROIs) empirically derived from the study sample using independent components 

analysis (ICA) based decomposition of the rsfMRI signal. Networks were identified from ICA with older and 

younger adults, based on knowledge of spatial activation patterns for canonical brain networks of interest. 

Network acronyms refer to: DMN (Default Mode Network), DAN (dorsal attention network), VIS (Visual 

system), MOT (Somato-motor network), SAL (Salience network), and ECN (Executive Control Network). 

Regions were identified based on peak Z-scores for functionally distinct regions within networks.

Network Region of
Interest
(ROI) label

Description of anatomical region MNI coordinates (x,y,z)

DMN PHG Parahippocampal/hippocampal gyrus *L(−24,−26,−20), *R(24,−26,−20)

DMN MTG Middle temporal gyrus *L(−52,−18,−18), R(62,−10,−16)

DMN IPL Inferior parietal lobule L(−46,−64,32), R(50,−62,34)

DMN PCC Posterior cingulate cortex L(−6,−54,32), R(6, −60, 32)

DMN mPFC Medial prefrontal cortex L(−6,62,−4), R(6,62,−4)

DMN dmPFC Dorsal medial prefrontal cortex R(6,50,20)

DMN SFG Superior frontal gyrus L(−24,24,42), R(22,28,44)

DAN pIPS Posterior intraparietal sulcus L(−28,−68,48), R(30,−66,48)

DAN aIPS Anterior intraparietal sulcus L(−40,−46,46), R(38,−46,46)

DAN MT Middle temporal/visual cortex (V5) L(−52,−60,−8), R(58,−52,−10)

DAN MOT Premotor motor cortex L(−48,6,30), R(48,10,28)

DAN FEF Frontal eye field L(−26,2,54), R(28,4,54)

DAN MFG Middle frontal gyrus L(−46,34,22), R(46,34,22)

VIS VIS Occipital pole L(−8,−90,16), R(14,−90,16)

MOT MOT Primary motor cortex L(−6,−28,58), R(6,−26,58)

SAL IPL Inferior parietal lobule L(−60,−40,36), R(60,−38,38)

SAL aINS Anterior insula/cingulo-operculum L(−38,16,2), R(42,16,2)

SAL dACC Dorsal anterior cingulate cortex L(6,32,30), R(−6,26,32)

SAL aPFC Anterior prefrontal cortex L(−30,48,26), R(32,48,26)

ECN SFG Superior frontal gyrus L(−6,42,44), R(6,50,38)

ECN alPFC Anterior lateral prefrontal cortex L(−46,42,−6), R(48,36,−10)

ECN dlPFC Dorso-lateral prefrontal cortex L(−44,12,48)

ECN IFG Inferior frontal gyrus L(−52,20,20), R(54,26,18)

ECN IPL Inferior parietal lobule L(−50,−60,32)

ECN MTG Middle temporal gyrus L(−58,−38,0)

ECN STG Superior temporal gyrus R(52,−32,0)

*
Regions identified as part of network based on a previous study from our group (Voss et al., 2010a,b) finding age- and fitness-related individual 

differences in network membership. Note other regions identified from rsfMRI in this sample also overlap substantially with regions identified in 
previous study (Voss et al., 2010a,b); note from Voss et al., 2010b, previously referred to “fronto-parietal” network is referred to as DAN in the 
current study, and previously referred to “fronto-executive” network contains primarily regions in the SAL network in the current study.
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