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Abstract

 Purpose—Analytical phantoms have closed form Fourier transform expressions and are used 

to simulate MRI acquisitions. Existing 3D analytical phantoms are unable to accurately model 

shapes of biomedical interest. It is demonstrated that polyhedral analytical phantoms have closed 

form Fourier transform expressions and can accurately represent 3D biomedical shapes.

 Theory—The derivations of the Fourier transform of a polygon and polyhedron are presented.

 Methods—The Fourier transform of a polyhedron was implemented and its accuracy in 

representing faceted and smooth surfaces was characterized. Realistic anthropomorphic polyhedral 

brain and torso phantoms were constructed and their use in simulated 3D/2D MRI acquisitions 

was described.

 Results—Using polyhedra, the Fourier transform of faceted shapes can be computed to within 

machine precision. Smooth surfaces can be approximated with increasing accuracy by increasing 

the number of facets in the polyhedron; the additional accumulated numerical imprecision of the 

Fourier transform of polyhedra with many faces remained small. Simulations of 3D/2D brain and 

2D torso cine acquisitions produced realistic reconstructions free of high frequency edge aliasing 

as compared to equivalent voxelized/rasterized phantoms.
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 Conclusion—Analytical polyhedral phantoms are easy to construct and can accurately 

simulate shapes of biomedical interest.
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 Introduction

In MRI acquisition and reconstruction development, it is useful to be able to quickly 

generate Fourier measurements of test objects. Physical test objects are referred to as 

physical MRI phantoms, or simply MRI phantoms. Realistic physical phantoms can be time 

consuming, cumbersome, and expensive to construct (1). In contrast, digital phantoms, 

sometimes referred to as computerized phantoms (2), are computer models. Digital 

phantoms are convenient because test data can be generated from simulated acquisitions but 

they currently have a number of shortcomings that limit their utility.

Digital phantoms can be divided into analytical or rasterized phantoms. Analytical phantoms 

are based on functions in the image domain which also have closed form Fourier transform 

(FT) expressions. These expressions allow the FT to be computed accurately at arbitrary 

spatial frequencies. An ideal analytical phantom for MRI development should accurately 

approximate the borders as well as the intensity profiles of shapes comprising biomedically 

relevant objects. However, existing 3D analytical phantoms are limited in the types of 

boundaries and intensity variations they can model. For instance, Koay’s implementation of 

the 3D Shepp-Logan head phantom (3,4) is constructed using ellipsoids with uniform 

intensity. Although Guerquin-Kern recently provided a closed form FT for 2D B-spline 

analytical phantoms with simulated coil sensitivity profiles (5) and Zhu used polygonal 

models to create an analytical vocal tract phantom (6), these phantoms are confined to 2D 

simulations.

In contrast to analytical phantoms, rasterized or voxelized phantoms (2,7–9) are based on 

voxels. They can be generated by discretely sampling continuous functions in the image 

domain but can also include simulations which evaluate the Bloch equation on a per voxel 

basis(10,11). Unlike the exact FT of analytical phantoms, rasterized phantoms can only 

provide an approximation of the FT of the original function by computing the discrete 

Fourier transform (DFT) of the image domain samples. The approximation accuracy is 

bounded by the rasterized phantom resolution. It can be made more accurate by 

oversampling, i.e. increasing the image domain sampling density, which in turn reduces high 

frequency aliasing in k-space. However, since the computational cost of the DFT increases 

with matrix size and keeping in mind that that all image space samples are required to 

compute a single k-space sample, motion simulations can be computational expensive. 

Separate image domain matrices are required to capture different motion states. Simulating 

motion between k-space samples requires computing the DFT of the matrix corresponding 

to the state of the object at sample time. Since the object may be moving continuously, the 

object may only spend a few k-space samples between state changes. Thus the DFT of many 

matrices must be computed to simulate even a few k-space samples, which can be time 
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consuming. Additionally, non-Cartesian k-space trajectories are less straightforward to 

simulate since the DFT produces k-space points on a Cartesian grid.

Here we introduce 3D analytical phantoms constructed using polyhedra with uniform 

intensities, which although limited in their ability to model intensity variations, are able to 

accurately model the boundaries of many biomedically relevant shapes. A polyhedron is any 

closed surface comprised of polygonal faces and is general enough to accurately 

approximate the boundaries of many 3D objects. Additionally, since closed triangular 

meshes are also polyhedra, an analytical polyhedral phantom can be easily constructed using 

existing 3D computer graphics modeling tools that manipulate triangular meshes. Other 3D 

surface representations such as non-uniform rational B-splines (NURBS) can be converted 

to triangular meshes, which can then be used in an analytical polyhedral phantom.

We describe the theory and construction of analytical polyhedral phantoms, expanding on 

previously presented work (12). First, the closed form FT expressions for polyhedra are 

reviewed. Next, we describe an implementation of the FT of a polyhedron. Then we evaluate 

the accuracy of the FT computation for objects that can be exactly described using a 

polyhedra, e.g. a cube, and objects that can only be approximated, e.g. an ellipsoid. Finally, 

we describe the construction of analytical polyhedral phantoms that accurately model a brain 

and a torso and demonstrate their application in MRI simulations.

 Theory

We review the analytical expressions for the FT of a polygon and polyhedron (13). A 

detailed derivation can be found in Appendix A. Vector quantities are in bold, scalars in 

plain typeface, and when both bold and plain typeface versions of a symbol exist, e.g. k and 

k, the plain typeface represents the magnitude of the corresponding vector.

 Fourier transform of a polyhedron

A polyhedron is comprised of F polygonal faces. The boundary of the face f is composed of 

Ef vertices,  ordered in a counter-clockwise fashion when viewed with the 

face normal  pointing at the observer.  is a vector oriented in the 

direction of the eth edge, pointing from vertex  to  with the same length as the 

edge.  is the unit vector oriented in the direction of the eth edge.  is a unit 

vector normal to the eth edge and pointing outward from the interior of the polygon. 

Additionally, the first and last vertices are connected, thus .

is the analytical expression for the FT of a unitary intensity polyhedron ρ(r) at spatial 

frequency k and is given in equation 1. If k=0, i.e. the DC offset, the FT is the volume 

polyhedron V. At non-zero k-space frequencies,  is proportional to the sum of face 

contributions , where . When a face f is normal to k, i.e. it’s normal vector 

 is parallel to k, that face contribution is proportional to the area of the face, Pf modulated 

by a complex exponential whose argument is the dot product of k and the first vertex in the 

face . Otherwise, when , the face contribution is proportional to the sum of 
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contributions from each edge comprising the face. The contribution of edge e is proportional 

to the product of the length of the edge , a sinc and a complex exponential whose 

argument contains , the midpoint of the edge. The number of terms in the overall sum 

for  and thus the computational cost is proportional to the total number of edges in 

the polyhedron. Since the FT is linear, the expressions for non-unitary intensity polyhedra 

can be obtained by multiplying  by the desired intensity. Figure 1 and Table 1 

illustrate and define these quantities.

(1)

V is the volume of the polyhedron (14) which is given in terms of its vertices as:

(2)

 Methods

 Implementation

We implemented the FT of a polyhedron in two forms. First, a multi-threaded C++ 

MATLAB (15) plugin was created. Since the face contributions are independent they were 

computed in parallel using the available CPU threads. This strategy works well for motion 

simulations where the geometry of a polyhedral phantom with many faces changes every 

few k-space samples. Alternatively, if many k-space samples are needed for a single state of 

the object, e.g. in static simulations, an alternative efficient implementation can divide the 

computation among k-space samples instead of faces. Unless stated otherwise, this 

implementation was used for testing in this work. The second implementation is comprised 

of a set of MATLAB functions that take advantage of built-in parallelization and required no 

additional external libraries. This package is available to the MRI community though 

Mathworks. This implementation, apart from being platform-independent, is parallelized 

along both the faces and k-point dimensions, using either vectorization or innate multi-

threading.

Multiple components comprising a polyhedral phantom can be modeled using separate 

polyhedra, similar to the multiple ellipsoids comprising the Shepp-Logan phantom. The FT 
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of the composite phantom is obtained by computing the weighted sum of the individual FT 

of all component polyhedra, where the weights are the desired intensities of each 

component. Overlapping components will cause summation of intensities in the image 

domain.

Attention should be paid to the quality of polyhedra comprising a phantom. Polyhedra with 

undetected surface gaps, self-intersections, or incorrectly ordered vertices can produce 

unexpected results in the computed FT. The effect of a gap is proportional to its surface area. 

The gap can be interpreted as a missing face. Since the magnitude of the missing face 

contribution is proportional to the length of its edges, a larger gap has proportionately 

greater effect. Self-intersections cause reversal of internal and external regions, reversing the 

orientation of faces. The reversed orientation introduces a negative sign into the face 

contribution. As a result, a region of self-intersection can have the complex phase of its 

intensity reversed. The effect of a self-intersection is proportional to the volume of the 

regions involved. Finally, vertices that comprise a face are assumed to be ordered in a 

counterclockwise fashion with the face normal pointing toward the observer. Reverse 

ordering also reverses the face normal, again inverting inner and external regions similar to 

self-intersections. Again, artifacts associated with reverse ordering are proportional to the 

size of the faces involved. Since, these abnormalities affect the FT expression in a 

continuous fashion, the threshold at which they become noticeable will depend on machine 

numerical precision.

 Validation

 Accuracy—We compared the FT of a unit cube shaped polyhedron against the known 

gold standard FT of a unit cube. The unit cube, , has a closed form FT, , that is the 

product of sincs:

(3)

define the length of the  in the x, y, and z directions respectively and 

 are elements of the k vector. The lengths were set to unity  thus 

the function is a unit cube with unitary intensity centered at the origin. The unit cube can be 

exactly modeled using a triangular mesh thus the FT can also be computed with our 

implementation of the FT of a polyhedron. The unit cube shaped triangular mesh used in this 

validation had 12 triangular faces, two triangles defining each of the six square faces as 

illustrated in Figure 2. For the calculation of the FTs we used a field of view (FOV) of two 

corresponding to a k-space sampling density of  and a 643 sampling 

matrix. These same parameters, unless otherwise specified, were used for all validation 

experiments.

Ngo et al. Page 5

Magn Reson Med. Author manuscript; available in PMC 2017 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



 Floating Point Precision—Edges are the basic unit in the computation of the FT of a 

polyhedron. Polyhedra with many faces, and thus many edges, are useful for modeling 

complex biomedically relevant geometry. Thus we assessed if the FT of a polyhedron 

accumulated prohibitively high floating point precision errors as the number of edges 

increased. The gold standard of the FT of a unit width 3D rect was compared with the FT of 

a unit cube shaped polyhedra containing 12 to 98,304 triangular faces or equivalently, 18 to 

147,456 edges respectively (number of edges = 1.5 × number of faces for triangular 

meshes). Figure 2a–c illustrates example meshes containing 12, 6,144, and 12,288 triangular 

faces or 18, 9,216, and 18,432 edges, respectively. Additionally, the cube was shifted away 

from the origin by adding a random value between −0.5 and 0.5 to one or more of the x, y, 

and z components of the vertices and the gold standard k-space was multiplied by a 

corresponding linear phase.

 Approximating smooth surfaces—To approximate smooth surfaces with a 

polyhedron, progressively smaller facets can be used until the desired approximation 

accuracy is obtained. We quantified the geometric approximation error incurred when 

modeling a smooth surface using a polyhedron. We examined how the error decreases when 

approximating an ideal ellipsoid with a polyhedron with increasing number of faces. We 

chose an ellipsoid because it is a smooth surface with a known closed form FT (3). The 

ellipsoidal triangular meshes were generated using Matlab in two steps. First points were 

generated on the surface of an ellipse (using ellipsoid). Then, a triangular mesh was 

generated from these points (using convhull). The meshes contained between 180 to 

79,600 faces or 270 to 119,400 edges respectively. Figure 2d–f illustrate the meshes 

containing 180, 1,740 and 79,600 faces.

 Brain phantom

 3D MRI Simulation—Triangular meshes representing the outer and inner cortical brain 

surfaces were generated using anatomical data. The source data was a magnetization-

prepared rapid gradient echo MRI volume from the Open Access Series of Imaging Studies 

(OASIS) dataset (16). The Topology Preserving Tissue Classification of Magnetic 

Resonance Brain Images (TOADS) algorithm (17) was used to segment the gray matter. The 

Cortical Reconstruction Using Implicit Surface Evolution (CRUISE) algorithm (18) was 

then applied to this segmentation to generate triangular meshes corresponding to the outer 

and inner cortical surfaces. The outer and inner cortical meshes contained 536,684 and 

354,908 triangular faces respectively and are illustrated in Figure 3a–b. The number of faces 

was determined automatically by the TOADS and CRUISE algorithms and was dependent 

on factors such as the volume of the brain and the complexity of the cortical surface. 

Although subcortical structures such as ventricles were not included in this phantom there 

are no technical limitations that prohibit their inclusion.

We simulated a 3D MRI acquisition using these meshes. The k-space matrix size was 1283, 

and the FOV in right, anterior, superior directions were 137.35 mm, 170.15 mm, and 117.20 

mm, respectively. The outer and inner cortical meshes were assigned intensities of 74 and 

38, respectively, producing after summation due to overlap, intensities of 74 in the cortex 

and 112 in the subcortical regions. Finally, the volume was reconstructed using a 3D IDFT.
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 2D MRI simulation—We simulated a 2D MRI acquisition where a slice of the 3D 

object is selectively excited before k-space is acquired. To simulate ideal slice selection 

where an infinitesimally thin slice of the brain is excited by a slice selective radio-frequency 

pulse, a 2D plane perpendicular to the slice selection axis, the z-axis, was intersected with 

the meshes generating sets of 2D slice contours. The location of the slice plane lies midway 

between the top and bottom faces of the slab mesh in Figure 3a,b. We used the 

Computational Geometry Algorithms Library (CGAL) (19) to compute these intersections. 

CGAL is a C/C++ library containing peer validated, highly accurate geometry related 

functions. Figure 3c illustrates the resulting contours obtained through simulated ideal slice 

selection.

We also simulated slices with finite thickness as is typical in 2D MRI acquisitions. While 

real MRI slices usually have a Gaussian or sinc profile along the slice encoding direction, 

this can be approximated with a rect function which can be modeled as a slab mesh. 

Alternatively, one could compute the 3D FT of the slab and convolve it with the FT of the 

desired arbitrary slice profile. However, if a closed form solution does not exist for the 

convolution, it must be approximated by sampling the FTs, which would introduce 

approximation errors. Using CGAL’s Boolean surface operations, we computed the 

intersection between a 1-mm thick slab mesh, shown in Figure 3a,b, and the cortical meshes 

to generate a set of 1 mm thick sliced meshes for the inner and outer surfaces illustrated in 

Figure 3d. The slab mesh was perpendicular to the slice encoding z-axis and large enough in 

the x and y directions to encompass the brain. Since the intersection can disconnect sections 

of the original contiguous cortical mesh, creating “islands”, the result of the intersection 

between slab and cortical mesh is not a single closed sliced meshed but a set of closed 

meshes. Triangular faces in the original cortical mesh that are intersected by the top and 

bottom planes are converted to polygons with additional edges. The top and bottom surface 

of the sliced meshes are non-triangular polygons which outline the intersection of the top 

and bottom slab plane with the cortical mesh. The inner and outer cortical sliced mesh sets 

contained a total of 4,798, and 3,812 faces, respectively.

Using these contours and sliced meshes, we simulated a 2D MRI acquisition. We used the 

FT of polygons and polyhedra to compute the k-space of the infinitesimally thin slice 2D 

contours and finite thickness slice meshes respectively. The same acquisition parameters 

were used for both simulations. As in a real 2D MRI acquisition, we sampled k-space on a 

Cartesian grid of matrix sizes 642, 1282, and 2562 in the kx−ky plane, i.e. only the kx=0 

mm−1 plane was sampled. Since the largest extent of the contours and sliced meshes was 

122.78 mm in anterior-posterior dimension, the imaging FOV was set to 1.1 times larger at 

135.06 mm to prevent image domain aliasing. Sampling only the kx=0 mm−1 plane 

integrates the finite slice in the z direction, which results in slice encoding related partial 

volume effects. The same tissue intensity assignments were used as in the 3D MRI 

simulation.

For comparison, we also generated a rasterized phantom by sampling the 2D contours in 

image space. The imaging parameters were equivalent to the analytical simulations. The 

image domain of each contour was sampled by assigning a value of one or zero for points 

inside or outside the contour respectively. Each rasterized contour was then scaled by the 
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same tissue intensities used in the analytical simulations before summation in image space. 

We did not perform a finite thickness slice selection rasterized simulation because 

approximating through slice integration via image space sampling would introduce through-

slice sampling density as another experimental parameter.

We used the IDFT to reconstruct images from the analytical phantom simulations. To 

compare the ideal slice and finite slice simulation images, the finite slice reconstruction was 

normalized by the slice thickness since the intensity is integrated through the slice. No 

image reconstruction was required for the rasterized phantom.

 Torso phantom

We simulated the 2D MRI acquisition of a torso with cardio-respiratory motion to 

demonstrate the application of a polyhedral analytical phantom in cardiac MRI simulations. 

First, triangular meshes for the polyhedral torso phantom were generated with source 

geometry and motion derived from the eXtended Cardiac-Torso (XCAT) phantom (2,20,21). 

XCAT is a 4D NURBS and subdivision surface based anthropomorphic phantom. These 

NURBS and surfaces model anatomy from the high-resolution anatomical images of the 

Visible Male and Female National Library of Medicine datasets. XCAT also models cardiac 

motion based on 100 time frames over a cardiac cycle of high resolution (0.32 mm pixel 

size, 0.4 mm slice thickness) cardiac-gated multi-detector computed tomography (CT) data. 

Respiratory motion is also modeled based on respiratory-gated CT data. We used the male 

XCAT model for this simulation, extracting 90 sets of NURBS surfaces corresponding to 

uniformly spaced time points fully spanning a cardio-respiratory cycle.

The NURBS surfaces from the XCAT phantom were converted to triangular meshes using 

Rhinoceros (22), a computer graphics program specialized in manipulating NURBS. Each 

object in the XCAT phantom was represented by at least one mesh. Hollow objects such as 

the ventricles of the heart had separate meshes for inner and outer surfaces. The number of 

triangular faces per mesh varied. For instance, the left ventricular inner mesh contained 

1,322 triangles, while the left lung mesh contained 4,086 faces. The total number of faces 

across all meshes for a single time point varied but was approximately 23,580. Figure 4a 

shows the resulting triangular mesh torso phantom at end-expiration/end-diastole. 

Conversion with Rhinoceros produced some self-intersecting meshes. As Rhinoceros is 

proprietary software, it is unclear why conversion from NURBS to triangular meshes would 

in some cases result in self-intersections, holes and other abnormalities. The CGAL library 

contains algorithms that detect self-intersections and using it we created a tool to determine 

which meshes were abnormal. We first attempted to repair these meshes using Polymender 

(23), a program that repairs defects in triangular meshes. After the attempted repair, we reran 

the self-intersection detection tool. If the repaired mesh was still self-intersecting, we used 

Meshlab (24), a program that specializes in manipulating triangular meshes, for a second 

attempt at repairing the mesh. Unfortunately, some meshes could not be repaired by either 

program and were excluded from all time points of the phantom.

Some surfaces from XCAT overlapped during respiratory and cardiac motion, which caused 

undesired addition of intensities in the image domain. These overlapping regions were 

subtracted using mesh Boolean operations. As a consequence, meshes that contained other 
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meshes were "hollowed" out. For instance, the left ventricular epicardial surface mesh 

derived from XCAT contained the endocardial surface mesh. The epicardial surface mesh, 

which describes a solid, was converted to a solid shell that had an outer and inner surface 

that precisely followed the endocardial surface and thus was able to accommodate the 

endocardial surface mesh without overlap.

Next, finite thickness slice selection was simulated for all time points. A 4 mm thick slab 

mesh representing the slice plane, positioned at the base of the heart in the short axis 

orientation was intersected with all meshes for each time point and is illustrated in Figure 

4a. We used CGAL functions to compute this intersection resulting in 4 mm-thick sliced 

meshes. This process was repeated for all time points in the cardio-respiratory cycle. Figure 

4b illustrates the resulting sliced meshes at the extremes of the cardio-respiratory cycles.

A 2D MRI acquisition was simulated individually for all time points. The k-space of the 

sliced meshes were sampled using a 1282 Cartesian matrix and FOV=400 mm. The 

intensities of the polyhedra were chosen to simulate the relative intensity differences 

between tissues in a bright-blood gradient echo MRI sequence. Finally, the IDFT was used 

to reconstruct images for each time point.

 Results

 Validation

 Accuracy—The FT of a unit cube triangular mesh with 12 faces (18 edges) computed 

using the proposed implementation closely matched the gold standard. To estimate 

differences between the proposed method and the gold standard, the magnitude of the error 

 and the normalized magnitude of the error 

 were evaluated along the kx-axis. As Figure 5a 

middle row illustrates, the magnitude of the error was small, below  for all sample 

locations. Samples with larger coefficient magnitudes seemed correlated with higher 

magnitudes of error. The normalized magnitude of error was also very small, less than 

3×10−18 as illustrated in Figure 5a bottom row. The normalized error was uncorrelated with 

the magnitude of the coefficient.

 Floating Point Precision—The error due to limited floating point precision was small, 

suggesting detailed meshes with many edges can be used to construct analytical polyhedral 

phantoms. We computed the l2-norm of the difference between the FT of the polyhedron and 

gold standard normalized by the l2-norm of the gold standard. Figure 5b shows that the 

normalized error increases approximately linearly with the number of edges with small 

variations between different displacements of the cube from the origin. Gray lines in the 

figure correspond to different displacements of the cube from the origin. The solid line with 

error bars indicates the mean and standard deviation of the error taken across all 

displacements. For the mesh with 147,456 edges, the mean normalized error is just 

0.8717×10−13. These computations were performed on a quad core Intel Xeon 2.13 Ghz 

system. A five run average of the FT of the 12 face cube mesh (18 edges), over the 643 k-

space matrix using one, two, three, and four processor threads required and 7.78, 4.02, 2.84, 
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2.32 seconds or 1.65, 0.85, 0.60 and 0.49 μseconds per k-space sample per edge respectively. 

As run times were not recorded for all simulations, the computational rate corresponding to 

four threads will be used to estimate run times for other simulations. This is a reasonable 

estimate because the computational cost of the FT of a polyhedron is linear in the number 

edges and k-space samples.

 Approximating Smooth Surfaces—We computed the l2-norm of the difference 

between the FT of the ellipsoidal polyhedron and ideal ellipsoid normalized by the l2-norm 

of the FT of the ideal ellipsoid. The normalized error decreased quickly with increasing 

number of faces. The log of the l2-norm of the error over the entire volume normalized by 

the l2-norm of the gold standard volume decreased rapidly with increasing face number as 

illustrated in Figure 6a. At 79,600 faces (119,400 edges) the normalized error is only 

6.21×10−4. The geometric approximation error is magnitudes larger than the floating point 

precision error, suggesting the number of faces can be increased significantly although with 

an increase in computation time. Figure 6b top row shows the z=0 slice of the reconstructed 

FT of meshes containing 180, 760, 1,740, 79,600 faces and the corresponding error is 

indicated by arrows in Figure 6a. Gibbs ringing due to finite k-space sampling can be 

observed in the reconstructed images in Figure 6b top row. Figure 6c illustrates this artifact 

in more detail using an intensity profile corresponding to the dashed line in Figure 6b. In 

image space, the error as expected is concentrated at the edges and is shown in Figure 6b 

bottom row. In k-space, the largest absolute errors are concentrated at the lower frequencies, 

as shown in Figure 6d top row. However, when the absolute value of the error is normalized 

by the absolute value of the gold standard, higher frequencies tend to have more normalized 

error, shown in Figure 6d bottom row.

 Brain phantom

 3D MRI simulation—The analytical polyhedral brain phantom was able to accurately 

model the gyri of the brain. Although, the surfaces were comprised of triangular facets, they 

were small enough to approximate the smooth curves of the brain at this resolution. Gibbs 

ringing from finite sampling of k-space can also be observed in the inhomogeneity of 

intensities near the edges, an artifact found in real MRI images. Figure 7 illustrates 

representative slices from the reconstructed volume. The estimated computational time for 

the FT of the 3D brain phantom was approximately 15.96 days. The exponential increase in 

the number of samples in the 3D 1283 sampling matrix compared to a 2D matrix and the 

large number of faces substantially increased computation time.

 2D MRI simulation—The results of the 2D MRI simulations using the 2D analytical 

infinitesimally thin and 3D finite slice thickness analytical phantoms were compared with a 

2D rasterized phantom generated from the contours of the 2D infinitesimally thin slice 

phantom (Figure 8). Differences between the 2D analytical and the 2D rasterized phantoms 

were solely due to aliasing effects of image space sampling in the rasterized phantom. 

However, differences between the 3D finite slice analytical phantom and 2D rasterized 

phantom additionally include through-plane intensity variations that accurately reflect 

underlying mesh geometry. To demonstrate the effects of finite slice thickness, rasterized 

phantom must densely sample the through plane direction to approximate these variations 
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(not shown). Using the C++-based MATLAB plugin, the time required to compute Fourier 

samples for the finite thickness slice selection 3D brain MRI simulation for 642, 1282 and 

2562 matrix sizes was 0.43, 1.73 and 6.93 minutes, respectively. We omit the slice plane and 

slab intersection operations because they require a negligible amount of time compared to 

the FT computation.

The finite thickness slice selection 2D brain MRI simulation exhibited partial volume effects 

seen in real 2D MRI acquisitions. The arrowheads in Figure 8 highlight partial volume 

effects at the edges seen only in the finite thickness simulation. Oblique edges of the mesh 

caused changes in intensity along the slice encoding direction which was integrated 

simulating partial volume effects in the finite thickness slice selection simulation. Aside 

from the edges, regions of low intensity can be observed in the interior when using finite 

slices, illustrated by the full arrows in Figure 8. In the finite thickness simulation, 

normalizing the integrated intensity by the slice thickness produces the mean intensity 

through the slice plane. Thus, regions that were predominantly low intensity in the slice 

direction may have lower intensity than the infinitesimally thin slice simulation, which does 

not have intensity variation in the slice encoding direction.

Differences between the simulations using the rasterized phantom and the analytical 

phantoms were concentrated at the edges as illustrated in Figure 8, row c. The discrete 

image space samples of the rasterized phantom caused aliasing of high spatial frequencies of 

k-space. In the analytical phantom, regions of sudden intensity changes, such as edges, were 

accompanied by Gibb’s ringing and partial volume effects, both of which are not simulated 

by the rasterized phantom. The mean difference between the rasterized and analytical 

phantom decreased with matrix size. The spacing between image space samples of the 

rasterized phantom decreases for larger matrices, reducing high frequency aliasing and thus 

the DFT of the rasterized phantom more closely approximated the FT of the analytical 

phantoms. Edge differences were more pronounced in the finite slice simulation due to 

partial volume effects of oblique edges that were not modeled in the rasterized phantom.

The partial volume effect of finite thickness slice selection can be easily observed in Figure 

8, row c. The full arrows illustrate a partial volume effect seen in the finite thickness 

simulation but was absent in the thin slice simulation. Since the rasterized phantom was 

based on the contours of the thin slice simulation it did not exhibit the partial volume effects 

seen in the finite thickness slice simulation and this can be observed in these difference 

images.

 Torso phantom

The torso phantom demonstrates an analytical polyhedral phantom that incorporates motion. 

Using the C++-based MATLAB plugin, the FT for each time point required an estimated 

4.75 minutes to compute and thus 7.12 hours for all 90 time points. Again, we omit the time 

required to convert, slice and fix the meshes because this was insignificant compared to the 

FT computation time. Figure 9 shows the reconstructed simulated acquisition of the 

phantom at the extremes of a cardio-respiratory cycle. Supporting Movie 1 shows the 

reconstructed simulated acquisition for 90 frames spanning a cardio-respiratory cycle. In-

plane motion can be observed during the contraction of the heart between end-diastole and 
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end-systole. The blood pool of the pulmonary artery seems to merge with the right ventricle 

due to their close vicinity in end-diastole but they separate in end-systole. Additionally, 

motion of objects through the spatially fixed slice plane can be observed. The arrowheads in 

Figure 9 illustrate a portion of a coronary artery that came into the slice plane at end-

inspiration/end-systole which was out of plane at end-expiration/end-systole. The vessels 

and bronchioles of the lung also illustrate through-plane motion. The full arrows in Figure 9 

illustrate a vessel in the lung that came into the slice plane at end-expiration/end-systole but 

was out of plane at end-inspiration/end-systole.

The torso simulation also demonstrates that an analytical polyhedral phantom can be 

constructed using many meshes with greatly differing sizes. There were 180 meshes in each 

set of sliced torso meshes. They ranged from the large body surface mesh to small coronary 

artery meshes. A rasterized phantom would cause aliasing of the large high frequency 

components of small meshes, which does not occur using the closed form FT of the 

analytical polyhedral phantom.

 Discussion

Analytical polyhedral phantoms are useful in a number of areas of MRI development as 

evidenced by the repeated use of the Shepp-Logan phantom and its derivatives based on 

ellipses or ellipsoids. Realistic 4D (3D space and 1D time) may be more accurately 

computed in comparison to using an oversampled, i.e. super-sampled rasterized, phantom. In 

some cases such as simulation of motion, the polyhedral phantoms may be more 

computationally efficient than super-sampled rasterized phantoms. For instance, with the 

torso phantom we only simulated motion between each complete 2D k-space matrix. 

However, we can also simulate motion between individual k-space samples. If motion 

information is available throughout the cardio-respiratory cycle, as it is in the XCAT 

phantom, every k-space sample can be computed using a set of meshes corresponding to the 

current sampling time, thereby modeling motion on an individual k-space sample resolution. 

To perform the equivalent motion simulation accurately using a rasterized phantom would 

require densely oversampling the entire 3D image space matrix for every k-space sample, 

which can be computationally intensive for 4D simulations. Consider such a motion 

simulation with a matrix size of 2563 using the outer cortical mesh in the 3D brain phantom 

and assuming two times oversampling factor for the rasterized phantom. The time required 

to compute a single k-space for a single motion state corresponds to the time required to 

compute the FFT of a 5123 matrix. This required our system approximately 4.44 seconds 

and one gigabyte of memory. In contrast, the time required to compute a single k-space point 

using the analytical phantom was 0.40 seconds and required 14.58 megabytes of memory. 

The number of operations required to compute N k-space points where every point is a 

different motion state using the FFT, ignoring oversampling, is  whereas 

computing the same points using a polyhedral phantom is O(N), linear with the number of k-

space points. Note that though the polyhedral FT is significantly more computationally 

intensive than the standard FFT it does not have advantage of significant optimization as 

does the FFT via the fftw libraries. Further optimization in the implementation of the 

phantom, including efficient parallelization, should significantly reduce computation time.
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Analytical polyhedral phantoms are also useful for developing motion compensation 

techniques. Periodically rotated overlapping parallel lines with enhanced reconstruction 

(PROPELLER) (25) and projection navigators (26–28) use non-Cartesian k-space 

trajectories and detect features shared between images or projections captured at different 

motion states. Using a polyhedral phantom these features can be realistically modeled and 

non-Cartesian k-space trajectories are readily simulated. In this paper we chose not to 

include examples of non-Cartesian trajectories such as 3D radial since that would introduce 

additional experimental factors such as the choice of non-Cartesian reconstruction 

algorithm. However, since the 2D torso phantom simulation samples 3D k-space along an 

oblique plane, this trajectory demonstrates the polyhedral phantom supports sampling of 

arbitrary k-space frequencies. Polyhedral phantoms may also have uses in computed 

tomography (CT) simulations through the relationship between the FT and the Radon 

transform via the Fourier slice theorem. Artifacts from using facets to approximate smooth 

surfaces can be alleviated by increasing the number of facets.

Any in vivo configuration that can be described in image space by altering the triangular 

mesh can be simulated using a polyhedral phantom. Hence, non-linear deformation of 

tissues is reduced to relocation of vertices before sampling of Fourier space. Other non-

linear behavior such as eddy currents can also be simulated with this framework. Eddy 

currents, which introduce offsets in intended k-space sample locations, can be modeled by 

creating a mismatch between the k-space coordinates used to sample the phantom and the 

coordinates used to reconstruct the data. However, to simulate phase accrual due to flow as 

used in phase contrast imaging, is more difficult as it could require subdivision of the 

physiologically relevant polyhedral into significantly smaller polyhedrons as done in finite 

element methods. The position of each small element within a gradient at a given time point 

can then be used to weight the contribution of that element to the final Fourier transform, 

with the weight including both magnitude and phase, and the phase term being determined 

by the first moment of the experienced gradient. Though computationally intense, this 

approach could allow MR simulation of any finite element model–derived structure.

 Limitations

As demonstrated in the 3D brain simulation, computation time can be an issue for large 

matrices and meshes with many edges. Using our basic C++-based plug-in, calculation of 

the polyhedral FT for a large number of faces (~50000) required on average 0.134 usec per 

kpoint per triangular face. Hence, calculation of a 2563 k-space matrix would take ~ 30 hrs. 

Further optimization of our C++-based implementation could certainly increase computation 

speed, especially if more efficient multi-threading is included. Additionally, the FT of a 

polyhedron is highly parallelizable since the computation of the contribution of each face is 

completely independent and therefore well suited for an optimized graphics processing unit 

implementation. Though not explored in this work, reusing any shared computations 

between edge and face contribution calculations may further increase performance (29).

Currently, this phantom and the associated framework are unable to model coil sensitivity 

profiles. The coil profile produces a modulation in image space and therefore a convolution 

of the FT of the phantom with the FT of the coil sensitivity profile. Though a solution for 
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this problem has been presented by Guerquin-Kern (5) for a 2D analytical phantom, to our 

knowledge, no solution exists for 3D phantoms that results in a purely analytical expression. 

Another limitation of the current implementation of the polyhedral FT phantom involves 

tissue intensity gradients. More computationally intensive simulations are required as the 

presented equations assume piecewise constant regions of intensity. Nevertheless, we can 

approximate gradients by dividing objects into adjacent regions with gradually varying 

intensity. Furthermore, a simple reformulation of the polyhedral FT can be used to 

efficiently calculate these gradients (29).

 Conclusions

In this paper, we reviewed the derivation of the FT of a polygon and polyhedron and 

described multi-threaded implementation for the later. We evaluated accumulated error due 

to limited floating point precision and determined that it remained small even for polyhedra 

with many faces. We determined that the k-space error of polyhedral approximations of 

smooth surfaces decreased rapidly with increasing number of faces. We used polyhedra to 

construct realistic 3D brain and 4D torso phantoms and demonstrated the application of 

these phantoms in simulated 2D and 3D MRI acquisitions. A MATLAB implementation of 

the phantom can be downloaded here: http://www.mathworks.com/matlabcentral/

fileexchange/51911-realistic-analytical-polyhedral-mri-phantoms.
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 A Appendix

 A.1 Abbe transform theorem

For a function ϕ that satisfies the Helmhotz equation , the N-dimensional 

volume integral of ϕ can be expressed as an N-1 dimensional integral of the divergence of ϕ 

over the surface enclosing the integration volume.

A.1

 Proof

Let V be a finite region in a space of N dimensions, ∂V is the boundary of V, and dσ an 

infinitesimal element of ∂V. Also let ϕ(r), be a scalar valued function of the position vector r 
which satisfies the Helmholtz equation:
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A.2

Where  is some constant.

ϕ satisfies the Helmholtz equation, implying . By substitution, the integral of 

the function ϕ over the volume V can be expressed as

A.3

Additionally, according to Gauss’s theorem

A.4

If we let  and  the above equation becomes

A.5

Substituting this result into the right side of A.3 produces the general case of the Abbe 

Transform:

A.6

 A.2 Applying the Abbe transform to the Fourier transform

To apply the Abbe Transform to the Fourier integral, let  be the kernel 

of the Fourier transform (FT) so the integral on the left of 0 is the N dimensional FT of the 

constant valued volume V. ϕ(r) satisfies the Helmholtz equation (k is a considered a 

constant) with , where k is the magnitude of the k space vector:

A.7

A.8
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A.9

Thus we can apply the Abbe transform to convert the N-dimensional Fourier volume integral 

of a constant valued region V to an equivalent N-1 dimensional surface integral.

A.10

 A.3 Derivation of the Fourier transform of a polygon

First we will derive the closed form expression for the FT of a plane polygon. This 

expression will be used in the face contribution of the polyhedron to its overall transform.

In 2D, we wish to find the FT S2D(k)of a polygon ρ(r) whose boundary is composed of E 

vertices V1 ⋯ VE oriented in a counter-clockwise fashion, where 

. The Abbe transform expresses the FT ρ(r) as a line integral 

along the boundary L where dl is a small segment of that boundary:

A.11

Notice that , the outward pointing normal to the edge of the polygon, and r are implicitly 

functions of the position on the boundary.

Let  be the vector oriented in the direction of the eth edge, pointing from 

vertex Ve to Ve+1with the same length as the edge, where ,  are the position 

vectors associated with the Ve and Ve+1 vertices of the polygon respectively.  is 

the unit vector oriented in the direction of the eth edge.  is a unit vector normal to the eth 

edge and pointing outward from the interior of the polygon. Additionally, the first and last 

vertices are connected, thus  and likewise .

A polygon’s boundary can be broken up into edges and the line integral can be expressed as 

the sum of the contributions  from each of the edges.

A.12
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A.13

Here,  has replaced  and is constant along a given edge.

A point on the eth edge can be parameterized by setting , where lis the distance 

from the vertex Ve, which makes explicit the dependence of the position ron the boundary to 

the scalar variable l. The contribution from the right edge can be rewritten as

A.14

A.15

Let  to rewrite Se in terms of phasors related to the midpoint of the 

edge.

A.16

A.17

A.18

Summing over all edge contributions  we obtain the final form for the expression for 

the FT of a polygon:

A.19

The above expression is finite as long as , i.e. the center of k-space. The value at k=0 is 

equal to the area of the polygon. The area of a 2D planar polygon in terms of its vertices is
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A.20

 A.4 Derivation of the Fourier transform of a polyhedron

We wish to find an analytical solution for the FT of a polyhedron ρ(r)

A.21

where .

Using the Abbe transform, the volume integral in the FT of a polyhedron can be expressed 

as an integral over the surface ∂V.

A.22

We wish to express the surface integral as the sum of the contributions of the faces of the 

polyhedron . Let  where  is a vector in the plane of the face of Pf whose 

origin is at r0f and r0f is the position vector of an arbitrarily chosen point 0f in the face Pf. 

Additionally, let  be the outward normal of the fth face and F be the total number of faces 

in the polyhedron.

Similar to the FT of a polygon, we can express the FT of a polyhedron as the sum of the 

contributions from each of its individual faces.

A.23

A.24
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A.25

The integral  over the surface Pf of the fth polygonal face can be evaluated using the 

formula for the FT of a polygon if kf is substituted for k, the projection of k onto the plane Pf 

or the component of k that exists purely in the plane of Pf. Since 

 and kf exists purely in the plane of the 

face (the plane of integration) we can apply the formula for the FT of a polygon. 

Additionally, let Ef be the number of edges of the fth face,  is the position vector of the 

midpoint of the eth edge on the fth face,  be the unit vector in the direction of the eth edge 

of the fth face,  be the length of the eth edge of the fth face,  is the outward normal to 

the eth edge of the fth face and is in the plane of the face.

A.26

This expression has a singularity when kf=0. In this case If is the area of the fth face, Pf. The 

following equalities can be used to rewrite the above equation in terms of k and . in the 

global coordinate system: , , , 

, and .

A.27

The singularity at kf=0 becomes a singularity at  because k perpendicular to the fth 

face implies kf=0. In this case  is the surface area Pf of the polygonal face f given 

in the global coordinate system as

A.28

Substituting If into Sf produces
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A.29

r0f can be any arbitrary point in the plane of the face. For instance it can be set to the first 

vertex .

Thus, summing over the appropriate contribution of each face, factoring out  from 

Sf. to produce  and substituting  for r0f, the final simplified expression for the FT of 

a polyhedron is:

A.30

where V is the volume of a polyhedron (14) which is given in terms of its vertices as

A.31
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Figure 1. 
An illustration of a polygon A), a face of a polyhedron B) and their associated parameters. 

A) A unitary intensity 2D polygon comprised of four vertices V1 … V4 oriented in a 

counter-clockwise fashion. B) A single triangular face of a polyhedron comprised of vertices 

Vf1 … Vf3. The remaining parameters are described in Table 1.
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Figure 2. 
Examples of triangular meshes with varying number of faces used to model a unit cube a–c) 

and an ellipsoid d–f). Unit cube shaped triangular meshes containing varying number of 

faces were used to validate the implementation of the FT of a polyhedron against the gold 

standard of the FT of a 3D rect function. The magnified inset illustrates the small triangular 

faces comprising the mesh in c). Triangular meshes with varying number of faces d–f) were 

used to approximate the FT of an ellipsoid against the closed form FT. The grey shadows 

show cross sections of the mesh in the x=0, y=0 and z=0 planes. The magnified inset for the 

79,600 face mesh illustrates dense triangles in the surface mesh.
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Figure 3. 
Triangular meshes comprising a 3D brain analytical polyhedral phantom used in 3D and 2D 

MRI simulations. The brain is oriented such that the x, y, z axes correspond to the right, 

anterior, superior anatomical axes. a) The outer cortical mesh with magnified inset 

illustrating triangles in the mesh, and b) inner cortical mesh with overlaid slab mesh used in 

2D MRI simulation with finite slice thickness. Although not shown, the slice plane used to 

simulate idealized infinitesimally thin slice selection is centered in the slab mesh. c) The 

resulting 2D contours from the intersection of all meshes with the ideal slice plane. d) The 

resulting 3D sliced meshes from the intersection of all meshes with a 1mm thick slab mesh. 

The magnified inset illustrates triangles in the mesh.
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Figure 4. 
Rendering of triangular mesh torso phantom with intersecting slice plane and resulting 

sliced meshes for different time points in the cardio-respiratory cycle. a) 3D rendering of 

torso phantom mesh at end-expiration/end-diastole. Magnified inset illustrates triangular 

facets. The slice plane is highlighted in red. b) Resulting sliced meshes after mesh 

subtraction and intersection operations. Although meshes were generated for 90 time points 

throughout the cardio-respiratory cycle, only the extremes of the cardio-respiratory cycle are 

illustrated here. A video is included with this manuscript that illustrates all 90 times points. 

The white lines are present to aide in seeing relative motion of structures.
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Figure 5. 
Evaluation of FT error with increasing edges in unit cube shaped triangular meshes. a) 

Sample-wise evaluation of the FT error. Top row) Plot of the gold standard computed using 

the product of sincs. Values are given in arbitrary units (A.U.) The real and imaginary 

components are displayed separately. Middle row) Graph of magnitude of error versus kx-

axis location. Bottom row) Graph of normalized magnitude of error versus kx-axis location, 

excluding points where the gold standard coefficient magnitude is zero since this would 

result in an undefined value. b) Graph of the normalized l2-norm of the error versus the 

number of faces in the unit cube mesh. Gray lines indicate different shifts of the cube from 

the origin. The black line with error bars indicate the mean and standard deviation of the 

normalized error taken across all displacements.
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Figure 6. 
The behavior of the error incurred when approximating the smooth surface of an ideal 

ellipsoid using polyhedra with increasing number of faces. The gold standard is an ideal 

ellipsoid with a known closed form FT. a) The log of the l2-norm of the gold standard 

volume versus the number of faces in the triangular mesh. Arrows indicate error 

corresponding to meshes in Figure 2 and subfigures b and c show image space and k-space 

details respectively for these meshes. b top row) The z=0 slice of reconstructed 3D volume 

and image space error. c) The intensity profiles corresponding to the dotted lines on the 

slices. b bottom row) The magnitude of the image space error for the z=0 slice. d top row) 

The log of the absolute value of the k-space error corresponding to the kz=0 plane. d bottom 

row) The log of the absolute value of the k-space error normalized by the absolute value of 

the gold standard.
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Figure 7. 
Representative slices of reconstructed volume from 3D MRI simulation using analytical 

polyhedral brain mesh phantom. Rows top to bottom: Transverse, coronal, sagittal planes. 

Columns left to right: Inferior, mid-plane, superior slices for the transverse plane. Anterior, 

mid-plane, posterior slices for coronal plane. Left, mid-plane, right slices for the sagittal 

plane.
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Figure 8. 
A comparison of a simulated 2D MRI brain acquisition using an analytical polyhedral 

phantom with infinitesimally thin and finite thickness slice selection for matrix sizes 642, 

1282, and 2562. All images in the rows a, b have the same intensity scaling given by the 

color bar on the right and similarly with images in rows c, d. For each set of two columns, 

the left and right correspond to thin and finite thickness slice selection respectively. The 

arrowheads and full arrows highlight partial volume effects at the edges and in the interior 

respectively. Row a) IDFT reconstruction of ideal and finite slice simulations. Row b) A 

magnified section corresponding to the region outlined by boundary pixels in row a. The 

boundary pixels become proportionately smaller as a side effect of increasing matrix size. 

Row c) The magnitude of the difference between a rasterized simulation, not shown, 

generated from the infinitesimally thin slice selection contours and the analytical 

simulations. The rasterized simulation image matrix is the same size as the k-space matrix 

used for analytical phantoms. Row d) A magnified section corresponding to the region 

outlined by boundary pixels in row c, which is the same region outlined in row a) and 

magnified in row b).
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Figure 9. 
The IDFT reconstruction of a simulated 2D MRI acquisition using an analytical polyhedral 

phantom of the torso at the extremes of the cardio-respiratory cycle. The white line is a 

reference to aid in seeing relative motion between different time points. Arrowheads 

highlight through-plane movement of a coronary artery. Full arrows highlight through-plane 

movement of a vessel in the lungs.
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Table 1

Symbols

Symbol Definition

S Fourier Domain MR signal

k k-space vector

2D polygon 

Total number of vertices or edges

index of eth vertex or edge

eth vertex, first and last vectors connected,

i.e.  and .

position vector associated vertex 

,

vector oriented in the direction the eth edge, pointed from vertex  to  with the same length as the edge

,
unit vector oriented in the direction of the eth edge

is a unit vector normal to the eth edge and pointing outward from the polygon

, position vector of the midpoint between vertices  and 

P Area of Polygon

3D polyhedron 

total number of faces in the polyhedron

index of fth face

outward normal of the fth face

total number of edges or vertices of the fth face

eth vertex of fth face, first and last vectors connected,

i.e.  and 

position vector associated vertex 

,

vector oriented in the direction the eth edge, pointed from vertex  to  with the same length as the edge

,
unit vector in the direction of the eth edge of the fth face
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Symbol Definition

outward normal to the eth edge of the fth face and is in the plane of the face

, position vector of the midpoint between vertices  and 

Area of fth face

V Volume of Polyhedron
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