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The Helicobacter pylori cytotoxin CagA is essential
for suppressing host heat shock protein expression
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Abstract Bacterial infections typically elicit a strong Heat
Shock Response (HSR) in host cells. However, the gastric
pathogen Helicobacter pylori has the unique ability to repress
this response, the mechanism of which has yet to be elucidat-
ed. This study sought to characterize the underlying mecha-
nisms by which H. pylori down-modulates host HSP expres-
sion upon infection. Examination of isogenic mutant strains of
H. pylori defective in components of the type IV secretion
system (T4SS), identified the secretion substrate, CagA, to
be essential for down-modulation of the HSPs HSPH1
(HSP105), HSPA1A (HSP72), and HSPD1 (HSP60) upon
infection of the AGS gastric adenocarcinoma cell line.
Ectopic expression of CagA by transient transfection was

insufficient to repress HSP expression in AGS or HEK293T
cells, suggesting that additional H. pylori factors are required
for HSP repression. RT-qPCR analysis of HSP gene expres-
sion in AGS cells infected with wild-typeH. pylori or isogenic
cagA-deletion mutant found no significant change to account
for reduced HSP levels. In summary, this study identified
CagA to be an essential bacterial factor forH. pylori-mediated
suppression of host HSP expression. The novel finding that
HSPH1 is down-modulated byH. pylori further highlights the
unique ability of H. pylori to repress the HSR within host
cells. Elucidation of the mechanism by which H. pylori
achieves HSP repression may prove to be beneficial in the
identification of novel mechanisms to inhibit the HSR path-
way and provide further insight into the interactions between
H. pylori and the host gastric epithelium.
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Introduction

Heat shock proteins (HSPs) are a highly conserved protein
family that functions as molecular chaperones to maintain
the structural and functional integrity of cellular proteins.
Upon disruption to protein homeostasis by proteotoxic insults
such as heat stress, radiation, proteotoxic chemicals, reactive
oxygen species, and infection, the production of HSPs is rap-
idly induced to recover proteostasis and promote cell survival.
Induction of HSP expression is achieved by the activation of
the transcription factor heat shock factor-1 (HSF1) and collec-
tively, this response to proteotoxic stress is termed the heat
shock response (HSR). HSPs function tomaintain proteostasis
by Bholding^ and Bfolding^ proteins to promote their correct
conformation, prevent mis-folded protein aggregates, and
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target damaged proteins for degradation (Morimoto 2008).
Importantly, the scope of HSP functions extend well beyond
their chaperoning roles to the regulation of many cellular pro-
cesses including but not limited to apoptosis, autophagy, se-
nescence, inflammation, and immunity (Calderwood et al.
2012; Murphy 2013).

Most bacterial infections studied to date induce HSP ex-
pression with numerous studies showing activation of the
HSR upon infection by bacterial pathogens such as
S. typhimurium, L. pneumophila, E. coli, and S. aureus
(Axsen et al. 2009; Shen et al. 2009; Zheng et al. 2004). In
contrast to the upregulation of host-cell HSP expression as-
sociated with such bacterial infections, the gastric pathogen,
Helicobacter pylori, has a novel ability to down-modulate
host HSP expression upon acute infection of gastric epithelial
cells (Axsen et al. 2009; Baek et al. 2004; Konturek et al.
2001; Pierzchalski et al. 2006; Targosz et al. 2006; Yeo et al.
2004). H. pylori is a Gram-negative, spiral bacterium that
infects 50 % of humans globally. Infection with this bacteri-
um is the strongest known individual risk factor for gastric
cancer, which is the third leading cause of cancer-related
death worldwide (Ferlay et al. 2012; Herrera and Parsonnet
2009). In addition to gastric cancer, H. pylori infection is also
a major risk factor for the development of chronic gastritis,
mucosa associated lymphoid tissue lymphoma (MALT) as
well as gastric and duodenal ulcers (Bayerdorffer et al.
1997; Kuipers 1997). One of the major virulence factors of
H. pylori strains is a 40-kb cytotoxin associated gene patho-
genicity island abbreviated to cagPAI, which encodes a type
IV secretion system (T4SS). This macromolecular complex
belongs to a family of conserved secretion apparatuses that
enable bacterial factors such as DNA and proteins to be
translocated into host cells (Alvarez-Martinez and Christie
2009). For H. pylori, the cytotoxin CagA is the only T4SS
protein substrate identified so far to be translocated into host
cells upon infection (Asahi et al. 2000; Backert et al. 2000;
Odenbreit et al. 2000; Stein et al. 2000). Upon translocation
into the host cell, CagA undergoes tyrosine phosphorylation
by host kinases at a number of Glu-Pro-Ile-Tyr-Ala (EPIYA)
motifs in its carboxyl region (Asahi et al. 2000; Higashi et al.
2002; Odenbreit et al. 2000; Stein et al. 2000). Up to 20 host-
binding partners of CagA have been identified, with CagA
phosphorylation sites being highly promiscuous for host cell
kinases (Backert et al. 2010). Studies have demonstrated
complex activation of host signaling pathways by
translocated CagA involving both CagA EPIYA
phosphorylation-dependent and -independent mechanisms
(Backert et al. 2010). To date, the bacterial factors responsible
for the repression of HSP expression upon acute H. pylori
infection in vitro remains unclear, with previous studies pro-
viding evidence both for and against a potential role for CagA
in mediating this effect (Axsen et al. 2009; Targosz et al.
2006).

This study seeks to examine the underlyingmechanisms by
which H. pylori represses HSP expression. In doing so, this
study aims to potentially identify novel mechanisms for inhi-
bition of the HSR pathway, providing insight for both the
therapeutic intervention of HSR and the pathogenic events
of H. pylori infection.

Materials and methods

Mammalian cell culture

Human gastric adenocarcinoma cell line, AGS, or hu-
man embryonic kidney cell line, HEK-293T, were
grown in RPMI or Dulbecco’s modified Eagle’s medium
(DMEM), respectively. Both growth media were supple-
mented with 10 % FBS (Thermo Scientific) and for
HEK293T, 1 % antimycotics/antibiotics (Gibco cat.
15240-062). Cells were incubated at 37 °C, 5 % CO2.
Brightfield images of cell lines and/or treated cells were
obtained to examine cell morphology using an Eclipse
TE-2000-U (Nikon) with 200× magnification.

H. pylori culture

H. pylori strain P12, previously designated strain 888-0, was
isolated from a duodenal ulcer patient and contains both the
vacA cytotoxin and a functional cagPAI (Fischer et al. 2010;
Haas et al. 1993). H. pylori isogenic mutants P12ΔcagL
(Gorrell et al. 2013), P12ΔcagL/cagL (Gorrell et al. 2013),
P12ΔcagPAI (Odenbreit et al. 2001; Selbach 2002) and
P12ΔcagA (kindly provided by S. Backert, Erlangen,
Germany) were cultured and maintained as described previ-
ously (Gorrell et al. 2013). Broth cultures were shaken at
120 rpm overnight (approximately 16 h) prior to the day of
infection and cell cultures were infected with H. pylori cul-
tures that had attained an OD550nm of 0.5-2.0.

Infection of AGS cells with isogenic mutant strains
of H. pylori

The human gastric adenocarcinoma cell line AGS was cul-
tured for infection experiments and inoculated with H. pylori
liquid culture as described previously (Gorrell et al. 2013).
AGS cells were plated in a 6-well dish (1 ×105/well) or a
10-cm dish (7.5×105/well) 48 h prior to infection in RPMI
media supplemented with 10 % heat inactivated FBS. AGS
cells were infected at a multiplicity of infection (MOI) of 50
with an equal volume of BHI broth added to the non-infected
control.
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Transient transfection

Both AGS and HEK293T cells were transfected at 70–90 %
confluency with the expression vector pSP65/SRα-CagA-HA
and pSP65/SRα-PR-CagA-HA to transiently express HA-
tagged wild-type CagA (derived from H. pylori strain
NCTC11637) and the HA-tagged phosphorylation-resistant
CagA mutant, PR-CagA-HA (Higashi et al. 2002). Growth
media was replaced with antibiotic free media, supplemented
with 10 % FBS 2–3 h prior to transfection. Cells were
transfected using Lipofectamine LTX and Plus reagent (Life
Technologies) as per the manufacturer ’s protocol.
Approximately 12–16 h later, cells were washed once with
1× PBS and full growth media was added.

Generation of stable cell lines

HEK293T cells were transiently transfected for virus produc-
tion with the retroviral packaging vector pCL-Ampho
(IMGENEX) and retroviral expression vectors using
Lipofectamine LTX and plus reagent (Life Technologies) ac-
cording to the manufacturer’s instructions. Cell media was
replaced 16 h following transfection, 24 h later the virus-
containing media was collected and filtered using a 0.45-μm
filter. AGS cells were transduced with retroviral overexpres-
sion pBABEpuro-IRES-EGFP vectors expressing wild-type
human HSF1 (HSF1WT) or a constitutively active mutant of
HSF1 (HSF1ΔRDT) (Fujimoto et al. 2005; Nguyen et al.
2013). GFP-positive transductants were selected by FACS as
previously described (Lang et al. 2012).

Western blot analysis

For analysis of lysates of AGS or HEK293T cells, Western
blot analysis was performed as outlined previously (Lang et
al. 2012). For the protein sample preparation of H. pylori--
inoculated cells, cell media was removed and equal volumes
(approximately 100 μl for 6-well dish) of 2× Laemmli buffer
heated to 95 °C was added to each sample well. Cells were
scraped and the sample collected and heated at 95 °C for
5 min, from which time it was stored at −20 °C. Protein sam-
ples prepared in RIPA lysis buffer (10–15 μg of protein) or
Laemmli buffer (15–25 μl of sample) were loaded onto a 4–
20 % Tris-glycine polyacrylamide gradient gel (NuSep), after
which transfer and immunoblotting were performed as de-
scribed previously (Lang et al. 2012). Antibodies used for
immunoblotting: CagA (Santa Cruz, sc-25766), HSF1
(Enzo, ADI-SPA-901), HSF1 p-Ser326 (Epitomics, #2043-1),
HSPA1A (Abcam, ab47455), HSPD1 (Thermo Scientific,
MS120P1), HSPH1 (Santa Cruz, sc-6241), actin (BD
Biosciences, 612656), anti-HA (Covance, MMS-101P).
Chemiluminescent signals were captured by exposure to an
X-ray film (GE healthcare or Fuji Film) and the resultant

signals quantified by densitometry using the ImageJ software
(NIH). Densitometric data from multiple experiments were
converted to mean fold change relative to actin expression
before normalization to the control sample.

RT-qPCR analysis of gene expression

Total RNA was isolated using the Agilent Absolutely Total
RNA extraction kit according to manufacturer’s instructions.
Total RNAwas quantified by spectrophotometry and 1 μg of
RNA was reverse-transcribed using iScript Select cDNA
Synthesis Kit (Bio-Rad) according to the manufacturer’s in-
structions. cDNA (10 ng) was added to the qPCR reaction
using SYBR Green PCR Master Mix (Life Technologies, cat-
alog no. 4309155). Samples were loaded into the thermal
cycler Rotorgene3000 with cycle conditions as follows; hold
time: 10 min, 95 °C, Cycle: [95 °C, 15 sec; 60 °C, 60 sec] for
40 cycles. Data were analyzed using the LinRegPCR soft-
ware, as outlined previously (Ruijter et al. 2009). Gene ex-
pression of human HSPH1, HSPA1A, HSPD1, HSF1, and
CXCL8 were normalized to that of the house keeping gene
RPL32, and represented as fold change relative to the non-
infected BHI control sample. Primer sequences for these
genes are: HSPH1 5′-TGCAATACTTTCCCCGGCAT-3′
(forward) and 5′-ACAAAGCGGCCTATTTTTGCT-3′
(reverse); HSPA1A 5′-GAGGCGTACCTGGGCTACCC-3′
(forward) and 5′-GTTGAGCCCCGCGATCACAC-3′
(reverse); HSPD1 5′-CCGACGACCTGTCTCGCC-3′
(forward) and 5′-TGTTCTTCCCTTTGGCCCCAT-3′
(reverse); HSF1 5′-CTGGCCATGAAGCATGAGAATG-3′
(forward) and 5′-TGCACCAGTGAGATCAGGAACT-3′
(reverse); RPL32 5′-CAGGGTTCGTAGAAGATTCAAG
GG-3 ′ ( forward) and 5 ′ -CTTGGAGGAAACATT
GTGAGCGATC-3 ′ ( r e v e r s e ) ; a n d CXCL8 5 ′ -
CAGAGACAGCAGAGCACACA-3′ (forward) and 5′-
GGCAAAACTGCACCTTCACA-3′ (reverse).

Immunocytochemistry

Cells were cultured on 13 mm coverslips in a 24-well plate.
Prior to fixation, cells were rinsed twice in PBS followed by
the addition of 4 % paraformaldehyde for 15 min at 37 °C.
Cells were permeabilized with 0.1 % Triton-X for 10 min at
room temperature (RT) and washed thrice in PBS prior to
immunostaining. Permeabilized cells were blocked with
10 % FBS/PBS for 30 min at RT. Primary antibodies, anti-
HA (Covance, MMS-101P), and anti-HSF1 (Enzo ADI-SPA-
901) were added at 1:1000 dilution and incubated overnight at
4 °C. Unbound antibody was removed by washing with PBS
and an appropriate fluorophore-conjugated secondary anti-
body (Life technologies) was added at a dilution of 1:2500
and incubated for 1 h at RT. Unbound secondary antibody was
removed by washing with PBS. DAPI (4′,6-diamidino-2-
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phenylindole, Life Technologies) was included as a nuclear
stain.

Results

H. pylori-mediated repression of host HSPs expression is
CagA-dependent

Given that CagA is one of the major virulence factors of H.
pylori and the sole known protein delivered by the cagPAI-
encoded T4SS into the host cell during infection, we investi-
gated the importance of CagA for the altered HSP expression
previously observed upon H. pylori infection in vitro (Axsen
et al. 2009; Baek et al. 2004; Konturek et al. 2001;
Pierzchalski et al. 2006; Targosz et al. 2006; Yeo et al.
2004). Wild-type H. pylori strain P12 (P12wt) and its CagA-
deficient isogenic mutant (P12ΔcagA) were used to infect the
gastric adenocarcinoma cell line AGS to model H. pylori in-
fection of gastric epithelia in vitro (Backert et al. 2001; Kwok
et al. 2002; Kwok et al. 2007). Following 24 h of infection,
HSP expression was quantitated byWestern blot analysis. Co-
culture of AGS cells with H. pylori P12wt induced a signifi-
cant reduction in protein expression levels of HSPH1
(HSP105), HSPD1 (HSP60), and HSPA1A (HSP72). In con-
trast, the P12ΔcagA mutant did not reduce expression of the
aforementioned HSPs (Fig. 1a). H. pylori P12wt translocated
CagA into the host cell under the experimental conditions
used as shown by cell scattering and the acquisition of a ‘hum-
mingbird’ cell morphology upon infection of AGS gastric
epithelial cells with P12wt (Fig. 1b). The ‘hummingbird’ ef-
fect has previously been shown to be dependent upon an intact
cagPAI and phosphorylation of translocated CagA (Backert

et al. 2001; Segal et al. 1999). Consistent with this, the
P12ΔcagA mutant did not induce ‘hummingbird’ morpholo-
gy in infected AGS cells (Fig. 1b). All together, these results
suggest that translocated CagA triggers down-modulation of
host HSP expression.

Repression of host HSP expression requires an intact
T4SS

To further examine a role for CagA translocation in HSR
suppression, AGS cells were inoculated with H. pylori
P12wt or deletion mutants lacking either the cagL gene
(P12ΔcagL) or the entire cagPAI (P12ΔcagPAI). Deletion
of cagL abolishes T4SS function, and deletion of cagPAI
leads to deletion of the cagA gene and genes encoding the
T4SS (Fischer et al. 2001; Kwok et al. 2007). In support of
CagA translocation playing an essential role in H. pylori
down-modulating host-cell HSP expression, inoculation with
either theΔcagL orΔcagPAImutants did not reduce HSPH1,
HSPA1A, or HSPD1 protein expression (Fig. 2). When T4SS
function was restored by re-introducing cagL into the
ΔcagL strain, protein expression of HSPH1 and
HSPD1 were significantly reduced to levels comparable
with those observed in response to P12wt (Fig. 2).
Together, these findings indicated that an intact T4SS,
able to translocate CagA, is required for H. pylori-me-
diated repression of host HSP expression.

CagA is required but not sufficient
for the down-modulation of host-cell HSP expression

To determine whether CagA was the sole factor respon-
sible for H. pylori-mediated HSP repression, AGS cells

Fig. 1 H. pylori-mediated host HSP repression is CagA-dependent. a
Western blot protein-expression analysis of chaperone proteins HSPH1
(HSP105), HSPA1A (HSP72), and HSPD1 (HSP60) in AGS cells 24 h
post-inoculation (p.i.) with H. pylori P12wt, P12ΔcagA mutant (MOI:
50), or culture broth control (BHI). Densitometric analysis of mean fold

change in expression normalized to BHI control from pooled experiments
shown on right ± SEM, *p < 0.05, **p < 0.01, ***p < 0.001, n = 5 b
Micrographs of AGS cell morphology upon co-culture with H. pylori
P12wt or P12ΔcagA mutant at 24 h p.i
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were transiently transfected with expression vectors
encoding HA-tagged CagA (CagA-HA) or a HA-tagged
phosphorylation-resistant CagA mutant (PR-CagA-HA).
The latter carries a tyrosine to alanine residue substitu-
tion in the EPIYA motifs, which contain the tyrosine
phosphorylation sites in CagA (Higashi et al. 2002).
We also examined the effect of ectopic CagA expression
in HEK293T cells that show higher transfection efficien-
cy than AGS cells, and greater gene expression from the
SV40 promoter due to the presence of the T-antigen in
this cell line. Ectopic expression of CagA-HA or PR-
CagA-HA did not reduce HSP expression in either
AGS (Fig. 3a) or HEK293T (Fig. 3b) cells. Taken to-
gether these results suggest that while HSP down-
modulation by H. pylori infection requires CagA translo-
cation, this effect may be dependent upon additional bac-
terial factors in conjunction with translocated CagA to
achieve HSP repression in the host cell.

HSF1 is activated upon infection of AGS cells
with H. pylori

To investigate the underlying mechanism by which H. pylori
down-modulates the level of host-cell HSPs, the activity and
expression of the transcriptional regulator of HSP expression,
HSF1, was examined during AGS co-culture with either the
H. pylori P12wt or P12ΔcagAmutant. Within 1 h of infection
with either strain, phosphorylation of HSF1 at Ser326 was
dramatically increased (Fig. 4). Ser326 is a positive regulation
site critical for HSF1 transcriptional activity (Chou et al. 2012;
Guettouche et al. 2005). Level of Ser326 phosphorylation was
also increased at 3 h post-infection with either strain compared
to that of the non-infected BHI control (Fig. 4). However at
later time points, levels of HSF1 phosphorylated Ser326 in
P12wt- or P12ΔcagA-infected cells were comparable to that
of the BHI control. In contrast, there was no variation in HSF1
total protein level relative to the BHI control during the 24 h of

Fig. 2 H. pylori-mediated down-modulation of host HSPH1 and HSPD1
protein levels requires an intact T4SS. Western blot protein expression
analysis of chaperone proteins following inoculation of AGS cells withH.
pylori P12wt (as in Fig. 1) or isogenic mutant strains, P12ΔcagL (n = 5),
P12ΔcagL/cagL rescue (n = 4) or P12ΔcagPAI (n= 6) of H. pylori P12,

24 h p.i. The expression of CagA in the various H. pylori strains as
detected by Western blot is also shown. Densitometric analysis of mean
fold change in expression normalized to BHI control (ctrl) from pooled
experiments shown on right (mean ± SEM), *p < 0.05, **p < 0.01,
***p< 0.001

Fig. 3 Expression of cagA is not sufficient for down-modulation of HSPs
in AGS or HEK293T cells. a AGS cells were transfected with 1.5 μg of
cagA-expression vector DNA or SRα vector control. Cell lysates were
harvested 48 h post-inoculation and then analyzed by Western blot.
Densitometry represents mean HSP/actin protein level ratios relative to
that of the SRα vector control, ±SEM, n = 2. b HEK293T cells were

transiently transfected with 4.0 μg of SRα expression vector containing
CagA-HA or PR-CagA-HA, cell lysates were analyzed by Western blot
48 h following transfection. Densitometric analysis is shown on right with
mean HSP levels normalized against actin control and expressed as fold
change relative to non-transfected media control (ctrl) ±SEM, n= 2
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infection (Fig. 4). These data indicated that reduced HSP ex-
pression was not due to inhibition of HSF1 expression, or
activation via phosphorylation.

Overexpression of HSF1 partially rescues the reduction
in HSP levels upon H. pylori infection of AGS cells

To further examine whether CagA targets HSF1 during
H. pylori-mediated down-modulation of HSPs, AGS
cells stably overexpressing human HSF1 (HSF1WT) or
a constitutive active mutant (HSF1ΔRDT) were gener-
ated (Fig. S1b). Overexpression of HSF1WT or
HSF1ΔRDT resulted in increased levels of the HSF1
transcriptional targets HSPH1 and HSPD1 (Fig. 5a).
HSP levels were examined by Western blot analysis of
cell lysates harvested following 24 h of infection with
H. pylori P12wt. Consistent with previous infections,
HSP expression was significantly down-modulated in
P12wt - i n f e c t ed GFP con t ro l c e l l s (F ig . 5 a ) .
Concurrently, HSP levels were also markedly reduced
in the HSF1WT- and HSF1ΔRDT-overexpressing cell
lines in response to infection with P12wt. However,
the fold reduction in HSP expression was less than that
of the AGS-GFP control-infected cells, indicating that
while HSF1 overexpression partially rescued HSP ex-
pression, the primary mechanism for HSP repression
by H. pylori is likely to be independent of HSF1 ex-
pression levels (Fig. 5a). In addition, the limited rescue
effect observed upon overexpression of the constitutive-
ly active HSF1ΔRDT suggests that H. pylori-mediated
HSP repression is also independent of altered HSF1
activation.

The molecular basis of the inhibitory effect upon HSP ex-
pression duringH. pylori infection was further investigated by
co-localization analysis of CagA and HSF1. AGS cells were
transiently transfected with expression vectors encoding
CagA-HA or PR-CagA-HA. Endogenous HSF1 was predom-
inantly nuclear in the AGS cell line, whereas ectopically
expressed CagAwas localized to the cell periphery (Fig. 5b).

The distribution of ectopically expressed CagAwas in agree-
ment with the previous observations that CagA upon translo-
cation into or ectopic expression within the host cell was lo-
calized to the host-cell plasma membrane and cytoplasm
(Backert et al. 2000; Higashi et al. 2002). The disparate cellu-
lar localisation of HSF1 and CagA indicated no direct inter-
action between the twomolecules, and that the ectopic expres-
sion of CagA did not alter the nuclear localization of HSF1.

Activation of HSF1 upon infection of AGS cells
withH. pylori does not result in elevated levels of HSP gene
expression

Our findings suggest that despite the strong phosphorylation
of HSF1 within 3 h of infection with H. pylori P12wt and
P12wtΔcagA mutant, HSP expression is reduced at 24 h
post-infection. To determine whether H. pylori-mediated
down-modulation of HSP levels was due to an inhibition of
HSP gene transcription, RT-qPCR analysis of HSP mRNA
levels was performed using samples collected at 4 h (data
not shown) and 8 h post-infection with P12wt and
P12ΔcagA (Fig. 6). Consistent with the constant relative
HSF1 protein levels observed up to 24 h post-infection
(Fig. 4), no change in HSF1 mRNA level was observed at
4 h (data not shown) or 8 h post-infection (Fig. 6). Despite
significantly increased HSF1 phosphorylation up to 3 h post-
infection (Fig. 4), and a robust infection indicated by upregu-
lation of CXCL8, which encodes the proinflammatory chemo-
kine interleukin-8 (Fig. 6), there was no concurrent increase in
the mRNA levels of HSPH1, HSPA1A, or HSPD1 (Fig. 6).
This suggests that the activation of these genes by HSF1 may
be somewhat limited duringH. pylori infection. Moreover, no
significant reduction in HSP gene expression was observed at
these time points to directly account for the reduced HSP
expression observed within the cells at 24 h post-infection.
Furthermore, no CagA-dependent effect upon gene expres-
sion was found. Thus, these results indicate that the CagA-
dependent mechanism of HSP down-modulation is unlikely to
be due to inhibition of HSP gene transcription.

Fig. 4 Phosphorylation of HSF1 at Ser326 upon infection with H. pylori
P12wt and P12ΔcagAmutant. Phosphorylation of HSF1 at Ser326 as well
as HSF1 total levels within cell lysates of AGS infected with H. pylori
P12wt or P12ΔcagA for 1, 3, 6, 12, and 24 h were examined by Western

blot; representative blots are shown. Densitometric analysis of HSF1 p-
Ser326/HSF1 mean expression ratio at 3-h p.i. (n= 2) and of HSF1/actin at
24-h p.i. (n = 4) is shown on right, ±SEM
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Analysis of HSP expression upon inhibition of proteasome
activity with H. pylori infection

To examine whether reduced HSP levels observed at 24 h
post-infection were mediated by enhanced proteasomal deg-
radation of the HSPs, HSP levels in AGS inoculated with
H. pylori P12wt and co-treated with the proteasome inhibitor
MG132 were analyzed. In optimization ofMG132 treatments,
AGS cells were treated with a titration of MG132 concentra-
tions for 24 h, with increasing levels of ubiquitinated protein
seen up to MG132 concentration of 0.5 μM (Fig. S1a).

Treatment of cells with MG132 at concentrations of 1.0 μM
and higher caused increasing dose-dependent cellular toxicity
(data not shown). While treatment with MG132 resulted in
higher HSP expression in infected samples, this was matched
by a comparable fold increase in HSP expression in the non-
infected samples, likely due to the inherent HSR-activating
properties of MG132 (Fig. 7). Accordingly, HSP levels were
still substantially reduced in infected samples co-treated with
MG132 compared to the non-infected BHI-inoculated cells.
Although these data together do not exclude a contribution of
proteasomal activity to HSP down-modulation, they strongly
suggest that the primary mechanism of theH. pylori-mediated
repression of HSP expression is not enhanced proteasomal
degradation of HSPs.

Discussion

In addition to playing important roles in maintaining the in-
tegrity of cellular proteins and a cell’s response to proteotoxic
stress, HSPs also function in inflammation, immune signaling,
and antigen presentation (Calderwood et al. 2012; Henderson
et al. 2010). The gastric pathogenH. pylori, the primary cause
of chronic gastritis, peptic ulcer, MALT, and gastric cancer,
has been demonstrated to down-modulate host-cell HSP ex-
pression upon infection (Axsen et al. 2009; Baek et al. 2004;
Konturek et al. 2001; Pierzchalski et al. 2006; Targosz et al.
2006; Yeo et al. 2004). The mechanism of H. pylori-mediated
host HSP repression is currently unknown, the elucidation of
which may provide novel insight into host-pathogen interac-
tions and may prove valuable in the effort to develop anti-HSP
strategies for cancer treatment.

The current study demonstrated reduced protein level of a
number of HSPs, namely HSPH1, HSPA1A, and HSPD1,
upon acute infect ion of the human AGS gastr ic

Fig. 5 Overexpression of HSF1 partially rescues HSP repression upon
H. pylori infection of AGS cells. a AGS cells overexpressing HSF1WT,
HSF1ΔRDT, and the GFP control cell line were inoculated withH. pylori
P12wt (MOI:50) or BHI broth, and HSP levels were analyzed 24 h post-
infection by Western blot, n = 3. Densitometric analysis of mean fold
change in HSPD1 levels ±SEM are shown on right expressed as a ratio
of that of the BHI control for each given cell line, *p< 0.05. b CagA-
expression vectors were used to transiently express CagA-HA or PR-
CagA-HA in AGS cells. Immunostaining of AGS cells ectopically ex-
pressing CagA-HA and PR-CagA-HA using anti-HA and anti-HSF1 an-
tibodies revealed no co-localization of CagAwith endogenous HSF1. Top
two rows represent secondary antibody control and empty SRα expres-
sion vector controls, respectively, n= 2. Scale bar= 25 μm

Fig. 6 H. pylori infection does not alter HSP or HSF1 gene expression.
RT-qPCR expression analysis of genesHSPH1,HSPA1A,HSPD1,HSF1,
and CXCL8 8 h p.i. of AGS cells with either H. pylori P12wt or
P12ΔcagA mutant. Messenger RNA levels were normalized to that of
the BHI control sample with RPL32 used as a reference gene. CXCL8
induction provided a positive control for robustness of infection, n= 3
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adenocarcinoma cell line AGS with H. pylori strain P12. A
number of previous studies have reported repression of host
HSP expression upon H. pylori infection (Axsen et al. 2009;
Baek et al. 2004; Konturek et al. 2001; Pierzchalski et al.
2006; Targosz et al. 2006; Yeo et al. 2004). This study is the
first to report this effect using the H. pylori strain P12 in AGS
cells. This further suggests that HSP repression byH. pylori is
unlikely to be limited to certain strains or host-cell models. Of
the HSPs examined in this study, the down-modulation of
HSPA1A uponH. pylori infection has been the most frequent-
ly reported (Axsen et al. 2009; Pierzchalski et al. 2006;
Targosz et al. 2006; Yeo et al. 2004). Axsen et al. reported a
mild down-modulation of HSPD1 at 6 and 12 h in AGS but
not KatoIII cells upon infection with the H. pylori strain J166.
However, in contrast to this study, Axsen et al., found no
significant reduction in protein expression of HSPD1 after
24 h of infection (Axsen et al. 2009). Yeo et al did not observe
down-modulation of HSPD1 but repression of HSPB1
(HSP27) upon H. pylori infection; in contrast, Axsen et al.
reported HSPB1 expression to be unaffected (Axsen et al.
2009; Yeo et al. 2004). The variable findings regarding which
specific HSPs are repressed may be due to numerous experi-
mental factors including strain-specific effects, the host-cell
models used, the multiplicity of H. pylori infection used, as
well as inconsistent infection periods between studies.
However, although studies to date, including the current study,
reveal variations in the individual HSPs repressed following
H. pylori infection, reports are consistent in that unlike infec-
tion with other bacterial species, H. pylori infection results in
some level of HSP repression rather than HSP upregulation.

This study identified for the first time that CagA acted as a
bacterial factor essential for H. pylori-mediated repression of
host HSP expression. In contrast, Axsen et al found reduced
HSP expression upon H. pylori infection to be independent of
CagA and the cagPAI (Axsen et al. 2009). Using semi-
quantitative RT-PCR, Targosz et al., found that infection of
human gastric MKN7 cells with cagA− vacA− H. pylori strain

326 also resulted in reduction of HSPA1A gene expression up
to 72 h post-infection; however, this effect was more promi-
nent during infection with cagA+ vacA+ H. pylori, suggesting
that both CagA-dependent and independent mechanisms exist
to mediate HSP repression (Targosz et al. 2006). This is in
agreement with findings from the current study where no
HSP-gene induction (i.e., levels higher than the non-infected
BHI control) was observed upon H. pylori infection irrespec-
tive of whether the strain used for infection expressed CagA or
not. Given that upon infection with either wild-type H. pylori
or a CagA-deficient mutant there was a strong phosphoryla-
tion of HSF1 at Ser326, indicative of HSF1 activation, we were
surprised that we did not see an associated elevation in HSP
gene expression. This observation suggested the possibility
that a CagA-independent inhibition of HSP gene expression
is also in operation.

Ectopic expression of cagA isolated from the H. pylori
strain NCTC11637 was found to be insufficient to significant-
ly reduce HSP expression in either HEK293T or the AGS
gastric cell line, indicating that CagA may require additional
bacterial factors to mediate HSP reduction. Further confirma-
tion of this phenomenon could be achieved by experiments
that examine HSP expression upon ectopic transfection of
cagA in other gastric cell models or primary human gastric
cells. Nevertheless, the effect of CagA upon HSP expression
shown here is reminiscent of the interactions of CagAwith its
host-binding partners, the specificity and affinity of which
appear to vary depending on whether the CagA is translocated
fromH. pylori during infection or ectopically expressed. Thus
these findings further emphasize the importance of ad-
ditional bacterial factors for CagA-mediated effects dur-
ing H. pylori infection, reviewed in (Backert et al.
2010).

The current study investigated the potential of CagA
targeting the primary transcriptional regulator of HSPs,
HSF1, as a mechanism for H. pylori-mediated HSP repres-
sion. Data presented here demonstrated that the repression of

Fig. 7 MG132 treatment does not inhibit H. pylori-mediated HSP
repression. AGS cells were treated with various concentrations of the
proteasome inhibitor MG132 1 h prior to and during infection with H.
pylori P12wt (MOI: 50) for a total of 24 h. Western blot analysis of
protein expression following 24 h of combined infection and MG132

treatment is shown. Pooled densitometric values for HSPH1 (n= 2) and
HSPD1 (n= 3) normalized to actin are shown on the right and represented
as P12wt-infected expression relative to the non-infected BHI control
sample for each respective MG132 concentration
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HSP levels by H. pylori is mediated by a mechanism that is
independent of any CagA-dependent alteration of HSF1 gene
or protein expression. Gene expression levels of HSF1 were
found to be unchanged 4 h (not shown) and 8 h post-infection,
consistent with the report from Pierzchalski et al. where RT-
PCR analysis of HSF1 gene expression was constant during
H. pylori infection of KatoIII cells at time points examined up
to 48 h (Pierzchalski et al. 2006). Moreover, the current study
found that HSF1 protein levels remained constant relative to
the non-infected control over 24 h, a time period at which HSP
levels were significantly reduced in the infected host AGS
cells. Together these findings indicate that the observed reduc-
tion in HSP expression is not due to a reduction in HSF1
expression. This is further supported by the finding that over-
expression of wild-type human HSF1 or a constitutively ac-
tive mutant of HSF1ΔRDTwas unable to significantly rescue
H. pylori-mediated repression of HSP expression.

Interestingly, within 1 and 3 h of H. pylori P12wt infection
of AGS cells, HSF1 phosphorylation at Ser326 was markedly
increased. Phosphorylation of this serine residue has been
shown to occur in response to proteotoxic stressors including
heat stress, proteasome inhibition with MG132 and heavy
metal exposure (CdCl2) and single amino acid substitution
of this residue dramatically reduces HSF1 transcriptional ac-
tivity (Chou et al. 2012; Guettouche et al. 2005). This is the
first study to identify phosphorylation of HSF1 at Ser326 dur-
ing bacterial infection. Of note, infection withH. pylori P12wt
or its isogenic ΔcagA mutant both induced phosphorylation
of host-cell HSF1 to similar levels, indicating that CagA is not
essential for this effect duringH. pylori infection. Of note, the
marked increase in HSF1 phosphorylation at Ser326 did not
result in increased HSP gene expression at 4 h (not shown) or
8 h post-infection, suggesting a potential restriction of HSF1
transcriptional activity that prevented enhanced expression of
HSPs. Both Axsen et al. and Targosz et al. demonstrated
CagA-independent down-modulation of HSP and gene ex-
pression respectively (Axsen et al. 2009; Targosz et al.
2006), while the current study found that the ability of H.
pylori P12 to down-modulate HSP levels was dependent on
cagA, cagL, and an intact cagPAI. The finding that HSP and
mRNA levels were not increased upon infection with either
wild-type H. pylori or T4SS-defective mutants, despite appar-
ent HSF1 activation, supports the possibility of CagA-
independent restriction of HSP expression at the transcription-
al level byH. pylori. Pierzchalski et al. proposed loss of HSF1
DNA-binding activity as a mechanism for the down-
modulation of HSP levels during H. pylori infection upon
formation of STAT1/HSF1 and STAT3/HSF1 complexes
(Pierzchalski et al. 2006). Whether the formation of these
complexes is indeed responsible for the observed down-
modulation of HSP expression upon H. pylori infection re-
mains to be investigated; if true this may present a potential
mechanism for the apparent restriction of HSP gene

expression despite increased phosphorylation of HSF1 at the
Ser326 site.

No CagA-dependent effect upon HSP gene expression was
observed, suggesting translocated CagA may impact upon
HSP expression at a post-transcriptional level. Yeo et al., pro-
vided evidence to suggest that down-modulation of HSPA1A
protein level occurs within 2 h of H. pylori infection, which
points to a more direct mode of HSP repression, independent
of altered HSP gene expression (Yeo et al. 2004). Experiments
within this study in which proteasome activity was inhibited
with MG132 found no dramatic alteration in the fold repres-
sion of HSP expression upon H. pylori infection. However,
while treatment with MG132 demonstrated proteasome inhib-
itory activity (Fig. S1a), complete proteasome inhibition was
not confirmed. Further experiments would be needed to clar-
ify any role for proteasomal degradation during HSP reduc-
tion by H. pylori.

Nevertheless, the data presented suggest a CagA-
dependent block of HSP mRNA translation and/or altered
HSP mRNA processing. Recently, acute H. pylori infection
has also been shown to repress HSPA5 (Grp78/BiP) expres-
sion and the unfolded protein response (UPR). Despite signif-
icantly increased HSPA5 gene expression upon infection and
chemical activation of the UPR with tunicamycin, acute H.
pylori infection was shown to repress both basal and
tunicamycin-induced protein levels of HSPA5 (Baird et al.
2013). The increased production of host-cell proteins such as
IL-8 upon infection (Brandt et al. 2005), suggests that any
translational repression mediated by H. pylori is possibly spe-
cific to HSP transcripts. Specific repression of translation of
HSP mRNAs has been described in other contexts; for exam-
ple under basal conditions, translation of chicken reticulocyte
HSP70 mRNA is restricted through a reduced elongation rate
(Theodorakis et al. 1988). In addition, injection of IFN-γ and
TNF-α, inflammatory factors that are also associated with H.
pylori infection, were found to preferentially inhibit HSP
translation without altering mRNA levels in a mouse model
of colitis (Hu et al. 2007). Whether H. pylori infection plays a
role in specific HSP repression via a mechanism similar to the
previously mentioned contexts remains to be seen.

Conclusions

While the importance of CagA to the cytotoxicity ofH. pylori
infection and the development of disease are well established,
it remains largely unclear how H. pylori benefits from
translocating CagA into host cells (Backert et al. 2010). The
current study has identified CagA to be a major factor for H.
pylori-mediated HSP down-modulation upon infection. In ad-
dition to the HSPs previously known to be repressed by H.
pylori, expression of HSPH1 has been identified for the first
time in this study to be down-modulated by H. pylori, further
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highlighting an apparent universal repression of stress-
associated proteins by this pathogen. Given the immune-
regulatory roles of HSPs, we hypothesize in agreement with
Axsen et al., thatH. pylorimay benefit from CagA-dependent
acute repression of HSP levels by modulation of the host
immune response and thereby aiding the establishment of in-
fection (Axsen et al. 2009). While CagA was shown to be
essential forH. pylori-mediated repression of HSP expression,
expression of CagA alone was not sufficient for this effect,
highlighting the importance of additional bacterial factors. A
specific mechanism for the repression of HSP expression has
yet to be clearly identified; however, the data presented re-
veals an ‘uncoupling’ of HSP mRNA and protein expression
similar to that previously reported (Baird et al. 2013). Future
studies that identify the mechanism by which H. pylori medi-
ates the repression of stress proteins may reveal a novel meth-
od to inhibit the HSR pathway; a strategy with significant
potential for the treatment of numerous human cancers.
Characterization and perturbation of H. pylori-mediated HSP
repression will further our understanding of H. pylori-host
interactions and may provide important insights into the path-
ogenesis of gastric diseases caused by H. pylori infection.
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