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Theoretical Investigations of 
Optical Origins of Fluorescent 
Graphene Quantum Dots
Jingang Wang1,2,3,*, Shuo Cao1,*, Yong Ding1,*, Fengcai Ma1, Wengang Lu2 & Mengtao Sun1,2

The optical properties of graphene quantum dots (GQDs) were investigated theoretically. We focused 
on the photoinduced charge transfer and electron-hole coherence of single-layer graphene in the 
electronic transitions in the visible regions. Surface functionalization with donor or acceptor groups 
produced a red shift in the absorption spectrum, and electrons and holes were highly delocalized. The 
recombination of excited, well-separated electron-hole (e–h) pairs can result in enhanced fluorescence. 
This fluorescence enhancement by surface functionalization occurs because of the decreased symmetry 
of the graphene resulting from the roughened structure of the surface-functionalized GQDs.

Graphene is a single atomic layer that consists of a two-dimensional honeycomb lattice of carbon atoms. Because 
of its fundamental physics and excellent optical, thermal and electrical properties, it has been widely investigated, 
both experimentally and theoretically1–4. Graphene has been widely applied in quantum information processing5, 
fuel cells6, photovoltaic materials7, water purification8, controlling reactions9, and optical modulation10.

Because the fragments of graphene are limited in size or domains, graphene quantum dots (GQDs) are emerg-
ing as an advanced material with multiple functionalities because of their unique optical, electronic11, spin12, and 
photoelectric properties induced by edge effects and quantum confinement effects. There are many important 
applications for GQDs in fluorescent materials13, photocatalysis14, bioimaging15 and organic photovoltaic (OPV) 
solar cells16. To apply GQDs to optoelectronic nano devices, elucidating and understanding the mechanisms 
underlying their novel light-absorption/emission properties is of critical importance. The influence of edge struc-
ture on the electronic properties of GQDs with 2–20-nm lateral dimensions has been investigated11. When the 
size of a GQD is less than 10 nm, quantum confinement and edge effects can induce photoluminescence (PL)17,18. 
Many efforts have been directed at increasing the quantum yield of GQDs, for example, by surface functionali-
zation of the GQDs (SF-GQDs) with organic molecules19 or surface oxidation20. The PL of GQDs can be tuned 
based on the charge-transfer effect of electron-withdrawing or electron-donating functional groups21. The PL 
mechanism of GQDs has been interpreted as the minimization of thermalization resulting from electron-phonon 
scattering22, or the formation of an excited-state relaxation channel, which causes inelastic light scattering by 
electric doping23. Kim attributed this behavior to fast carrier–carrier scattering24, which encourages the direct 
recombination of the excited electron–hole (e–h) pairs that produce this PL before the carriers are thermalized 
in the lattice.

In this paper, we investigated the effects of surface functionalization on the optical properties of GQDs with a 
lateral dimension of approximately 2 nm, mainly focusing on the charge-transfer and e–h coherence in the elec-
tronic transition of GQDs. We also evaluated the influence of the geometrical roughness resulting from surface 
functionalization with organic molecules on the GQDs’ optical properties. Our results can facilitate a deeper 
understanding of the origin of the optical properties of GQDs.

Results
The models used for the calculations can be seen in Fig. 1(a,b), which show a GQD and an SF-GQD with -NH2, 
respectively. In mode (a), there are four zigzag edges and one armchair edge. The calculated absorption spectra 
of both GQDs in the visible region are presented in Fig. 2 and demonstrate that the optical absorption peaks of 
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SF-GQD with -NH2 groups are significantly red shifted. This finding indicated that the fluorescence peaks of 
SF-GQD with -NH2 should also be significantly red shifted. These red-shift phenomena are consistent with the 
experimental findings13,19,21.

To reveal the nature of the optical origins of fluorescent GQDs, it is important to observe the e–h coherence 
and electron transfer in electronic transitions in the visible region. The degree of electron transfer determines the 
degree of fluorescence because the direct recombination of excited e–h pairs produces fluorescence24. We first 
demonstrate the degree and orientation of charge transfer for GQDs for strong electronic transitions. The charge 
difference densities (CDDs) in Fig. 3 reveal that the electrons and holes were locally excited and that the electrons 
transferred from the adjacent holes. Therefore, the electrons and holes were not significantly separated, and the 
degree of electron transfer from holes is weak because of the strong interaction between holes and electrons in 
the electronic transitions in the visible region. Note that electrons seem to significantly transfer from holes in the 
near-ultraviolet region (see CDD at 327.9 nm) but cannot contribute to the fluorescence in the visible region.

The three-dimensional CDDs in Fig. 3 demonstrate the qualitative visualization analysis of photoinduced 
charge transfer. To quantitatively analyze the charge transfer, Δr is introduced to measure the charge-transfer 
length25,
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where i and j traverse all of the occupied and virtual molecular orbitals, respectively, and ϕ  is the orbital wave 
function. When Δr >  2, the electronic state transition is considered in the charge-transfer excited state, whereas 

Figure 1. The models used for the calculations. (a) GQD and (b) SF-GQD with -NH2.

Figure 2. The calculated absorption spectra of the GQD and SF-GQD with -NH2. 
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when Δr <  2.0, it is considered to be in an excited state with a different charge25. The calculated results are sum-
marized in Table 1, where the electronic transition states of GQDs are localized excited states, and the electronic 
state transitions of SF-GQD are the charge-transfer excited states.

Therefore, all of the strong electronic transitions of-GQDs are charge-transfer excited states because the 
charge-transfer lengths of these excited states all exceed 2.0 Å. The CDDs of these excited states confirm this 
phenomenon; the holes and electrons are well separated, and the degree and orientation of the electron trans-
fer are well visualized (Fig. 4). For example, for the electronic transition at 801 nm, almost all holes are local-
ized on the edge, whereas the electrons are localized on the center. For the electronic transition at 611 nm, the 
holes are localized on the right edges, and the electrons are delocalized to the center of graphene and the left 
edges. This behavior means that in this excited state, the optical excitation occurs at the right edge, and then 
the electrons excited at this edge are delocalized to the other parts, indicating strong electron transfer in the 
excited state.

Discussion
The surface functionalization of GQDs can result in a red shift in the absorption spectrum and a correspond-
ing red shift in the fluorescence spectrum. Our theoretical calculations are consistent with the experimental 
results. The CDDs in Fig. 4 reveal that the mechanism of fluorescence enhancement is not, as expected, mainly 
attributable to the functionalized donor or acceptor groups because both electrons and holes exist on the 
functionalized -NH2. To further reveal the mechanism of fluorescence enhancement by surface functionali-
zation, we also obtained the optimized molecular geometries of GQDs and SF-GQDs with -NH2 (see Fig. 5). 
The optimized GQD geometry was found to be flat, whereas the optimized F-GQD geometry was not highly 

Figure 3. Charge-transfer densities for the strong electronic transitions in the GQD, where the holes and 
electrons are represented in green and red, respectively. 

GQD SF-GQD

nm f ΔL(A) nm f ΔL(A)

612 0.4266 1.08 803 0.0729 2.10

591 0.3629 1.26 724 0.3547 2.95

436 0.3762 1.78 611 0.3565 3.44

415 0.5205 1.41 488 0.3192 3.59

411 0.6472 0.26. 487 0.6787 3.00

328 0.2868 1.64 392 0.1431 4.35

Table 1.  Charge-transfer lengths for the GQD and SF-GQD.
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flattened, thereby decreasing the symmetry of the graphene. Therefore, the holes can be localized on the edge 
of the SF-GQD, and the electrons can transfer to other parts.

We visualized the theoretical mechanism of fluorescence enhancement in surface-functionalized GQDs using 
CDD. This surface functionalization can result in a red shift in the absorption spectrum and roughness in the 
graphene structure. The decrease in the GQD’s symmetry by surface functionalization also causes the electrons to 
delocalize along the graphene. The large electron transfer and well-separated e–h pairs can significantly enhance 
the fluorescence because the direct recombination of excited e–h pairs produces strong fluorescence. Our results 
can promote a deeper understanding of the origin of the optical properties of GQDs. It should be noted that the 
doping, size and edge are also important for the fluorescence enhancement. They will be studied in our further 
theoretical work.

Methods
The models used in the calculations are shown in Fig. 1(a,b): graphene and surface-functionalized graphene 
with -NH2, respectively. In mode (a), there are four zigzag edges and one armchair edge. All the calculations 
were performed with Gaussian 09 software26. The ground-state geometries of both GQDs were optimized with 
density functional theory (DFT)27 using the B3LYP functional28 and 6-31g(d) basis set. Their optical absorption 
spectra in the visible region were calculated with time-dependent DFT (TD-DFT)29 using the CAM-B3LYP func-
tional30 and 6-31g(d) basis set. Note that the long-range-corrected functional (CAM-B3LYP) was employed for 
the non-Coulomb part of the exchange functional. The charge transfer in the electronic transition was visualized 
using CDDs31.

Figure 4. Charge-transfer densities for the strong electronic transitions in the SF-GQD with -NH2, where 
the holes and electrons are represented in green and red, respectively. 

Figure 5. Optimized molecular structures. (a) GQD and (b) SF-GQD with -NH2.
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